collectiveai-team / crisperwhisper

Unofficial implementation of Verbatim Automatic Speech Recognition with improved word-level timestamps and filler detection

  • Public
  • 54 runs
  • Paper

Run time and cost

This model runs on Nvidia A100 (80GB) GPU hardware. We don't yet have enough runs of this model to provide performance information.

Readme

CrisperWhisper

CrisperWhisper is an advanced variant of OpenAI’s Whisper, designed for fast, precise, and verbatim speech recognition with accurate (crisp) word-level timestamps. Unlike the original Whisper, which tends to omit disfluencies and follows more of a intended transcription style, CrisperWhisper aims to transcribe every spoken word exactly as it is, including fillers, pauses, stutters and false starts.

Key Features

  • 🎯 Accurate Word-Level Timestamps: Provides precise timestamps, even around disfluencies and pauses, by utilizing an adjusted tokenizer and a custom attention loss during training.
  • 📝 Verbatim Transcription: Transcribes every spoken word exactly as it is, including and differentiating fillers like “um” and “uh”.
  • 🔍 Filler Detection: Detects and accurately transcribes fillers.
  • 🛡️ Hallucination Mitigation: Minimizes transcription hallucinations to enhance accuracy.