Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
pwntus /sdxl-gta-v:b61a50b0
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run pwntus/sdxl-gta-v using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"pwntus/sdxl-gta-v:b61a50b07f8316aab4a10253692511dd2f0b6f8546113c314a0e0940dc372614",
{
input: {
width: 1024,
height: 1024,
prompt: "video game art in the style of TOK, Queen Elizabeth, in Los Angeles",
refine: "expert_ensemble_refiner",
scheduler: "K_EULER_ANCESTRAL",
lora_scale: 0.75,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "guns",
prompt_strength: 0.8,
num_inference_steps: 30
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run pwntus/sdxl-gta-v using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"pwntus/sdxl-gta-v:b61a50b07f8316aab4a10253692511dd2f0b6f8546113c314a0e0940dc372614",
input={
"width": 1024,
"height": 1024,
"prompt": "video game art in the style of TOK, Queen Elizabeth, in Los Angeles",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER_ANCESTRAL",
"lora_scale": 0.75,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "guns",
"prompt_strength": 0.8,
"num_inference_steps": 30
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run pwntus/sdxl-gta-v using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "b61a50b07f8316aab4a10253692511dd2f0b6f8546113c314a0e0940dc372614",
"input": {
"width": 1024,
"height": 1024,
"prompt": "video game art in the style of TOK, Queen Elizabeth, in Los Angeles",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER_ANCESTRAL",
"lora_scale": 0.75,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "guns",
"prompt_strength": 0.8,
"num_inference_steps": 30
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-08-09T14:09:14.161735Z",
"created_at": "2023-08-09T14:09:04.005121Z",
"data_removed": false,
"error": null,
"id": "st4x5gdbdnqdv5j7jqzzk7rju4",
"input": {
"width": 1024,
"height": 1024,
"prompt": "video game art in the style of TOK, Queen Elizabeth, in Los Angeles",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER_ANCESTRAL",
"lora_scale": 0.75,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "guns",
"prompt_strength": 0.8,
"num_inference_steps": 30
},
"logs": "Using seed: 7343\nPrompt: video game art in the style of <s0><s1>, Queen Elizabeth, in Los Angeles\ntxt2img mode\n 0%| | 0/23 [00:00<?, ?it/s]\n 4%|▍ | 1/23 [00:00<00:05, 3.69it/s]\n 9%|▊ | 2/23 [00:00<00:05, 3.67it/s]\n 13%|█▎ | 3/23 [00:00<00:05, 3.66it/s]\n 17%|█▋ | 4/23 [00:01<00:05, 3.66it/s]\n 22%|██▏ | 5/23 [00:01<00:04, 3.66it/s]\n 26%|██▌ | 6/23 [00:01<00:04, 3.66it/s]\n 30%|███ | 7/23 [00:01<00:04, 3.65it/s]\n 35%|███▍ | 8/23 [00:02<00:04, 3.65it/s]\n 39%|███▉ | 9/23 [00:02<00:03, 3.65it/s]\n 43%|████▎ | 10/23 [00:02<00:03, 3.65it/s]\n 48%|████▊ | 11/23 [00:03<00:03, 3.65it/s]\n 52%|█████▏ | 12/23 [00:03<00:03, 3.65it/s]\n 57%|█████▋ | 13/23 [00:03<00:02, 3.65it/s]\n 61%|██████ | 14/23 [00:03<00:02, 3.64it/s]\n 65%|██████▌ | 15/23 [00:04<00:02, 3.64it/s]\n 70%|██████▉ | 16/23 [00:04<00:01, 3.64it/s]\n 74%|███████▍ | 17/23 [00:04<00:01, 3.64it/s]\n 78%|███████▊ | 18/23 [00:04<00:01, 3.64it/s]\n 83%|████████▎ | 19/23 [00:05<00:01, 3.64it/s]\n 87%|████████▋ | 20/23 [00:05<00:00, 3.64it/s]\n 91%|█████████▏| 21/23 [00:05<00:00, 3.64it/s]\n 96%|█████████▌| 22/23 [00:06<00:00, 3.64it/s]\n100%|██████████| 23/23 [00:06<00:00, 3.64it/s]\n100%|██████████| 23/23 [00:06<00:00, 3.65it/s]\n 0%| | 0/7 [00:00<?, ?it/s]\n 14%|█▍ | 1/7 [00:00<00:01, 4.30it/s]\n 29%|██▊ | 2/7 [00:00<00:01, 4.29it/s]\n 43%|████▎ | 3/7 [00:00<00:00, 4.27it/s]\n 57%|█████▋ | 4/7 [00:00<00:00, 4.27it/s]\n 71%|███████▏ | 5/7 [00:01<00:00, 4.26it/s]\n 86%|████████▌ | 6/7 [00:01<00:00, 4.26it/s]\n100%|██████████| 7/7 [00:01<00:00, 4.26it/s]\n100%|██████████| 7/7 [00:01<00:00, 4.27it/s]",
"metrics": {
"predict_time": 10.149148,
"total_time": 10.156614
},
"output": [
"https://replicate.delivery/pbxt/pGdrdZe0jx3RNK7vjgIp4lycKX7TG43HzcDYehA6O8BJAVYRA/out-0.png"
],
"started_at": "2023-08-09T14:09:04.012587Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/st4x5gdbdnqdv5j7jqzzk7rju4",
"cancel": "https://api.replicate.com/v1/predictions/st4x5gdbdnqdv5j7jqzzk7rju4/cancel"
},
"version": "b61a50b07f8316aab4a10253692511dd2f0b6f8546113c314a0e0940dc372614"
}
Using seed: 7343
Prompt: video game art in the style of <s0><s1>, Queen Elizabeth, in Los Angeles
txt2img mode
0%| | 0/23 [00:00<?, ?it/s]
4%|▍ | 1/23 [00:00<00:05, 3.69it/s]
9%|▊ | 2/23 [00:00<00:05, 3.67it/s]
13%|█▎ | 3/23 [00:00<00:05, 3.66it/s]
17%|█▋ | 4/23 [00:01<00:05, 3.66it/s]
22%|██▏ | 5/23 [00:01<00:04, 3.66it/s]
26%|██▌ | 6/23 [00:01<00:04, 3.66it/s]
30%|███ | 7/23 [00:01<00:04, 3.65it/s]
35%|███▍ | 8/23 [00:02<00:04, 3.65it/s]
39%|███▉ | 9/23 [00:02<00:03, 3.65it/s]
43%|████▎ | 10/23 [00:02<00:03, 3.65it/s]
48%|████▊ | 11/23 [00:03<00:03, 3.65it/s]
52%|█████▏ | 12/23 [00:03<00:03, 3.65it/s]
57%|█████▋ | 13/23 [00:03<00:02, 3.65it/s]
61%|██████ | 14/23 [00:03<00:02, 3.64it/s]
65%|██████▌ | 15/23 [00:04<00:02, 3.64it/s]
70%|██████▉ | 16/23 [00:04<00:01, 3.64it/s]
74%|███████▍ | 17/23 [00:04<00:01, 3.64it/s]
78%|███████▊ | 18/23 [00:04<00:01, 3.64it/s]
83%|████████▎ | 19/23 [00:05<00:01, 3.64it/s]
87%|████████▋ | 20/23 [00:05<00:00, 3.64it/s]
91%|█████████▏| 21/23 [00:05<00:00, 3.64it/s]
96%|█████████▌| 22/23 [00:06<00:00, 3.64it/s]
100%|██████████| 23/23 [00:06<00:00, 3.64it/s]
100%|██████████| 23/23 [00:06<00:00, 3.65it/s]
0%| | 0/7 [00:00<?, ?it/s]
14%|█▍ | 1/7 [00:00<00:01, 4.30it/s]
29%|██▊ | 2/7 [00:00<00:01, 4.29it/s]
43%|████▎ | 3/7 [00:00<00:00, 4.27it/s]
57%|█████▋ | 4/7 [00:00<00:00, 4.27it/s]
71%|███████▏ | 5/7 [00:01<00:00, 4.26it/s]
86%|████████▌ | 6/7 [00:01<00:00, 4.26it/s]
100%|██████████| 7/7 [00:01<00:00, 4.26it/s]
100%|██████████| 7/7 [00:01<00:00, 4.27it/s]