Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
ashesashes /ugly-sweater:74cdb4a7
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run ashesashes/ugly-sweater using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"ashesashes/ugly-sweater:74cdb4a7ceaeda1bc758f379d5915831032c2219080033671eaa5908ab6da82f",
{
input: {
width: 768,
height: 1024,
prompt: "a corgi wearing a TOK sweater",
refine: "expert_ensemble_refiner",
scheduler: "KarrasDPM",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: false,
high_noise_frac: 0.95,
negative_prompt: "deformed, blurry, ugly, extra limbs ",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run ashesashes/ugly-sweater using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"ashesashes/ugly-sweater:74cdb4a7ceaeda1bc758f379d5915831032c2219080033671eaa5908ab6da82f",
input={
"width": 768,
"height": 1024,
"prompt": "a corgi wearing a TOK sweater",
"refine": "expert_ensemble_refiner",
"scheduler": "KarrasDPM",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": False,
"high_noise_frac": 0.95,
"negative_prompt": "deformed, blurry, ugly, extra limbs ",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run ashesashes/ugly-sweater using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "ashesashes/ugly-sweater:74cdb4a7ceaeda1bc758f379d5915831032c2219080033671eaa5908ab6da82f",
"input": {
"width": 768,
"height": 1024,
"prompt": "a corgi wearing a TOK sweater",
"refine": "expert_ensemble_refiner",
"scheduler": "KarrasDPM",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.95,
"negative_prompt": "deformed, blurry, ugly, extra limbs ",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-12-20T21:41:03.028286Z",
"created_at": "2023-12-20T21:40:50.888916Z",
"data_removed": false,
"error": null,
"id": "7cgdcblbubq4rmygdrcgpj3xai",
"input": {
"width": 768,
"height": 1024,
"prompt": "a corgi wearing a TOK sweater",
"refine": "expert_ensemble_refiner",
"scheduler": "KarrasDPM",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.95,
"negative_prompt": "deformed, blurry, ugly, extra limbs ",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 62806\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: a corgi wearing a <s0><s1> sweater\ntxt2img mode\n 0%| | 0/38 [00:00<?, ?it/s]\n 3%|▎ | 1/38 [00:00<00:07, 4.95it/s]\n 5%|▌ | 2/38 [00:00<00:07, 4.94it/s]\n 8%|▊ | 3/38 [00:00<00:07, 4.92it/s]\n 11%|█ | 4/38 [00:00<00:06, 4.91it/s]\n 13%|█▎ | 5/38 [00:01<00:06, 4.90it/s]\n 16%|█▌ | 6/38 [00:01<00:06, 4.89it/s]\n 18%|█▊ | 7/38 [00:01<00:06, 4.89it/s]\n 21%|██ | 8/38 [00:01<00:06, 4.89it/s]\n 24%|██▎ | 9/38 [00:01<00:05, 4.89it/s]\n 26%|██▋ | 10/38 [00:02<00:05, 4.88it/s]\n 29%|██▉ | 11/38 [00:02<00:05, 4.87it/s]\n 32%|███▏ | 12/38 [00:02<00:05, 4.87it/s]\n 34%|███▍ | 13/38 [00:02<00:05, 4.88it/s]\n 37%|███▋ | 14/38 [00:02<00:04, 4.88it/s]\n 39%|███▉ | 15/38 [00:03<00:04, 4.88it/s]\n 42%|████▏ | 16/38 [00:03<00:04, 4.87it/s]\n 45%|████▍ | 17/38 [00:03<00:04, 4.88it/s]\n 47%|████▋ | 18/38 [00:03<00:04, 4.88it/s]\n 50%|█████ | 19/38 [00:03<00:03, 4.88it/s]\n 53%|█████▎ | 20/38 [00:04<00:03, 4.88it/s]\n 55%|█████▌ | 21/38 [00:04<00:03, 4.87it/s]\n 58%|█████▊ | 22/38 [00:04<00:03, 4.87it/s]\n 61%|██████ | 23/38 [00:04<00:03, 4.88it/s]\n 63%|██████▎ | 24/38 [00:04<00:02, 4.87it/s]\n 66%|██████▌ | 25/38 [00:05<00:02, 4.88it/s]\n 68%|██████▊ | 26/38 [00:05<00:02, 4.87it/s]\n 71%|███████ | 27/38 [00:05<00:02, 4.87it/s]\n 74%|███████▎ | 28/38 [00:05<00:02, 4.87it/s]\n 76%|███████▋ | 29/38 [00:05<00:01, 4.87it/s]\n 79%|███████▉ | 30/38 [00:06<00:01, 4.87it/s]\n 82%|████████▏ | 31/38 [00:06<00:01, 4.88it/s]\n 84%|████████▍ | 32/38 [00:06<00:01, 4.87it/s]\n 87%|████████▋ | 33/38 [00:06<00:01, 4.87it/s]\n 89%|████████▉ | 34/38 [00:06<00:00, 4.87it/s]\n 92%|█████████▏| 35/38 [00:07<00:00, 4.88it/s]\n 95%|█████████▍| 36/38 [00:07<00:00, 4.88it/s]\n 97%|█████████▋| 37/38 [00:07<00:00, 4.87it/s]\n100%|██████████| 38/38 [00:07<00:00, 4.87it/s]\n100%|██████████| 38/38 [00:07<00:00, 4.88it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 5.57it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 5.85it/s]\n100%|██████████| 3/3 [00:00<00:00, 5.93it/s]\n100%|██████████| 3/3 [00:00<00:00, 5.88it/s]",
"metrics": {
"predict_time": 10.893684,
"total_time": 12.13937
},
"output": [
"https://replicate.delivery/pbxt/k6AXKz5re1w2WCFkySZu9ZNKak1Kkuxrfbs90nR5hKRuFRESA/out-0.png"
],
"started_at": "2023-12-20T21:40:52.134602Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/7cgdcblbubq4rmygdrcgpj3xai",
"cancel": "https://api.replicate.com/v1/predictions/7cgdcblbubq4rmygdrcgpj3xai/cancel"
},
"version": "74cdb4a7ceaeda1bc758f379d5915831032c2219080033671eaa5908ab6da82f"
}
Using seed: 62806
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: a corgi wearing a <s0><s1> sweater
txt2img mode
0%| | 0/38 [00:00<?, ?it/s]
3%|▎ | 1/38 [00:00<00:07, 4.95it/s]
5%|▌ | 2/38 [00:00<00:07, 4.94it/s]
8%|▊ | 3/38 [00:00<00:07, 4.92it/s]
11%|█ | 4/38 [00:00<00:06, 4.91it/s]
13%|█▎ | 5/38 [00:01<00:06, 4.90it/s]
16%|█▌ | 6/38 [00:01<00:06, 4.89it/s]
18%|█▊ | 7/38 [00:01<00:06, 4.89it/s]
21%|██ | 8/38 [00:01<00:06, 4.89it/s]
24%|██▎ | 9/38 [00:01<00:05, 4.89it/s]
26%|██▋ | 10/38 [00:02<00:05, 4.88it/s]
29%|██▉ | 11/38 [00:02<00:05, 4.87it/s]
32%|███▏ | 12/38 [00:02<00:05, 4.87it/s]
34%|███▍ | 13/38 [00:02<00:05, 4.88it/s]
37%|███▋ | 14/38 [00:02<00:04, 4.88it/s]
39%|███▉ | 15/38 [00:03<00:04, 4.88it/s]
42%|████▏ | 16/38 [00:03<00:04, 4.87it/s]
45%|████▍ | 17/38 [00:03<00:04, 4.88it/s]
47%|████▋ | 18/38 [00:03<00:04, 4.88it/s]
50%|█████ | 19/38 [00:03<00:03, 4.88it/s]
53%|█████▎ | 20/38 [00:04<00:03, 4.88it/s]
55%|█████▌ | 21/38 [00:04<00:03, 4.87it/s]
58%|█████▊ | 22/38 [00:04<00:03, 4.87it/s]
61%|██████ | 23/38 [00:04<00:03, 4.88it/s]
63%|██████▎ | 24/38 [00:04<00:02, 4.87it/s]
66%|██████▌ | 25/38 [00:05<00:02, 4.88it/s]
68%|██████▊ | 26/38 [00:05<00:02, 4.87it/s]
71%|███████ | 27/38 [00:05<00:02, 4.87it/s]
74%|███████▎ | 28/38 [00:05<00:02, 4.87it/s]
76%|███████▋ | 29/38 [00:05<00:01, 4.87it/s]
79%|███████▉ | 30/38 [00:06<00:01, 4.87it/s]
82%|████████▏ | 31/38 [00:06<00:01, 4.88it/s]
84%|████████▍ | 32/38 [00:06<00:01, 4.87it/s]
87%|████████▋ | 33/38 [00:06<00:01, 4.87it/s]
89%|████████▉ | 34/38 [00:06<00:00, 4.87it/s]
92%|█████████▏| 35/38 [00:07<00:00, 4.88it/s]
95%|█████████▍| 36/38 [00:07<00:00, 4.88it/s]
97%|█████████▋| 37/38 [00:07<00:00, 4.87it/s]
100%|██████████| 38/38 [00:07<00:00, 4.87it/s]
100%|██████████| 38/38 [00:07<00:00, 4.88it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 5.57it/s]
67%|██████▋ | 2/3 [00:00<00:00, 5.85it/s]
100%|██████████| 3/3 [00:00<00:00, 5.93it/s]
100%|██████████| 3/3 [00:00<00:00, 5.88it/s]