You're looking at a specific version of this model. Jump to the model overview.
replicategithubwc /dreamlike-diffusion:65e886ff
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run replicategithubwc/dreamlike-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"replicategithubwc/dreamlike-diffusion:65e886ff348258be046f8eff2a9ad12cfb666a7becfa9da33dcafaa136059f5c",
{
input: {
width: 768,
height: 1024,
prompt: "calm town in the rural countryside, intricate details, rich colors, beautiful lighting, V-Ray render, sun rays, photorealistic, isometric art, unreal engine,4K results, EOS 50D. iso 1300,photograph, extreme tilt shift, draw by Jacek Yerka, unreal engine",
scheduler: "DPMSolverMultistep",
num_outputs: 4,
guidance_scale: 7.5,
negative_prompt: "out of frame, duplicate, watermark, signature, text",
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run replicategithubwc/dreamlike-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"replicategithubwc/dreamlike-diffusion:65e886ff348258be046f8eff2a9ad12cfb666a7becfa9da33dcafaa136059f5c",
input={
"width": 768,
"height": 1024,
"prompt": "calm town in the rural countryside, intricate details, rich colors, beautiful lighting, V-Ray render, sun rays, photorealistic, isometric art, unreal engine,4K results, EOS 50D. iso 1300,photograph, extreme tilt shift, draw by Jacek Yerka, unreal engine",
"scheduler": "DPMSolverMultistep",
"num_outputs": 4,
"guidance_scale": 7.5,
"negative_prompt": "out of frame, duplicate, watermark, signature, text",
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run replicategithubwc/dreamlike-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "65e886ff348258be046f8eff2a9ad12cfb666a7becfa9da33dcafaa136059f5c",
"input": {
"width": 768,
"height": 1024,
"prompt": "calm town in the rural countryside, intricate details, rich colors, beautiful lighting, V-Ray render, sun rays, photorealistic, isometric art, unreal engine,4K results, EOS 50D. iso 1300,photograph, extreme tilt shift, draw by Jacek Yerka, unreal engine",
"scheduler": "DPMSolverMultistep",
"num_outputs": 4,
"guidance_scale": 7.5,
"negative_prompt": "out of frame, duplicate, watermark, signature, text",
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/replicategithubwc/dreamlike-diffusion@sha256:65e886ff348258be046f8eff2a9ad12cfb666a7becfa9da33dcafaa136059f5c \
-i 'width=768' \
-i 'height=1024' \
-i 'prompt="calm town in the rural countryside, intricate details, rich colors, beautiful lighting, V-Ray render, sun rays, photorealistic, isometric art, unreal engine,4K results, EOS 50D. iso 1300,photograph, extreme tilt shift, draw by Jacek Yerka, unreal engine"' \
-i 'scheduler="DPMSolverMultistep"' \
-i 'num_outputs=4' \
-i 'guidance_scale=7.5' \
-i 'negative_prompt="out of frame, duplicate, watermark, signature, text"' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/replicategithubwc/dreamlike-diffusion@sha256:65e886ff348258be046f8eff2a9ad12cfb666a7becfa9da33dcafaa136059f5c
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 768, "height": 1024, "prompt": "calm town in the rural countryside, intricate details, rich colors, beautiful lighting, V-Ray render, sun rays, photorealistic, isometric art, unreal engine,4K results, EOS 50D. iso 1300,photograph, extreme tilt shift, draw by Jacek Yerka, unreal engine", "scheduler": "DPMSolverMultistep", "num_outputs": 4, "guidance_scale": 7.5, "negative_prompt": "out of frame, duplicate, watermark, signature, text", "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.14. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-07-18T07:47:15.345870Z",
"created_at": "2023-07-18T07:44:39.155781Z",
"data_removed": false,
"error": null,
"id": "r5mwd4tbddc7ys3ed6d66qw7vu",
"input": {
"width": 768,
"height": "1024",
"prompt": "calm town in the rural countryside, intricate details, rich colors, beautiful lighting, V-Ray render, sun rays, photorealistic, isometric art, unreal engine,4K results, EOS 50D. iso 1300,photograph, extreme tilt shift, draw by Jacek Yerka, unreal engine",
"scheduler": "DPMSolverMultistep",
"num_outputs": 4,
"guidance_scale": 7.5,
"negative_prompt": "out of frame, duplicate, watermark, signature, text",
"num_inference_steps": 50
},
"logs": "Using seed: 33701\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:47, 1.02it/s]\n 4%|▍ | 2/50 [00:01<00:33, 1.43it/s]\n 6%|▌ | 3/50 [00:01<00:28, 1.65it/s]\n 8%|▊ | 4/50 [00:02<00:26, 1.77it/s]\n 10%|█ | 5/50 [00:02<00:24, 1.84it/s]\n 12%|█▏ | 6/50 [00:03<00:23, 1.89it/s]\n 14%|█▍ | 7/50 [00:03<00:22, 1.92it/s]\n 16%|█▌ | 8/50 [00:04<00:21, 1.94it/s]\n 18%|█▊ | 9/50 [00:04<00:20, 1.95it/s]\n 20%|██ | 10/50 [00:05<00:20, 1.96it/s]\n 22%|██▏ | 11/50 [00:06<00:19, 1.97it/s]\n 24%|██▍ | 12/50 [00:06<00:19, 1.97it/s]\n 26%|██▌ | 13/50 [00:07<00:18, 1.98it/s]\n 28%|██▊ | 14/50 [00:07<00:18, 1.98it/s]\n 30%|███ | 15/50 [00:08<00:17, 1.98it/s]\n 32%|███▏ | 16/50 [00:08<00:17, 1.98it/s]\n 34%|███▍ | 17/50 [00:09<00:16, 1.98it/s]\n 36%|███▌ | 18/50 [00:09<00:16, 1.98it/s]\n 38%|███▊ | 19/50 [00:10<00:15, 1.98it/s]\n 40%|████ | 20/50 [00:10<00:15, 1.98it/s]\n 42%|████▏ | 21/50 [00:11<00:14, 1.98it/s]\n 44%|████▍ | 22/50 [00:11<00:14, 1.98it/s]\n 46%|████▌ | 23/50 [00:12<00:13, 1.98it/s]\n 48%|████▊ | 24/50 [00:12<00:13, 1.98it/s]\n 50%|█████ | 25/50 [00:13<00:12, 1.98it/s]\n 52%|█████▏ | 26/50 [00:13<00:12, 1.98it/s]\n 54%|█████▍ | 27/50 [00:14<00:11, 1.98it/s]\n 56%|█████▌ | 28/50 [00:14<00:11, 1.98it/s]\n 58%|█████▊ | 29/50 [00:15<00:10, 1.98it/s]\n 60%|██████ | 30/50 [00:15<00:10, 1.98it/s]\n 62%|██████▏ | 31/50 [00:16<00:09, 1.98it/s]\n 64%|██████▍ | 32/50 [00:16<00:09, 1.98it/s]\n 66%|██████▌ | 33/50 [00:17<00:08, 1.98it/s]\n 68%|██████▊ | 34/50 [00:17<00:08, 1.98it/s]\n 70%|███████ | 35/50 [00:18<00:07, 1.98it/s]\n 72%|███████▏ | 36/50 [00:18<00:07, 1.98it/s]\n 74%|███████▍ | 37/50 [00:19<00:06, 1.98it/s]\n 76%|███████▌ | 38/50 [00:19<00:06, 1.98it/s]\n 78%|███████▊ | 39/50 [00:20<00:05, 1.98it/s]\n 80%|████████ | 40/50 [00:20<00:05, 1.98it/s]\n 82%|████████▏ | 41/50 [00:21<00:04, 1.98it/s]\n 84%|████████▍ | 42/50 [00:21<00:04, 1.98it/s]\n 86%|████████▌ | 43/50 [00:22<00:03, 1.98it/s]\n 88%|████████▊ | 44/50 [00:22<00:03, 1.98it/s]\n 90%|█████████ | 45/50 [00:23<00:02, 1.98it/s]\n 92%|█████████▏| 46/50 [00:23<00:02, 1.98it/s]\n 94%|█████████▍| 47/50 [00:24<00:01, 1.98it/s]\n 96%|█████████▌| 48/50 [00:24<00:01, 1.98it/s]\n 98%|█████████▊| 49/50 [00:25<00:00, 1.98it/s]\n100%|██████████| 50/50 [00:25<00:00, 1.98it/s]\n100%|██████████| 50/50 [00:25<00:00, 1.95it/s]",
"metrics": {
"predict_time": 30.48311,
"total_time": 156.190089
},
"output": [
"https://replicate.delivery/pbxt/zmydefeLDuGf5TYZWCdjdM3OUMzHIXUfhnDthDSQUP9Ew6HKC/out-0.png",
"https://replicate.delivery/pbxt/IXkxoHImKwJAFR6BI1zbTMzCQAeJ2XuwfTP7qicNvniBWfhiA/out-1.png",
"https://replicate.delivery/pbxt/9Lf1gPcZvCXZWqFmnjX4eiHriwre1DmeZPLyIk7SM6vIY9DFB/out-2.png",
"https://replicate.delivery/pbxt/F88iIhRHViYXOh9GyyLXI35wSI355n5auQK2nnuy81eBrfQRA/out-3.png"
],
"started_at": "2023-07-18T07:46:44.862760Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/r5mwd4tbddc7ys3ed6d66qw7vu",
"cancel": "https://api.replicate.com/v1/predictions/r5mwd4tbddc7ys3ed6d66qw7vu/cancel"
},
"version": "65e886ff348258be046f8eff2a9ad12cfb666a7becfa9da33dcafaa136059f5c"
}
Using seed: 33701
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:47, 1.02it/s]
4%|▍ | 2/50 [00:01<00:33, 1.43it/s]
6%|▌ | 3/50 [00:01<00:28, 1.65it/s]
8%|▊ | 4/50 [00:02<00:26, 1.77it/s]
10%|█ | 5/50 [00:02<00:24, 1.84it/s]
12%|█▏ | 6/50 [00:03<00:23, 1.89it/s]
14%|█▍ | 7/50 [00:03<00:22, 1.92it/s]
16%|█▌ | 8/50 [00:04<00:21, 1.94it/s]
18%|█▊ | 9/50 [00:04<00:20, 1.95it/s]
20%|██ | 10/50 [00:05<00:20, 1.96it/s]
22%|██▏ | 11/50 [00:06<00:19, 1.97it/s]
24%|██▍ | 12/50 [00:06<00:19, 1.97it/s]
26%|██▌ | 13/50 [00:07<00:18, 1.98it/s]
28%|██▊ | 14/50 [00:07<00:18, 1.98it/s]
30%|███ | 15/50 [00:08<00:17, 1.98it/s]
32%|███▏ | 16/50 [00:08<00:17, 1.98it/s]
34%|███▍ | 17/50 [00:09<00:16, 1.98it/s]
36%|███▌ | 18/50 [00:09<00:16, 1.98it/s]
38%|███▊ | 19/50 [00:10<00:15, 1.98it/s]
40%|████ | 20/50 [00:10<00:15, 1.98it/s]
42%|████▏ | 21/50 [00:11<00:14, 1.98it/s]
44%|████▍ | 22/50 [00:11<00:14, 1.98it/s]
46%|████▌ | 23/50 [00:12<00:13, 1.98it/s]
48%|████▊ | 24/50 [00:12<00:13, 1.98it/s]
50%|█████ | 25/50 [00:13<00:12, 1.98it/s]
52%|█████▏ | 26/50 [00:13<00:12, 1.98it/s]
54%|█████▍ | 27/50 [00:14<00:11, 1.98it/s]
56%|█████▌ | 28/50 [00:14<00:11, 1.98it/s]
58%|█████▊ | 29/50 [00:15<00:10, 1.98it/s]
60%|██████ | 30/50 [00:15<00:10, 1.98it/s]
62%|██████▏ | 31/50 [00:16<00:09, 1.98it/s]
64%|██████▍ | 32/50 [00:16<00:09, 1.98it/s]
66%|██████▌ | 33/50 [00:17<00:08, 1.98it/s]
68%|██████▊ | 34/50 [00:17<00:08, 1.98it/s]
70%|███████ | 35/50 [00:18<00:07, 1.98it/s]
72%|███████▏ | 36/50 [00:18<00:07, 1.98it/s]
74%|███████▍ | 37/50 [00:19<00:06, 1.98it/s]
76%|███████▌ | 38/50 [00:19<00:06, 1.98it/s]
78%|███████▊ | 39/50 [00:20<00:05, 1.98it/s]
80%|████████ | 40/50 [00:20<00:05, 1.98it/s]
82%|████████▏ | 41/50 [00:21<00:04, 1.98it/s]
84%|████████▍ | 42/50 [00:21<00:04, 1.98it/s]
86%|████████▌ | 43/50 [00:22<00:03, 1.98it/s]
88%|████████▊ | 44/50 [00:22<00:03, 1.98it/s]
90%|█████████ | 45/50 [00:23<00:02, 1.98it/s]
92%|█████████▏| 46/50 [00:23<00:02, 1.98it/s]
94%|█████████▍| 47/50 [00:24<00:01, 1.98it/s]
96%|█████████▌| 48/50 [00:24<00:01, 1.98it/s]
98%|█████████▊| 49/50 [00:25<00:00, 1.98it/s]
100%|██████████| 50/50 [00:25<00:00, 1.98it/s]
100%|██████████| 50/50 [00:25<00:00, 1.95it/s]