You're looking at a specific version of this model. Jump to the model overview.
martintmv-git /emoji-me:f37bd488
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run martintmv-git/emoji-me using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"martintmv-git/emoji-me:f37bd488cf23cfc519ded20ae2d87611b80efd723d6fc85229b387931da424c4",
{
input: {
image: "https://replicate.delivery/pbxt/K5xtYPHAZ4BMchYyLFrhBik3rPSgSnM3CGjlJkFNDfVTszSI/Screenshot%202023-12-22%20at%2023.29.58.png",
width: 768,
height: 768,
prompt: "A TOK emoji of a man wearing minimalistic glasses, photorealistic, white background",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.8,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: false,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 25
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run martintmv-git/emoji-me using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"martintmv-git/emoji-me:f37bd488cf23cfc519ded20ae2d87611b80efd723d6fc85229b387931da424c4",
input={
"image": "https://replicate.delivery/pbxt/K5xtYPHAZ4BMchYyLFrhBik3rPSgSnM3CGjlJkFNDfVTszSI/Screenshot%202023-12-22%20at%2023.29.58.png",
"width": 768,
"height": 768,
"prompt": "A TOK emoji of a man wearing minimalistic glasses, photorealistic, white background",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": False,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 25
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run martintmv-git/emoji-me using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "f37bd488cf23cfc519ded20ae2d87611b80efd723d6fc85229b387931da424c4",
"input": {
"image": "https://replicate.delivery/pbxt/K5xtYPHAZ4BMchYyLFrhBik3rPSgSnM3CGjlJkFNDfVTszSI/Screenshot%202023-12-22%20at%2023.29.58.png",
"width": 768,
"height": 768,
"prompt": "A TOK emoji of a man wearing minimalistic glasses, photorealistic, white background",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 25
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/martintmv-git/emoji-me@sha256:f37bd488cf23cfc519ded20ae2d87611b80efd723d6fc85229b387931da424c4 \
-i 'image="https://replicate.delivery/pbxt/K5xtYPHAZ4BMchYyLFrhBik3rPSgSnM3CGjlJkFNDfVTszSI/Screenshot%202023-12-22%20at%2023.29.58.png"' \
-i 'width=768' \
-i 'height=768' \
-i 'prompt="A TOK emoji of a man wearing minimalistic glasses, photorealistic, white background"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.8' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=false' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=25'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/martintmv-git/emoji-me@sha256:f37bd488cf23cfc519ded20ae2d87611b80efd723d6fc85229b387931da424c4
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/K5xtYPHAZ4BMchYyLFrhBik3rPSgSnM3CGjlJkFNDfVTszSI/Screenshot%202023-12-22%20at%2023.29.58.png", "width": 768, "height": 768, "prompt": "A TOK emoji of a man wearing minimalistic glasses, photorealistic, white background", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.8, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 25 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.016. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-12-22T21:35:03.417535Z",
"created_at": "2023-12-22T21:34:48.063935Z",
"data_removed": false,
"error": null,
"id": "m2p6h7tby2ttiqr5ytroyquyiq",
"input": {
"image": "https://replicate.delivery/pbxt/K5xtYPHAZ4BMchYyLFrhBik3rPSgSnM3CGjlJkFNDfVTszSI/Screenshot%202023-12-22%20at%2023.29.58.png",
"width": 768,
"height": 768,
"prompt": "A TOK emoji of a man wearing minimalistic glasses, photorealistic, white background",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 25
},
"logs": "Using seed: 61049\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: A <s0><s1> emoji of a man wearing minimalistic glasses, photorealistic, white background\nimg2img mode\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:08, 2.30it/s]\n 10%|█ | 2/20 [00:00<00:07, 2.30it/s]\n 15%|█▌ | 3/20 [00:01<00:07, 2.30it/s]\n 20%|██ | 4/20 [00:01<00:06, 2.30it/s]\n 25%|██▌ | 5/20 [00:02<00:06, 2.30it/s]\n 30%|███ | 6/20 [00:02<00:06, 2.30it/s]\n 35%|███▌ | 7/20 [00:03<00:05, 2.29it/s]\n 40%|████ | 8/20 [00:03<00:05, 2.29it/s]\n 45%|████▌ | 9/20 [00:03<00:04, 2.29it/s]\n 50%|█████ | 10/20 [00:04<00:04, 2.29it/s]\n 55%|█████▌ | 11/20 [00:04<00:03, 2.29it/s]\n 60%|██████ | 12/20 [00:05<00:03, 2.29it/s]\n 65%|██████▌ | 13/20 [00:05<00:03, 2.29it/s]\n 70%|███████ | 14/20 [00:06<00:02, 2.29it/s]\n 75%|███████▌ | 15/20 [00:06<00:02, 2.29it/s]\n 80%|████████ | 16/20 [00:06<00:01, 2.29it/s]\n 85%|████████▌ | 17/20 [00:07<00:01, 2.29it/s]\n 90%|█████████ | 18/20 [00:07<00:00, 2.28it/s]\n 95%|█████████▌| 19/20 [00:08<00:00, 2.28it/s]\n100%|██████████| 20/20 [00:08<00:00, 2.28it/s]\n100%|██████████| 20/20 [00:08<00:00, 2.29it/s]",
"metrics": {
"predict_time": 12.703452,
"total_time": 15.3536
},
"output": [
"https://replicate.delivery/pbxt/AfjhA9W2neqDrE9Uf2UJ5Yq20XrqHROYb7YuPvuFa0MNY2JkA/out-0.png"
],
"started_at": "2023-12-22T21:34:50.714083Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/m2p6h7tby2ttiqr5ytroyquyiq",
"cancel": "https://api.replicate.com/v1/predictions/m2p6h7tby2ttiqr5ytroyquyiq/cancel"
},
"version": "f37bd488cf23cfc519ded20ae2d87611b80efd723d6fc85229b387931da424c4"
}
Using seed: 61049
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: A <s0><s1> emoji of a man wearing minimalistic glasses, photorealistic, white background
img2img mode
0%| | 0/20 [00:00<?, ?it/s]
5%|▌ | 1/20 [00:00<00:08, 2.30it/s]
10%|█ | 2/20 [00:00<00:07, 2.30it/s]
15%|█▌ | 3/20 [00:01<00:07, 2.30it/s]
20%|██ | 4/20 [00:01<00:06, 2.30it/s]
25%|██▌ | 5/20 [00:02<00:06, 2.30it/s]
30%|███ | 6/20 [00:02<00:06, 2.30it/s]
35%|███▌ | 7/20 [00:03<00:05, 2.29it/s]
40%|████ | 8/20 [00:03<00:05, 2.29it/s]
45%|████▌ | 9/20 [00:03<00:04, 2.29it/s]
50%|█████ | 10/20 [00:04<00:04, 2.29it/s]
55%|█████▌ | 11/20 [00:04<00:03, 2.29it/s]
60%|██████ | 12/20 [00:05<00:03, 2.29it/s]
65%|██████▌ | 13/20 [00:05<00:03, 2.29it/s]
70%|███████ | 14/20 [00:06<00:02, 2.29it/s]
75%|███████▌ | 15/20 [00:06<00:02, 2.29it/s]
80%|████████ | 16/20 [00:06<00:01, 2.29it/s]
85%|████████▌ | 17/20 [00:07<00:01, 2.29it/s]
90%|█████████ | 18/20 [00:07<00:00, 2.28it/s]
95%|█████████▌| 19/20 [00:08<00:00, 2.28it/s]
100%|██████████| 20/20 [00:08<00:00, 2.28it/s]
100%|██████████| 20/20 [00:08<00:00, 2.29it/s]