You're looking at a specific version of this model. Jump to the model overview.
fofr /sdxl-barbie:657c074c
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run fofr/sdxl-barbie using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"fofr/sdxl-barbie:657c074cdd0e0098e39dae981194c4e852ad5bc88c7fbbeb0682afae714a6b0e",
{
input: {
width: 1024,
height: 1024,
prompt: "A photo in the style of TOK",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "underexposed",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run fofr/sdxl-barbie using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"fofr/sdxl-barbie:657c074cdd0e0098e39dae981194c4e852ad5bc88c7fbbeb0682afae714a6b0e",
input={
"width": 1024,
"height": 1024,
"prompt": "A photo in the style of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "underexposed",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/sdxl-barbie using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "657c074cdd0e0098e39dae981194c4e852ad5bc88c7fbbeb0682afae714a6b0e",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A photo in the style of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "underexposed",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/sdxl-barbie@sha256:657c074cdd0e0098e39dae981194c4e852ad5bc88c7fbbeb0682afae714a6b0e \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="A photo in the style of TOK"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt="underexposed"' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/sdxl-barbie@sha256:657c074cdd0e0098e39dae981194c4e852ad5bc88c7fbbeb0682afae714a6b0e
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "A photo in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "underexposed", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.0094. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-08-08T13:21:18.155708Z",
"created_at": "2023-08-08T13:21:02.393527Z",
"data_removed": false,
"error": null,
"id": "fomb3j3bp7v2kingbkffnue5gm",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A photo in the style of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "underexposed",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 49280\nPrompt: A photo in the style of <s0><s1>\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.69it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.68it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.68it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.68it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.67it/s]\n 12%|█▏ | 6/50 [00:01<00:11, 3.68it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.67it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.67it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.67it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.67it/s]\n 22%|██▏ | 11/50 [00:02<00:10, 3.67it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.68it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.68it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.68it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.68it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.69it/s]\n 34%|███▍ | 17/50 [00:04<00:08, 3.68it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.68it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.68it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.68it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.68it/s]\n 44%|████▍ | 22/50 [00:05<00:07, 3.68it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.68it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.68it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.68it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.68it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.68it/s]\n 56%|█████▌ | 28/50 [00:07<00:05, 3.68it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.68it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.68it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.68it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.68it/s]\n 66%|██████▌ | 33/50 [00:08<00:04, 3.68it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.68it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.67it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.67it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.67it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.67it/s]\n 78%|███████▊ | 39/50 [00:10<00:02, 3.67it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.67it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.67it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.67it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.67it/s]\n 88%|████████▊ | 44/50 [00:11<00:01, 3.67it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.67it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.67it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.67it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.67it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.67it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.67it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.68it/s]",
"metrics": {
"predict_time": 15.772346,
"total_time": 15.762181
},
"output": [
"https://replicate.delivery/pbxt/STPvBA4rC8I1Ah0cGSjkzhJlqZ8dmLhRvmep4EDCMh2mmfXRA/out-0.png"
],
"started_at": "2023-08-08T13:21:02.383362Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/fomb3j3bp7v2kingbkffnue5gm",
"cancel": "https://api.replicate.com/v1/predictions/fomb3j3bp7v2kingbkffnue5gm/cancel"
},
"version": "657c074cdd0e0098e39dae981194c4e852ad5bc88c7fbbeb0682afae714a6b0e"
}
Using seed: 49280
Prompt: A photo in the style of <s0><s1>
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.69it/s]
4%|▍ | 2/50 [00:00<00:13, 3.68it/s]
6%|▌ | 3/50 [00:00<00:12, 3.68it/s]
8%|▊ | 4/50 [00:01<00:12, 3.68it/s]
10%|█ | 5/50 [00:01<00:12, 3.67it/s]
12%|█▏ | 6/50 [00:01<00:11, 3.68it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.67it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.67it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.67it/s]
20%|██ | 10/50 [00:02<00:10, 3.67it/s]
22%|██▏ | 11/50 [00:02<00:10, 3.67it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.68it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.68it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.68it/s]
30%|███ | 15/50 [00:04<00:09, 3.68it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.69it/s]
34%|███▍ | 17/50 [00:04<00:08, 3.68it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.68it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.68it/s]
40%|████ | 20/50 [00:05<00:08, 3.68it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.68it/s]
44%|████▍ | 22/50 [00:05<00:07, 3.68it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.68it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.68it/s]
50%|█████ | 25/50 [00:06<00:06, 3.68it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.68it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.68it/s]
56%|█████▌ | 28/50 [00:07<00:05, 3.68it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.68it/s]
60%|██████ | 30/50 [00:08<00:05, 3.68it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.68it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.68it/s]
66%|██████▌ | 33/50 [00:08<00:04, 3.68it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.68it/s]
70%|███████ | 35/50 [00:09<00:04, 3.67it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.67it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.67it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.67it/s]
78%|███████▊ | 39/50 [00:10<00:02, 3.67it/s]
80%|████████ | 40/50 [00:10<00:02, 3.67it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.67it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.67it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.67it/s]
88%|████████▊ | 44/50 [00:11<00:01, 3.67it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.67it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.67it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.67it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.67it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.67it/s]
100%|██████████| 50/50 [00:13<00:00, 3.67it/s]
100%|██████████| 50/50 [00:13<00:00, 3.68it/s]