You're looking at a specific version of this model. Jump to the model overview.
cbh123 /sdxl-davinci:ee977b1e
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run cbh123/sdxl-davinci using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"cbh123/sdxl-davinci:ee977b1e87cb5423c16acd6525d752c05cbd288cb7f42bfe88e759a6e4487bbc",
{
input: {
width: 1024,
height: 1024,
prompt: "a drawing of a robot in the style of TOK",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run cbh123/sdxl-davinci using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"cbh123/sdxl-davinci:ee977b1e87cb5423c16acd6525d752c05cbd288cb7f42bfe88e759a6e4487bbc",
input={
"width": 1024,
"height": 1024,
"prompt": "a drawing of a robot in the style of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run cbh123/sdxl-davinci using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "ee977b1e87cb5423c16acd6525d752c05cbd288cb7f42bfe88e759a6e4487bbc",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a drawing of a robot in the style of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/cbh123/sdxl-davinci@sha256:ee977b1e87cb5423c16acd6525d752c05cbd288cb7f42bfe88e759a6e4487bbc \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="a drawing of a robot in the style of TOK"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/cbh123/sdxl-davinci@sha256:ee977b1e87cb5423c16acd6525d752c05cbd288cb7f42bfe88e759a6e4487bbc
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "a drawing of a robot in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.037. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-08-18T20:49:44.837018Z",
"created_at": "2023-08-18T20:49:29.126081Z",
"data_removed": false,
"error": null,
"id": "lwhhgg3bza5mm73z4raipvdq3y",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a drawing of a robot in the style of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 40708\nPrompt: a drawing of a robot in the style of <s0><s1>\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.68it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.68it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.68it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.67it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.68it/s]\n 12%|█▏ | 6/50 [00:01<00:11, 3.68it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.68it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.68it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.68it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.68it/s]\n 22%|██▏ | 11/50 [00:02<00:10, 3.68it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.68it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.68it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.68it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.68it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.67it/s]\n 34%|███▍ | 17/50 [00:04<00:08, 3.68it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.68it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.67it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.67it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.67it/s]\n 44%|████▍ | 22/50 [00:05<00:07, 3.67it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.67it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.67it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.68it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.67it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.67it/s]\n 56%|█████▌ | 28/50 [00:07<00:05, 3.67it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.67it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.67it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.67it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.67it/s]\n 66%|██████▌ | 33/50 [00:08<00:04, 3.66it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.66it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.66it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.65it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.62it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.63it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.64it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.65it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.65it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.65it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.65it/s]\n 88%|████████▊ | 44/50 [00:11<00:01, 3.66it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.66it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.66it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.66it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.66it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.65it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.66it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.67it/s]",
"metrics": {
"predict_time": 15.68786,
"total_time": 15.710937
},
"output": [
"https://replicate.delivery/pbxt/wwnX0MTTgxIqNJNXeY59fFYGpG5d7N3fj4jmK5ioeMKd2itFB/out-0.png"
],
"started_at": "2023-08-18T20:49:29.149158Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/lwhhgg3bza5mm73z4raipvdq3y",
"cancel": "https://api.replicate.com/v1/predictions/lwhhgg3bza5mm73z4raipvdq3y/cancel"
},
"version": "ee977b1e87cb5423c16acd6525d752c05cbd288cb7f42bfe88e759a6e4487bbc"
}
Using seed: 40708
Prompt: a drawing of a robot in the style of <s0><s1>
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.68it/s]
4%|▍ | 2/50 [00:00<00:13, 3.68it/s]
6%|▌ | 3/50 [00:00<00:12, 3.68it/s]
8%|▊ | 4/50 [00:01<00:12, 3.67it/s]
10%|█ | 5/50 [00:01<00:12, 3.68it/s]
12%|█▏ | 6/50 [00:01<00:11, 3.68it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.68it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.68it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.68it/s]
20%|██ | 10/50 [00:02<00:10, 3.68it/s]
22%|██▏ | 11/50 [00:02<00:10, 3.68it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.68it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.68it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.68it/s]
30%|███ | 15/50 [00:04<00:09, 3.68it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.67it/s]
34%|███▍ | 17/50 [00:04<00:08, 3.68it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.68it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.67it/s]
40%|████ | 20/50 [00:05<00:08, 3.67it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.67it/s]
44%|████▍ | 22/50 [00:05<00:07, 3.67it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.67it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.67it/s]
50%|█████ | 25/50 [00:06<00:06, 3.68it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.67it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.67it/s]
56%|█████▌ | 28/50 [00:07<00:05, 3.67it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.67it/s]
60%|██████ | 30/50 [00:08<00:05, 3.67it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.67it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.67it/s]
66%|██████▌ | 33/50 [00:08<00:04, 3.66it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.66it/s]
70%|███████ | 35/50 [00:09<00:04, 3.66it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.65it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.62it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.63it/s]
78%|███████▊ | 39/50 [00:10<00:03, 3.64it/s]
80%|████████ | 40/50 [00:10<00:02, 3.65it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.65it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.65it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.65it/s]
88%|████████▊ | 44/50 [00:11<00:01, 3.66it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.66it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.66it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.66it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.66it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.65it/s]
100%|██████████| 50/50 [00:13<00:00, 3.66it/s]
100%|██████████| 50/50 [00:13<00:00, 3.67it/s]