You're looking at a specific version of this model. Jump to the model overview.
cjwbw /supermarionation:94b2a93e
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run cjwbw/supermarionation using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"cjwbw/supermarionation:94b2a93e5211618a1e3255a7e4d37add0ce4fd629ddbbd06dd35eaaccf16186d",
{
input: {
image: "https://replicate.delivery/pbxt/IPYBr61UJghgxqHNIP8Cw1Ky06v2gVQBtMrQoSOqyR0fCuWT/bradd.jpeg",
width: 512,
height: 512,
prompt: "Brad Pitt in supermarionation style",
scheduler: "K_EULER",
num_outputs: 1,
guidance_scale: 7,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run cjwbw/supermarionation using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"cjwbw/supermarionation:94b2a93e5211618a1e3255a7e4d37add0ce4fd629ddbbd06dd35eaaccf16186d",
input={
"image": "https://replicate.delivery/pbxt/IPYBr61UJghgxqHNIP8Cw1Ky06v2gVQBtMrQoSOqyR0fCuWT/bradd.jpeg",
"width": 512,
"height": 512,
"prompt": "Brad Pitt in supermarionation style",
"scheduler": "K_EULER",
"num_outputs": 1,
"guidance_scale": 7,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run cjwbw/supermarionation using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "94b2a93e5211618a1e3255a7e4d37add0ce4fd629ddbbd06dd35eaaccf16186d",
"input": {
"image": "https://replicate.delivery/pbxt/IPYBr61UJghgxqHNIP8Cw1Ky06v2gVQBtMrQoSOqyR0fCuWT/bradd.jpeg",
"width": 512,
"height": 512,
"prompt": "Brad Pitt in supermarionation style",
"scheduler": "K_EULER",
"num_outputs": 1,
"guidance_scale": 7,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/cjwbw/supermarionation@sha256:94b2a93e5211618a1e3255a7e4d37add0ce4fd629ddbbd06dd35eaaccf16186d \
-i 'image="https://replicate.delivery/pbxt/IPYBr61UJghgxqHNIP8Cw1Ky06v2gVQBtMrQoSOqyR0fCuWT/bradd.jpeg"' \
-i 'width=512' \
-i 'height=512' \
-i 'prompt="Brad Pitt in supermarionation style"' \
-i 'scheduler="K_EULER"' \
-i 'num_outputs=1' \
-i 'guidance_scale=7' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/cjwbw/supermarionation@sha256:94b2a93e5211618a1e3255a7e4d37add0ce4fd629ddbbd06dd35eaaccf16186d
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/IPYBr61UJghgxqHNIP8Cw1Ky06v2gVQBtMrQoSOqyR0fCuWT/bradd.jpeg", "width": 512, "height": 512, "prompt": "Brad Pitt in supermarionation style", "scheduler": "K_EULER", "num_outputs": 1, "guidance_scale": 7, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.0044. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-03-03T17:42:04.461841Z",
"created_at": "2023-03-03T17:41:47.699046Z",
"data_removed": false,
"error": null,
"id": "iryyq7ljkngc5fkzkosknzpfg4",
"input": {
"image": "https://replicate.delivery/pbxt/IPYBr61UJghgxqHNIP8Cw1Ky06v2gVQBtMrQoSOqyR0fCuWT/bradd.jpeg",
"width": 512,
"height": 512,
"prompt": "Brad Pitt in supermarionation style",
"scheduler": "K_EULER",
"num_outputs": 1,
"guidance_scale": 7,
"num_inference_steps": 50
},
"logs": "Using seed: 15667\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:14, 2.70it/s]\n 5%|▌ | 2/40 [00:00<00:13, 2.72it/s]\n 8%|▊ | 3/40 [00:01<00:13, 2.72it/s]\n 10%|█ | 4/40 [00:01<00:13, 2.73it/s]\n 12%|█▎ | 5/40 [00:01<00:12, 2.73it/s]\n 15%|█▌ | 6/40 [00:02<00:12, 2.72it/s]\n 18%|█▊ | 7/40 [00:02<00:12, 2.71it/s]\n 20%|██ | 8/40 [00:02<00:11, 2.71it/s]\n 22%|██▎ | 9/40 [00:03<00:11, 2.72it/s]\n 25%|██▌ | 10/40 [00:03<00:11, 2.73it/s]\n 28%|██▊ | 11/40 [00:04<00:10, 2.72it/s]\n 30%|███ | 12/40 [00:04<00:10, 2.72it/s]\n 32%|███▎ | 13/40 [00:04<00:09, 2.71it/s]\n 35%|███▌ | 14/40 [00:05<00:09, 2.72it/s]\n 38%|███▊ | 15/40 [00:05<00:09, 2.72it/s]\n 40%|████ | 16/40 [00:05<00:08, 2.72it/s]\n 42%|████▎ | 17/40 [00:06<00:08, 2.72it/s]\n 45%|████▌ | 18/40 [00:06<00:08, 2.71it/s]\n 48%|████▊ | 19/40 [00:06<00:07, 2.71it/s]\n 50%|█████ | 20/40 [00:07<00:07, 2.71it/s]\n 52%|█████▎ | 21/40 [00:07<00:07, 2.71it/s]\n 55%|█████▌ | 22/40 [00:08<00:06, 2.71it/s]\n 57%|█████▊ | 23/40 [00:08<00:06, 2.70it/s]\n 60%|██████ | 24/40 [00:08<00:05, 2.70it/s]\n 62%|██████▎ | 25/40 [00:09<00:05, 2.70it/s]\n 65%|██████▌ | 26/40 [00:09<00:05, 2.69it/s]\n 68%|██████▊ | 27/40 [00:09<00:04, 2.69it/s]\n 70%|███████ | 28/40 [00:10<00:04, 2.69it/s]\n 72%|███████▎ | 29/40 [00:10<00:04, 2.68it/s]\n 75%|███████▌ | 30/40 [00:11<00:03, 2.69it/s]\n 78%|███████▊ | 31/40 [00:11<00:03, 2.69it/s]\n 80%|████████ | 32/40 [00:11<00:02, 2.68it/s]\n 82%|████████▎ | 33/40 [00:12<00:02, 2.68it/s]\n 85%|████████▌ | 34/40 [00:12<00:02, 2.68it/s]\n 88%|████████▊ | 35/40 [00:12<00:01, 2.68it/s]\n 90%|█████████ | 36/40 [00:13<00:01, 2.68it/s]\n 92%|█████████▎| 37/40 [00:13<00:01, 2.68it/s]\n 95%|█████████▌| 38/40 [00:14<00:00, 2.67it/s]\n 98%|█████████▊| 39/40 [00:14<00:00, 2.67it/s]\n100%|██████████| 40/40 [00:14<00:00, 2.66it/s]\n100%|██████████| 40/40 [00:14<00:00, 2.70it/s]",
"metrics": {
"predict_time": 16.682007,
"total_time": 16.762795
},
"output": [
"https://replicate.delivery/pbxt/ZeU0zaMIaEyDAqdo3eDTCFjtyo1jgBZJIiVan2ad33drNeHhA/out-0.png"
],
"started_at": "2023-03-03T17:41:47.779834Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/iryyq7ljkngc5fkzkosknzpfg4",
"cancel": "https://api.replicate.com/v1/predictions/iryyq7ljkngc5fkzkosknzpfg4/cancel"
},
"version": "94b2a93e5211618a1e3255a7e4d37add0ce4fd629ddbbd06dd35eaaccf16186d"
}
Using seed: 15667
0%| | 0/40 [00:00<?, ?it/s]
2%|▎ | 1/40 [00:00<00:14, 2.70it/s]
5%|▌ | 2/40 [00:00<00:13, 2.72it/s]
8%|▊ | 3/40 [00:01<00:13, 2.72it/s]
10%|█ | 4/40 [00:01<00:13, 2.73it/s]
12%|█▎ | 5/40 [00:01<00:12, 2.73it/s]
15%|█▌ | 6/40 [00:02<00:12, 2.72it/s]
18%|█▊ | 7/40 [00:02<00:12, 2.71it/s]
20%|██ | 8/40 [00:02<00:11, 2.71it/s]
22%|██▎ | 9/40 [00:03<00:11, 2.72it/s]
25%|██▌ | 10/40 [00:03<00:11, 2.73it/s]
28%|██▊ | 11/40 [00:04<00:10, 2.72it/s]
30%|███ | 12/40 [00:04<00:10, 2.72it/s]
32%|███▎ | 13/40 [00:04<00:09, 2.71it/s]
35%|███▌ | 14/40 [00:05<00:09, 2.72it/s]
38%|███▊ | 15/40 [00:05<00:09, 2.72it/s]
40%|████ | 16/40 [00:05<00:08, 2.72it/s]
42%|████▎ | 17/40 [00:06<00:08, 2.72it/s]
45%|████▌ | 18/40 [00:06<00:08, 2.71it/s]
48%|████▊ | 19/40 [00:06<00:07, 2.71it/s]
50%|█████ | 20/40 [00:07<00:07, 2.71it/s]
52%|█████▎ | 21/40 [00:07<00:07, 2.71it/s]
55%|█████▌ | 22/40 [00:08<00:06, 2.71it/s]
57%|█████▊ | 23/40 [00:08<00:06, 2.70it/s]
60%|██████ | 24/40 [00:08<00:05, 2.70it/s]
62%|██████▎ | 25/40 [00:09<00:05, 2.70it/s]
65%|██████▌ | 26/40 [00:09<00:05, 2.69it/s]
68%|██████▊ | 27/40 [00:09<00:04, 2.69it/s]
70%|███████ | 28/40 [00:10<00:04, 2.69it/s]
72%|███████▎ | 29/40 [00:10<00:04, 2.68it/s]
75%|███████▌ | 30/40 [00:11<00:03, 2.69it/s]
78%|███████▊ | 31/40 [00:11<00:03, 2.69it/s]
80%|████████ | 32/40 [00:11<00:02, 2.68it/s]
82%|████████▎ | 33/40 [00:12<00:02, 2.68it/s]
85%|████████▌ | 34/40 [00:12<00:02, 2.68it/s]
88%|████████▊ | 35/40 [00:12<00:01, 2.68it/s]
90%|█████████ | 36/40 [00:13<00:01, 2.68it/s]
92%|█████████▎| 37/40 [00:13<00:01, 2.68it/s]
95%|█████████▌| 38/40 [00:14<00:00, 2.67it/s]
98%|█████████▊| 39/40 [00:14<00:00, 2.67it/s]
100%|██████████| 40/40 [00:14<00:00, 2.66it/s]
100%|██████████| 40/40 [00:14<00:00, 2.70it/s]