You're looking at a specific version of this model. Jump to the model overview.
aramintak /flux-softserve-anime:9e35b001
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run aramintak/flux-softserve-anime using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"aramintak/flux-softserve-anime:9e35b00131765c22d260dce4106d6688e83e67d4416955ca137cb27c94ed81c9",
{
input: {
model: "dev",
prompt: "a stack of pancakes with fruit between the layers and whipped cream on top on a pastel green plate, sftsrv style",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run aramintak/flux-softserve-anime using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"aramintak/flux-softserve-anime:9e35b00131765c22d260dce4106d6688e83e67d4416955ca137cb27c94ed81c9",
input={
"model": "dev",
"prompt": "a stack of pancakes with fruit between the layers and whipped cream on top on a pastel green plate, sftsrv style",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run aramintak/flux-softserve-anime using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "aramintak/flux-softserve-anime:9e35b00131765c22d260dce4106d6688e83e67d4416955ca137cb27c94ed81c9",
"input": {
"model": "dev",
"prompt": "a stack of pancakes with fruit between the layers and whipped cream on top on a pastel green plate, sftsrv style",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/aramintak/flux-softserve-anime@sha256:9e35b00131765c22d260dce4106d6688e83e67d4416955ca137cb27c94ed81c9 \
-i 'model="dev"' \
-i 'prompt="a stack of pancakes with fruit between the layers and whipped cream on top on a pastel green plate, sftsrv style"' \
-i 'go_fast=false' \
-i 'lora_scale=1' \
-i 'megapixels="1"' \
-i 'num_outputs=1' \
-i 'aspect_ratio="1:1"' \
-i 'output_format="webp"' \
-i 'guidance_scale=3.5' \
-i 'output_quality=80' \
-i 'prompt_strength=0.8' \
-i 'extra_lora_scale=1' \
-i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/aramintak/flux-softserve-anime@sha256:9e35b00131765c22d260dce4106d6688e83e67d4416955ca137cb27c94ed81c9
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "a stack of pancakes with fruit between the layers and whipped cream on top on a pastel green plate, sftsrv style", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.018. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-08-17T12:31:46.518784Z",
"created_at": "2024-08-17T12:31:31.663000Z",
"data_removed": false,
"error": null,
"id": "tc2g7w2b9xrm00chc19829a5pr",
"input": {
"model": "dev",
"prompt": "a stack of pancakes with fruit between the layers and whipped cream on top on a pastel green plate, sftsrv style",
"lora_scale": 1,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"num_inference_steps": 28
},
"logs": "Using seed: 30042\nPrompt: a stack of pancakes with fruit between the layers and whipped cream on top on a pastel green plate, sftsrv style\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nweights already loaded!\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.68it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.23it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.96it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.84it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.78it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.74it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.71it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.70it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.69it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.69it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.68it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.68it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.68it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.67it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.67it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.67it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.67it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.67it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.67it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.67it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.67it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.67it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.67it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.66it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.66it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.67it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.66it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.66it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.70it/s]",
"metrics": {
"predict_time": 8.12320192,
"total_time": 14.855784
},
"output": [
"https://replicate.delivery/yhqm/xqVeoAeuAnnStEI6uX2BCo4jzbraVQvbiBWe8BaOPfTLjSONB/out-0.webp"
],
"started_at": "2024-08-17T12:31:38.395582Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/tc2g7w2b9xrm00chc19829a5pr",
"cancel": "https://api.replicate.com/v1/predictions/tc2g7w2b9xrm00chc19829a5pr/cancel"
},
"version": "9e35b00131765c22d260dce4106d6688e83e67d4416955ca137cb27c94ed81c9"
}
Using seed: 30042
Prompt: a stack of pancakes with fruit between the layers and whipped cream on top on a pastel green plate, sftsrv style
txt2img mode
Using dev model
Loading LoRA weights
weights already loaded!
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.68it/s]
7%|▋ | 2/28 [00:00<00:06, 4.23it/s]
11%|█ | 3/28 [00:00<00:06, 3.96it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.84it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.78it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.74it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.71it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.70it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.69it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.69it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.68it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.68it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.68it/s]
50%|█████ | 14/28 [00:03<00:03, 3.67it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.67it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.67it/s]
61%|██████ | 17/28 [00:04<00:02, 3.67it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.67it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.67it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.67it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.67it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.67it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.67it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.66it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.66it/s]
93%|█████████▎| 26/28 [00:07<00:00, 3.67it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.66it/s]
100%|██████████| 28/28 [00:07<00:00, 3.66it/s]
100%|██████████| 28/28 [00:07<00:00, 3.70it/s]