You're looking at a specific version of this model. Jump to the model overview.
cyber42 /remedios_varo:c8acb09b
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run cyber42/remedios_varo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"cyber42/remedios_varo:c8acb09ba51d3c1f0d87c7a69266ca4d1550761ee01a9b102ccd22df723ef5fd",
{
input: {
seed: 42,
width: 1024,
height: 1024,
prompt: "In the style of a RemediosVaro, a spaceship escaping a gravitational wave from the center of the galaxy",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.8,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run cyber42/remedios_varo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"cyber42/remedios_varo:c8acb09ba51d3c1f0d87c7a69266ca4d1550761ee01a9b102ccd22df723ef5fd",
input={
"seed": 42,
"width": 1024,
"height": 1024,
"prompt": "In the style of a RemediosVaro, a spaceship escaping a gravitational wave from the center of the galaxy",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run cyber42/remedios_varo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "cyber42/remedios_varo:c8acb09ba51d3c1f0d87c7a69266ca4d1550761ee01a9b102ccd22df723ef5fd",
"input": {
"seed": 42,
"width": 1024,
"height": 1024,
"prompt": "In the style of a RemediosVaro, a spaceship escaping a gravitational wave from the center of the galaxy",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/cyber42/remedios_varo@sha256:c8acb09ba51d3c1f0d87c7a69266ca4d1550761ee01a9b102ccd22df723ef5fd \
-i 'seed=42' \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="In the style of a RemediosVaro, a spaceship escaping a gravitational wave from the center of the galaxy"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.8' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/cyber42/remedios_varo@sha256:c8acb09ba51d3c1f0d87c7a69266ca4d1550761ee01a9b102ccd22df723ef5fd
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 42, "width": 1024, "height": 1024, "prompt": "In the style of a RemediosVaro, a spaceship escaping a gravitational wave from the center of the galaxy", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.8, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.022. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-10-25T22:32:46.217756Z",
"created_at": "2023-10-25T22:32:28.898626Z",
"data_removed": false,
"error": null,
"id": "gwtq7idbahkqhmvnftuwk2va7u",
"input": {
"seed": 42,
"width": 1024,
"height": 1024,
"prompt": "In the style of a RemediosVaro, a spaceship escaping a gravitational wave from the center of the galaxy",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 42\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: In the style of a RemediosVaro, a spaceship escaping a gravitational wave from the center of the galaxy\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.64it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.64it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.63it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.62it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.63it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.62it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.62it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.62it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.62it/s]\n 20%|██ | 10/50 [00:02<00:11, 3.62it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.62it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.62it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.62it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.62it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.62it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.62it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.61it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.61it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.61it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.61it/s]\n 42%|████▏ | 21/50 [00:05<00:08, 3.61it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.61it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.61it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.61it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.61it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.61it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.61it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.61it/s]\n 58%|█████▊ | 29/50 [00:08<00:05, 3.61it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.61it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.61it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.61it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.61it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.61it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.61it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.61it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.61it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.61it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.60it/s]\n 80%|████████ | 40/50 [00:11<00:02, 3.60it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.61it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.61it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.61it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.60it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.60it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.60it/s]\n 94%|█████████▍| 47/50 [00:13<00:00, 3.61it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.61it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.61it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.61it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.61it/s]",
"metrics": {
"predict_time": 16.699113,
"total_time": 17.31913
},
"output": [
"https://replicate.delivery/pbxt/BJPjQTtO0UqJLB0NNQ18cQ1eFEG6axTTqZe00K6cp55Nm0xRA/out-0.png"
],
"started_at": "2023-10-25T22:32:29.518643Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/gwtq7idbahkqhmvnftuwk2va7u",
"cancel": "https://api.replicate.com/v1/predictions/gwtq7idbahkqhmvnftuwk2va7u/cancel"
},
"version": "c8acb09ba51d3c1f0d87c7a69266ca4d1550761ee01a9b102ccd22df723ef5fd"
}
Using seed: 42
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: In the style of a RemediosVaro, a spaceship escaping a gravitational wave from the center of the galaxy
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.64it/s]
4%|▍ | 2/50 [00:00<00:13, 3.64it/s]
6%|▌ | 3/50 [00:00<00:12, 3.63it/s]
8%|▊ | 4/50 [00:01<00:12, 3.62it/s]
10%|█ | 5/50 [00:01<00:12, 3.63it/s]
12%|█▏ | 6/50 [00:01<00:12, 3.62it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.62it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.62it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.62it/s]
20%|██ | 10/50 [00:02<00:11, 3.62it/s]
22%|██▏ | 11/50 [00:03<00:10, 3.62it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.62it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.62it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.62it/s]
30%|███ | 15/50 [00:04<00:09, 3.62it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.62it/s]
34%|███▍ | 17/50 [00:04<00:09, 3.61it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.61it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.61it/s]
40%|████ | 20/50 [00:05<00:08, 3.61it/s]
42%|████▏ | 21/50 [00:05<00:08, 3.61it/s]
44%|████▍ | 22/50 [00:06<00:07, 3.61it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.61it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.61it/s]
50%|█████ | 25/50 [00:06<00:06, 3.61it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.61it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.61it/s]
56%|█████▌ | 28/50 [00:07<00:06, 3.61it/s]
58%|█████▊ | 29/50 [00:08<00:05, 3.61it/s]
60%|██████ | 30/50 [00:08<00:05, 3.61it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.61it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.61it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.61it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.61it/s]
70%|███████ | 35/50 [00:09<00:04, 3.61it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.61it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.61it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.61it/s]
78%|███████▊ | 39/50 [00:10<00:03, 3.60it/s]
80%|████████ | 40/50 [00:11<00:02, 3.60it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.61it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.61it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.61it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.60it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.60it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.60it/s]
94%|█████████▍| 47/50 [00:13<00:00, 3.61it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.61it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.61it/s]
100%|██████████| 50/50 [00:13<00:00, 3.61it/s]
100%|██████████| 50/50 [00:13<00:00, 3.61it/s]