Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
fofr /sdxl-multi-controlnet-lora:6dce202b
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run fofr/sdxl-multi-controlnet-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"fofr/sdxl-multi-controlnet-lora:6dce202b5f8c1ebc617969547ee6ba5a32aaaa5da792002322f905675dd611c4",
{
input: {
image: "https://replicate.delivery/pbxt/JsfQRpixpfcqxm6Sl73977DgXAy8T0RAWP1qxAAh5PChkLG9/out-0-64.png",
width: 768,
height: 768,
prompt: "A TOK photo, extreme macro photo of a golden astronaut riding a unicorn statue, in a museum, 18mm",
refine: "base_image_refiner",
scheduler: "K_EULER",
lora_scale: 0.8,
num_outputs: 1,
controlnet_1: "soft_edge_hed",
controlnet_2: "depth_leres",
controlnet_3: "none",
lora_weights: "https://replicate.delivery/pbxt/hKhpVe6O7EwXNCiWORev3OEDRCoWeMlqZMLQDEvwDyHV3hvjA/trained_model.tar",
refine_steps: 20,
guidance_scale: 7.5,
apply_watermark: false,
negative_prompt: "soft, rainbow",
prompt_strength: 0.85,
sizing_strategy: "width_height",
controlnet_1_end: 1,
controlnet_2_end: 1,
controlnet_3_end: 1,
controlnet_1_image: "https://replicate.delivery/pbxt/JsfQSHT5S2SO8Le9byiyt8FgSRq1qexfeR0yt2ZAbBGaqcn2/020e656d-0c71-45c3-a7f5-1facf7d52d4f.png",
controlnet_1_start: 0,
controlnet_2_image: "https://replicate.delivery/pbxt/JsfQSLslasaelHKvWbKoi7zWse2KFcrilLAsDzfbXeDGtJp2/020e656d-0c71-45c3-a7f5-1facf7d52d4f.png",
controlnet_2_start: 0,
controlnet_3_start: 0,
num_inference_steps: 30,
controlnet_1_conditioning_scale: 0.4,
controlnet_2_conditioning_scale: 0.4,
controlnet_3_conditioning_scale: 0.75
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run fofr/sdxl-multi-controlnet-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"fofr/sdxl-multi-controlnet-lora:6dce202b5f8c1ebc617969547ee6ba5a32aaaa5da792002322f905675dd611c4",
input={
"image": "https://replicate.delivery/pbxt/JsfQRpixpfcqxm6Sl73977DgXAy8T0RAWP1qxAAh5PChkLG9/out-0-64.png",
"width": 768,
"height": 768,
"prompt": "A TOK photo, extreme macro photo of a golden astronaut riding a unicorn statue, in a museum, 18mm",
"refine": "base_image_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"controlnet_1": "soft_edge_hed",
"controlnet_2": "depth_leres",
"controlnet_3": "none",
"lora_weights": "https://replicate.delivery/pbxt/hKhpVe6O7EwXNCiWORev3OEDRCoWeMlqZMLQDEvwDyHV3hvjA/trained_model.tar",
"refine_steps": 20,
"guidance_scale": 7.5,
"apply_watermark": False,
"negative_prompt": "soft, rainbow",
"prompt_strength": 0.85,
"sizing_strategy": "width_height",
"controlnet_1_end": 1,
"controlnet_2_end": 1,
"controlnet_3_end": 1,
"controlnet_1_image": "https://replicate.delivery/pbxt/JsfQSHT5S2SO8Le9byiyt8FgSRq1qexfeR0yt2ZAbBGaqcn2/020e656d-0c71-45c3-a7f5-1facf7d52d4f.png",
"controlnet_1_start": 0,
"controlnet_2_image": "https://replicate.delivery/pbxt/JsfQSLslasaelHKvWbKoi7zWse2KFcrilLAsDzfbXeDGtJp2/020e656d-0c71-45c3-a7f5-1facf7d52d4f.png",
"controlnet_2_start": 0,
"controlnet_3_start": 0,
"num_inference_steps": 30,
"controlnet_1_conditioning_scale": 0.4,
"controlnet_2_conditioning_scale": 0.4,
"controlnet_3_conditioning_scale": 0.75
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/sdxl-multi-controlnet-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "fofr/sdxl-multi-controlnet-lora:6dce202b5f8c1ebc617969547ee6ba5a32aaaa5da792002322f905675dd611c4",
"input": {
"image": "https://replicate.delivery/pbxt/JsfQRpixpfcqxm6Sl73977DgXAy8T0RAWP1qxAAh5PChkLG9/out-0-64.png",
"width": 768,
"height": 768,
"prompt": "A TOK photo, extreme macro photo of a golden astronaut riding a unicorn statue, in a museum, 18mm",
"refine": "base_image_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"controlnet_1": "soft_edge_hed",
"controlnet_2": "depth_leres",
"controlnet_3": "none",
"lora_weights": "https://replicate.delivery/pbxt/hKhpVe6O7EwXNCiWORev3OEDRCoWeMlqZMLQDEvwDyHV3hvjA/trained_model.tar",
"refine_steps": 20,
"guidance_scale": 7.5,
"apply_watermark": false,
"negative_prompt": "soft, rainbow",
"prompt_strength": 0.85,
"sizing_strategy": "width_height",
"controlnet_1_end": 1,
"controlnet_2_end": 1,
"controlnet_3_end": 1,
"controlnet_1_image": "https://replicate.delivery/pbxt/JsfQSHT5S2SO8Le9byiyt8FgSRq1qexfeR0yt2ZAbBGaqcn2/020e656d-0c71-45c3-a7f5-1facf7d52d4f.png",
"controlnet_1_start": 0,
"controlnet_2_image": "https://replicate.delivery/pbxt/JsfQSLslasaelHKvWbKoi7zWse2KFcrilLAsDzfbXeDGtJp2/020e656d-0c71-45c3-a7f5-1facf7d52d4f.png",
"controlnet_2_start": 0,
"controlnet_3_start": 0,
"num_inference_steps": 30,
"controlnet_1_conditioning_scale": 0.4,
"controlnet_2_conditioning_scale": 0.4,
"controlnet_3_conditioning_scale": 0.75
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-11-15T13:52:34.751582Z",
"created_at": "2023-11-15T13:52:20.688953Z",
"data_removed": false,
"error": null,
"id": "34t5jv3byxdwpcnklkbkamfhey",
"input": {
"image": "https://replicate.delivery/pbxt/JsfQRpixpfcqxm6Sl73977DgXAy8T0RAWP1qxAAh5PChkLG9/out-0-64.png",
"width": 768,
"height": 768,
"prompt": "A TOK photo, extreme macro photo of a golden astronaut riding a unicorn statue, in a museum, 18mm",
"refine": "base_image_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"controlnet_1": "soft_edge_hed",
"controlnet_2": "depth_leres",
"controlnet_3": "none",
"lora_weights": "https://replicate.delivery/pbxt/hKhpVe6O7EwXNCiWORev3OEDRCoWeMlqZMLQDEvwDyHV3hvjA/trained_model.tar",
"refine_steps": 20,
"guidance_scale": 7.5,
"apply_watermark": false,
"negative_prompt": "soft, rainbow",
"prompt_strength": 0.85,
"sizing_strategy": "width_height",
"controlnet_1_end": 1,
"controlnet_2_end": 1,
"controlnet_3_end": 1,
"controlnet_1_image": "https://replicate.delivery/pbxt/JsfQSHT5S2SO8Le9byiyt8FgSRq1qexfeR0yt2ZAbBGaqcn2/020e656d-0c71-45c3-a7f5-1facf7d52d4f.png",
"controlnet_1_start": 0,
"controlnet_2_image": "https://replicate.delivery/pbxt/JsfQSLslasaelHKvWbKoi7zWse2KFcrilLAsDzfbXeDGtJp2/020e656d-0c71-45c3-a7f5-1facf7d52d4f.png",
"controlnet_2_start": 0,
"controlnet_3_start": 0,
"num_inference_steps": 30,
"controlnet_1_conditioning_scale": 0.4,
"controlnet_2_conditioning_scale": 0.4,
"controlnet_3_conditioning_scale": 0.75
},
"logs": "Using seed: 22214\nUsing given dimensions\nskipping loading .. weights already loaded\nPrompt: A <s0><s1> photo, extreme macro photo of a golden astronaut riding a unicorn statue, in a museum, 18mm\nProcessing image with soft_edge_hed\nProcessing image with depth_leres\nLoading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]\nLoading pipeline components...: 100%|██████████| 7/7 [00:00<00:00, 7879.80it/s]\nYou have 2 ControlNets and you have passed 1 prompts. The conditionings will be fixed across the prompts.\n 0%| | 0/25 [00:00<?, ?it/s]\n 4%|▍ | 1/25 [00:00<00:05, 4.37it/s]\n 8%|▊ | 2/25 [00:00<00:05, 4.36it/s]\n 12%|█▏ | 3/25 [00:00<00:05, 4.36it/s]\n 16%|█▌ | 4/25 [00:00<00:04, 4.36it/s]\n 20%|██ | 5/25 [00:01<00:04, 4.36it/s]\n 24%|██▍ | 6/25 [00:01<00:04, 4.36it/s]\n 28%|██▊ | 7/25 [00:01<00:04, 4.36it/s]\n 32%|███▏ | 8/25 [00:01<00:03, 4.36it/s]\n 36%|███▌ | 9/25 [00:02<00:03, 4.36it/s]\n 40%|████ | 10/25 [00:02<00:03, 4.36it/s]\n 44%|████▍ | 11/25 [00:02<00:03, 4.36it/s]\n 48%|████▊ | 12/25 [00:02<00:02, 4.36it/s]\n 52%|█████▏ | 13/25 [00:02<00:02, 4.36it/s]\n 56%|█████▌ | 14/25 [00:03<00:02, 4.36it/s]\n 60%|██████ | 15/25 [00:03<00:02, 4.35it/s]\n 64%|██████▍ | 16/25 [00:03<00:02, 4.35it/s]\n 68%|██████▊ | 17/25 [00:03<00:01, 4.34it/s]\n 72%|███████▏ | 18/25 [00:04<00:01, 4.34it/s]\n 76%|███████▌ | 19/25 [00:04<00:01, 4.35it/s]\n 80%|████████ | 20/25 [00:04<00:01, 4.35it/s]\n 84%|████████▍ | 21/25 [00:04<00:00, 4.35it/s]\n 88%|████████▊ | 22/25 [00:05<00:00, 4.35it/s]\n 92%|█████████▏| 23/25 [00:05<00:00, 4.35it/s]\n 96%|█████████▌| 24/25 [00:05<00:00, 4.35it/s]\n100%|██████████| 25/25 [00:05<00:00, 4.35it/s]\n100%|██████████| 25/25 [00:05<00:00, 4.35it/s]\n 0%| | 0/6 [00:00<?, ?it/s]\n 17%|█▋ | 1/6 [00:00<00:00, 8.05it/s]\n 33%|███▎ | 2/6 [00:00<00:00, 8.00it/s]\n 50%|█████ | 3/6 [00:00<00:00, 7.97it/s]\n 67%|██████▋ | 4/6 [00:00<00:00, 7.97it/s]\n 83%|████████▎ | 5/6 [00:00<00:00, 7.96it/s]\n100%|██████████| 6/6 [00:00<00:00, 7.95it/s]\n100%|██████████| 6/6 [00:00<00:00, 7.97it/s]",
"metrics": {
"predict_time": 14.027109,
"total_time": 14.062629
},
"output": [
"https://replicate.delivery/pbxt/RxZ70el8KT2iNqzq7WGY7XuTPGpFJLWBe8Txd3ewkBVD5PxjA/control-0.png",
"https://replicate.delivery/pbxt/fOTiZQ2JWj2KMCO8jbVnrNzZjpt4AkrfXMgYabLkrteE5PxjA/control-1.png",
"https://replicate.delivery/pbxt/MjfBA747maWhCa2Dc9EHuWY5NDesXzLiMfRMOohzlt2E5PxjA/out-0.png"
],
"started_at": "2023-11-15T13:52:20.724473Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/34t5jv3byxdwpcnklkbkamfhey",
"cancel": "https://api.replicate.com/v1/predictions/34t5jv3byxdwpcnklkbkamfhey/cancel"
},
"version": "6dce202b5f8c1ebc617969547ee6ba5a32aaaa5da792002322f905675dd611c4"
}
Using seed: 22214
Using given dimensions
skipping loading .. weights already loaded
Prompt: A <s0><s1> photo, extreme macro photo of a golden astronaut riding a unicorn statue, in a museum, 18mm
Processing image with soft_edge_hed
Processing image with depth_leres
Loading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]
Loading pipeline components...: 100%|██████████| 7/7 [00:00<00:00, 7879.80it/s]
You have 2 ControlNets and you have passed 1 prompts. The conditionings will be fixed across the prompts.
0%| | 0/25 [00:00<?, ?it/s]
4%|▍ | 1/25 [00:00<00:05, 4.37it/s]
8%|▊ | 2/25 [00:00<00:05, 4.36it/s]
12%|█▏ | 3/25 [00:00<00:05, 4.36it/s]
16%|█▌ | 4/25 [00:00<00:04, 4.36it/s]
20%|██ | 5/25 [00:01<00:04, 4.36it/s]
24%|██▍ | 6/25 [00:01<00:04, 4.36it/s]
28%|██▊ | 7/25 [00:01<00:04, 4.36it/s]
32%|███▏ | 8/25 [00:01<00:03, 4.36it/s]
36%|███▌ | 9/25 [00:02<00:03, 4.36it/s]
40%|████ | 10/25 [00:02<00:03, 4.36it/s]
44%|████▍ | 11/25 [00:02<00:03, 4.36it/s]
48%|████▊ | 12/25 [00:02<00:02, 4.36it/s]
52%|█████▏ | 13/25 [00:02<00:02, 4.36it/s]
56%|█████▌ | 14/25 [00:03<00:02, 4.36it/s]
60%|██████ | 15/25 [00:03<00:02, 4.35it/s]
64%|██████▍ | 16/25 [00:03<00:02, 4.35it/s]
68%|██████▊ | 17/25 [00:03<00:01, 4.34it/s]
72%|███████▏ | 18/25 [00:04<00:01, 4.34it/s]
76%|███████▌ | 19/25 [00:04<00:01, 4.35it/s]
80%|████████ | 20/25 [00:04<00:01, 4.35it/s]
84%|████████▍ | 21/25 [00:04<00:00, 4.35it/s]
88%|████████▊ | 22/25 [00:05<00:00, 4.35it/s]
92%|█████████▏| 23/25 [00:05<00:00, 4.35it/s]
96%|█████████▌| 24/25 [00:05<00:00, 4.35it/s]
100%|██████████| 25/25 [00:05<00:00, 4.35it/s]
100%|██████████| 25/25 [00:05<00:00, 4.35it/s]
0%| | 0/6 [00:00<?, ?it/s]
17%|█▋ | 1/6 [00:00<00:00, 8.05it/s]
33%|███▎ | 2/6 [00:00<00:00, 8.00it/s]
50%|█████ | 3/6 [00:00<00:00, 7.97it/s]
67%|██████▋ | 4/6 [00:00<00:00, 7.97it/s]
83%|████████▎ | 5/6 [00:00<00:00, 7.96it/s]
100%|██████████| 6/6 [00:00<00:00, 7.95it/s]
100%|██████████| 6/6 [00:00<00:00, 7.97it/s]