You're looking at a specific version of this model. Jump to the model overview.
jakobsitter /js_sdxl:67d3c7c3
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run jakobsitter/js_sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"jakobsitter/js_sdxl:67d3c7c34afa7a152b6439eca9808baee7d05bb3c7722d144b4184842756e3b2",
{
input: {
width: 1024,
height: 1024,
prompt: "a photo of TOK in a big pool, drowning",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run jakobsitter/js_sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"jakobsitter/js_sdxl:67d3c7c34afa7a152b6439eca9808baee7d05bb3c7722d144b4184842756e3b2",
input={
"width": 1024,
"height": 1024,
"prompt": "a photo of TOK in a big pool, drowning",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run jakobsitter/js_sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "jakobsitter/js_sdxl:67d3c7c34afa7a152b6439eca9808baee7d05bb3c7722d144b4184842756e3b2",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a photo of TOK in a big pool, drowning",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/jakobsitter/js_sdxl@sha256:67d3c7c34afa7a152b6439eca9808baee7d05bb3c7722d144b4184842756e3b2 \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="a photo of TOK in a big pool, drowning"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/jakobsitter/js_sdxl@sha256:67d3c7c34afa7a152b6439eca9808baee7d05bb3c7722d144b4184842756e3b2
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "a photo of TOK in a big pool, drowning", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.029. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-09-01T01:18:34.818274Z",
"created_at": "2023-09-01T01:18:19.741061Z",
"data_removed": false,
"error": null,
"id": "e6cvhvlbh2ppjxjpytxavy3whm",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a photo of TOK in a big pool, drowning",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 89\nPrompt: a photo of <s0><s1> in a big pool, drowning\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.72it/s]\n 4%|▍ | 2/50 [00:00<00:12, 3.71it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.70it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.69it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.69it/s]\n 12%|█▏ | 6/50 [00:01<00:11, 3.69it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.69it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.68it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.68it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.68it/s]\n 22%|██▏ | 11/50 [00:02<00:10, 3.68it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.68it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.68it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.67it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.67it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.67it/s]\n 34%|███▍ | 17/50 [00:04<00:08, 3.67it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.67it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.67it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.66it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.67it/s]\n 44%|████▍ | 22/50 [00:05<00:07, 3.66it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.66it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.66it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.66it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.66it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.66it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.66it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.66it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.66it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.66it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.66it/s]\n 66%|██████▌ | 33/50 [00:08<00:04, 3.66it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.66it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.66it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.66it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.66it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.66it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.66it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.66it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.66it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.66it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.66it/s]\n 88%|████████▊ | 44/50 [00:11<00:01, 3.66it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.66it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.66it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.66it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.66it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.66it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.66it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.67it/s]",
"metrics": {
"predict_time": 15.101606,
"total_time": 15.077213
},
"output": [
"https://replicate.delivery/pbxt/VcpRcIc4Ceze70JYRyAZUbxAgoeJU0QTu3CB9BPhp28VvdfFB/out-0.png"
],
"started_at": "2023-09-01T01:18:19.716668Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/e6cvhvlbh2ppjxjpytxavy3whm",
"cancel": "https://api.replicate.com/v1/predictions/e6cvhvlbh2ppjxjpytxavy3whm/cancel"
},
"version": "67d3c7c34afa7a152b6439eca9808baee7d05bb3c7722d144b4184842756e3b2"
}
Using seed: 89
Prompt: a photo of <s0><s1> in a big pool, drowning
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.72it/s]
4%|▍ | 2/50 [00:00<00:12, 3.71it/s]
6%|▌ | 3/50 [00:00<00:12, 3.70it/s]
8%|▊ | 4/50 [00:01<00:12, 3.69it/s]
10%|█ | 5/50 [00:01<00:12, 3.69it/s]
12%|█▏ | 6/50 [00:01<00:11, 3.69it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.69it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.68it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.68it/s]
20%|██ | 10/50 [00:02<00:10, 3.68it/s]
22%|██▏ | 11/50 [00:02<00:10, 3.68it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.68it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.68it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.67it/s]
30%|███ | 15/50 [00:04<00:09, 3.67it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.67it/s]
34%|███▍ | 17/50 [00:04<00:08, 3.67it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.67it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.67it/s]
40%|████ | 20/50 [00:05<00:08, 3.66it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.67it/s]
44%|████▍ | 22/50 [00:05<00:07, 3.66it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.66it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.66it/s]
50%|█████ | 25/50 [00:06<00:06, 3.66it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.66it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.66it/s]
56%|█████▌ | 28/50 [00:07<00:06, 3.66it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.66it/s]
60%|██████ | 30/50 [00:08<00:05, 3.66it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.66it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.66it/s]
66%|██████▌ | 33/50 [00:08<00:04, 3.66it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.66it/s]
70%|███████ | 35/50 [00:09<00:04, 3.66it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.66it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.66it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.66it/s]
78%|███████▊ | 39/50 [00:10<00:03, 3.66it/s]
80%|████████ | 40/50 [00:10<00:02, 3.66it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.66it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.66it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.66it/s]
88%|████████▊ | 44/50 [00:11<00:01, 3.66it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.66it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.66it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.66it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.66it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.66it/s]
100%|██████████| 50/50 [00:13<00:00, 3.66it/s]
100%|██████████| 50/50 [00:13<00:00, 3.67it/s]