You're looking at a specific version of this model. Jump to the model overview.
prompthunt /cog-sdxl-controlnet-inference:c748f859
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run prompthunt/cog-sdxl-controlnet-inference using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"prompthunt/cog-sdxl-controlnet-inference:c748f859defb73fe0679ce88bf56c8c203cd9bbe4e81be20325ad65c041a7641",
{
input: {
seed: 1234,
image: "https://replicate.delivery/pbxt/JtBXIeco0ymI5gPV7hbpb3N8gjPGQePmadfUmXV6njkeM7E9/w1024.jpeg",
width: 1024,
height: 1024,
prompt: "((Moody portrait)) of TOK man wearing glasses dressed in arctic fashion against an arctic backdrop with iceberg influences, perfect eyes",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
lora_weights: "https://replicate.delivery/pbxt/yuebGYwbnLUIbiFtTk4tjkkO2BJMcPheYILs7vy7MnzMpB5RA/trained_model.tar",
controlnet_end: 1,
guidance_scale: 3,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "defined jawline, plastic, blurry, grainy, [deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry",
prompt_strength: 0.8,
controlnet_start: 0,
num_inference_steps: 25,
controlnet_conditioning_scale: 0.5
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run prompthunt/cog-sdxl-controlnet-inference using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"prompthunt/cog-sdxl-controlnet-inference:c748f859defb73fe0679ce88bf56c8c203cd9bbe4e81be20325ad65c041a7641",
input={
"seed": 1234,
"image": "https://replicate.delivery/pbxt/JtBXIeco0ymI5gPV7hbpb3N8gjPGQePmadfUmXV6njkeM7E9/w1024.jpeg",
"width": 1024,
"height": 1024,
"prompt": "((Moody portrait)) of TOK man wearing glasses dressed in arctic fashion against an arctic backdrop with iceberg influences, perfect eyes",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"lora_weights": "https://replicate.delivery/pbxt/yuebGYwbnLUIbiFtTk4tjkkO2BJMcPheYILs7vy7MnzMpB5RA/trained_model.tar",
"controlnet_end": 1,
"guidance_scale": 3,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "defined jawline, plastic, blurry, grainy, [deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry",
"prompt_strength": 0.8,
"controlnet_start": 0,
"num_inference_steps": 25,
"controlnet_conditioning_scale": 0.5
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run prompthunt/cog-sdxl-controlnet-inference using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "prompthunt/cog-sdxl-controlnet-inference:c748f859defb73fe0679ce88bf56c8c203cd9bbe4e81be20325ad65c041a7641",
"input": {
"seed": 1234,
"image": "https://replicate.delivery/pbxt/JtBXIeco0ymI5gPV7hbpb3N8gjPGQePmadfUmXV6njkeM7E9/w1024.jpeg",
"width": 1024,
"height": 1024,
"prompt": "((Moody portrait)) of TOK man wearing glasses dressed in arctic fashion against an arctic backdrop with iceberg influences, perfect eyes",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"lora_weights": "https://replicate.delivery/pbxt/yuebGYwbnLUIbiFtTk4tjkkO2BJMcPheYILs7vy7MnzMpB5RA/trained_model.tar",
"controlnet_end": 1,
"guidance_scale": 3,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "defined jawline, plastic, blurry, grainy, [deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry",
"prompt_strength": 0.8,
"controlnet_start": 0,
"num_inference_steps": 25,
"controlnet_conditioning_scale": 0.5
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/prompthunt/cog-sdxl-controlnet-inference@sha256:c748f859defb73fe0679ce88bf56c8c203cd9bbe4e81be20325ad65c041a7641 \
-i 'seed=1234' \
-i 'image="https://replicate.delivery/pbxt/JtBXIeco0ymI5gPV7hbpb3N8gjPGQePmadfUmXV6njkeM7E9/w1024.jpeg"' \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="((Moody portrait)) of TOK man wearing glasses dressed in arctic fashion against an arctic backdrop with iceberg influences, perfect eyes"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'lora_weights="https://replicate.delivery/pbxt/yuebGYwbnLUIbiFtTk4tjkkO2BJMcPheYILs7vy7MnzMpB5RA/trained_model.tar"' \
-i 'controlnet_end=1' \
-i 'guidance_scale=3' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt="defined jawline, plastic, blurry, grainy, [deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry"' \
-i 'prompt_strength=0.8' \
-i 'controlnet_start=0' \
-i 'num_inference_steps=25' \
-i 'controlnet_conditioning_scale=0.5'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/prompthunt/cog-sdxl-controlnet-inference@sha256:c748f859defb73fe0679ce88bf56c8c203cd9bbe4e81be20325ad65c041a7641
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 1234, "image": "https://replicate.delivery/pbxt/JtBXIeco0ymI5gPV7hbpb3N8gjPGQePmadfUmXV6njkeM7E9/w1024.jpeg", "width": 1024, "height": 1024, "prompt": "((Moody portrait)) of TOK man wearing glasses dressed in arctic fashion against an arctic backdrop with iceberg influences, perfect eyes", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "lora_weights": "https://replicate.delivery/pbxt/yuebGYwbnLUIbiFtTk4tjkkO2BJMcPheYILs7vy7MnzMpB5RA/trained_model.tar", "controlnet_end": 1, "guidance_scale": 3, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "defined jawline, plastic, blurry, grainy, [deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry", "prompt_strength": 0.8, "controlnet_start": 0, "num_inference_steps": 25, "controlnet_conditioning_scale": 0.5 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.016. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-11-16T21:28:43.331150Z",
"created_at": "2023-11-16T21:28:29.220765Z",
"data_removed": false,
"error": null,
"id": "723p4ldb2m6qgp47s5uydlunou",
"input": {
"seed": 1234,
"image": "https://replicate.delivery/pbxt/JtBXIeco0ymI5gPV7hbpb3N8gjPGQePmadfUmXV6njkeM7E9/w1024.jpeg",
"width": 1024,
"height": 1024,
"prompt": "((Moody portrait)) of TOK man wearing glasses dressed in arctic fashion against an arctic backdrop with iceberg influences, perfect eyes",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"lora_weights": "https://replicate.delivery/pbxt/yuebGYwbnLUIbiFtTk4tjkkO2BJMcPheYILs7vy7MnzMpB5RA/trained_model.tar",
"controlnet_end": 1,
"guidance_scale": 3,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "defined jawline, plastic, blurry, grainy, [deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry",
"prompt_strength": 0.8,
"controlnet_start": 0,
"num_inference_steps": 25,
"controlnet_conditioning_scale": 0.5
},
"logs": "Using seed: 1234\nLoading sdxl txt2img pipeline...\nLoading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]\nLoading pipeline components...: 29%|██▊ | 2/7 [00:00<00:00, 6.99it/s]\nLoading pipeline components...: 57%|█████▋ | 4/7 [00:00<00:00, 6.95it/s]\nLoading pipeline components...: 86%|████████▌ | 6/7 [00:01<00:00, 5.11it/s]\nLoading pipeline components...: 100%|██████████| 7/7 [00:01<00:00, 6.08it/s]\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nLoading SDXL img2img pipeline...\nLoading SDXL inpaint pipeline...\nLoading controlnet model\nimg2img mode\nPrompt: ((Moody portrait)) of <s0><s1> man wearing glasses dressed in arctic fashion against an arctic backdrop with iceberg influences, perfect eyes\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:05, 3.69it/s]\n 10%|█ | 2/20 [00:00<00:04, 3.68it/s]\n 15%|█▌ | 3/20 [00:00<00:04, 3.68it/s]\n 20%|██ | 4/20 [00:01<00:04, 3.67it/s]\n 25%|██▌ | 5/20 [00:01<00:04, 3.67it/s]\n 30%|███ | 6/20 [00:01<00:03, 3.67it/s]\n 35%|███▌ | 7/20 [00:01<00:03, 3.68it/s]\n 40%|████ | 8/20 [00:02<00:03, 3.68it/s]\n 45%|████▌ | 9/20 [00:02<00:02, 3.68it/s]\n 50%|█████ | 10/20 [00:02<00:02, 3.68it/s]\n 55%|█████▌ | 11/20 [00:02<00:02, 3.68it/s]\n 60%|██████ | 12/20 [00:03<00:02, 3.68it/s]\n 65%|██████▌ | 13/20 [00:03<00:01, 3.68it/s]\n 70%|███████ | 14/20 [00:03<00:01, 3.68it/s]\n 75%|███████▌ | 15/20 [00:04<00:01, 3.68it/s]\n 80%|████████ | 16/20 [00:04<00:01, 3.68it/s]\n 85%|████████▌ | 17/20 [00:04<00:00, 3.68it/s]\n 90%|█████████ | 18/20 [00:04<00:00, 3.68it/s]\n 95%|█████████▌| 19/20 [00:05<00:00, 3.68it/s]\n100%|██████████| 20/20 [00:05<00:00, 3.68it/s]\n100%|██████████| 20/20 [00:05<00:00, 3.68it/s]",
"metrics": {
"predict_time": 14.054828,
"total_time": 14.110385
},
"output": [
"https://replicate.delivery/pbxt/bEf9XAvle3vSckOAyTBXmMSOYIqbf0jdgDGbtKTCKVAVcHyjA/out-0.png"
],
"started_at": "2023-11-16T21:28:29.276322Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/723p4ldb2m6qgp47s5uydlunou",
"cancel": "https://api.replicate.com/v1/predictions/723p4ldb2m6qgp47s5uydlunou/cancel"
},
"version": "c748f859defb73fe0679ce88bf56c8c203cd9bbe4e81be20325ad65c041a7641"
}
Using seed: 1234
Loading sdxl txt2img pipeline...
Loading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]
Loading pipeline components...: 29%|██▊ | 2/7 [00:00<00:00, 6.99it/s]
Loading pipeline components...: 57%|█████▋ | 4/7 [00:00<00:00, 6.95it/s]
Loading pipeline components...: 86%|████████▌ | 6/7 [00:01<00:00, 5.11it/s]
Loading pipeline components...: 100%|██████████| 7/7 [00:01<00:00, 6.08it/s]
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Loading SDXL img2img pipeline...
Loading SDXL inpaint pipeline...
Loading controlnet model
img2img mode
Prompt: ((Moody portrait)) of <s0><s1> man wearing glasses dressed in arctic fashion against an arctic backdrop with iceberg influences, perfect eyes
0%| | 0/20 [00:00<?, ?it/s]
5%|▌ | 1/20 [00:00<00:05, 3.69it/s]
10%|█ | 2/20 [00:00<00:04, 3.68it/s]
15%|█▌ | 3/20 [00:00<00:04, 3.68it/s]
20%|██ | 4/20 [00:01<00:04, 3.67it/s]
25%|██▌ | 5/20 [00:01<00:04, 3.67it/s]
30%|███ | 6/20 [00:01<00:03, 3.67it/s]
35%|███▌ | 7/20 [00:01<00:03, 3.68it/s]
40%|████ | 8/20 [00:02<00:03, 3.68it/s]
45%|████▌ | 9/20 [00:02<00:02, 3.68it/s]
50%|█████ | 10/20 [00:02<00:02, 3.68it/s]
55%|█████▌ | 11/20 [00:02<00:02, 3.68it/s]
60%|██████ | 12/20 [00:03<00:02, 3.68it/s]
65%|██████▌ | 13/20 [00:03<00:01, 3.68it/s]
70%|███████ | 14/20 [00:03<00:01, 3.68it/s]
75%|███████▌ | 15/20 [00:04<00:01, 3.68it/s]
80%|████████ | 16/20 [00:04<00:01, 3.68it/s]
85%|████████▌ | 17/20 [00:04<00:00, 3.68it/s]
90%|█████████ | 18/20 [00:04<00:00, 3.68it/s]
95%|█████████▌| 19/20 [00:05<00:00, 3.68it/s]
100%|██████████| 20/20 [00:05<00:00, 3.68it/s]
100%|██████████| 20/20 [00:05<00:00, 3.68it/s]