Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
workroomprds /jamesbooth1:d04969e3
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run workroomprds/jamesbooth1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"workroomprds/jamesbooth1:d04969e3b5bb16a806e7c5c49a90870cb4891c629a38fda542ce77ce2368e0bd",
{
input: {
seed: 51805,
width: 512,
height: 512,
prompt: "a magnificent, detailed and compelling rembrandt HDR portrait of a workroomprds person in space wearing a stetson a magnificent, detailed and compelling rembrandt HDR portrait of a workroomprds person in space wearing a stetson",
scheduler: "DDIM",
num_outputs: 4,
guidance_scale: 7.5,
prompt_strength: 0.8,
num_inference_steps: 50,
disable_safety_check: false
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run workroomprds/jamesbooth1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"workroomprds/jamesbooth1:d04969e3b5bb16a806e7c5c49a90870cb4891c629a38fda542ce77ce2368e0bd",
input={
"seed": 51805,
"width": 512,
"height": 512,
"prompt": "a magnificent, detailed and compelling rembrandt HDR portrait of a workroomprds person in space wearing a stetson a magnificent, detailed and compelling rembrandt HDR portrait of a workroomprds person in space wearing a stetson",
"scheduler": "DDIM",
"num_outputs": 4,
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 50,
"disable_safety_check": False
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run workroomprds/jamesbooth1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "workroomprds/jamesbooth1:d04969e3b5bb16a806e7c5c49a90870cb4891c629a38fda542ce77ce2368e0bd",
"input": {
"seed": 51805,
"width": 512,
"height": 512,
"prompt": "a magnificent, detailed and compelling rembrandt HDR portrait of a workroomprds person in space wearing a stetson a magnificent, detailed and compelling rembrandt HDR portrait of a workroomprds person in space wearing a stetson",
"scheduler": "DDIM",
"num_outputs": 4,
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 50,
"disable_safety_check": false
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-02-23T14:52:35.565531Z",
"created_at": "2023-02-23T14:47:57.634253Z",
"data_removed": false,
"error": null,
"id": "znwtj76tsjecjexzo4a4zxacr4",
"input": {
"seed": 51805,
"width": 512,
"height": 512,
"prompt": "a magnificent, detailed and compelling rembrandt HDR portrait of a workroomprds person in space wearing a stetson a magnificent, detailed and compelling rembrandt HDR portrait of a workroomprds person in space wearing a stetson",
"scheduler": "DDIM",
"num_outputs": "4",
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 51805\nusing txt2img\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:03<03:00, 3.68s/it]\n 4%|▍ | 2/50 [00:04<01:31, 1.91s/it]\n 6%|▌ | 3/50 [00:04<01:02, 1.33s/it]\n 8%|▊ | 4/50 [00:05<00:49, 1.07s/it]\n 10%|█ | 5/50 [00:06<00:41, 1.08it/s]\n 12%|█▏ | 6/50 [00:06<00:36, 1.21it/s]\n 14%|█▍ | 7/50 [00:07<00:33, 1.29it/s]\n 16%|█▌ | 8/50 [00:08<00:31, 1.35it/s]\n 18%|█▊ | 9/50 [00:08<00:29, 1.40it/s]\n 20%|██ | 10/50 [00:09<00:27, 1.43it/s]\n 22%|██▏ | 11/50 [00:10<00:26, 1.46it/s]\n 24%|██▍ | 12/50 [00:10<00:25, 1.47it/s]\n 26%|██▌ | 13/50 [00:11<00:24, 1.48it/s]\n 28%|██▊ | 14/50 [00:12<00:24, 1.49it/s]\n 30%|███ | 15/50 [00:12<00:23, 1.50it/s]\n 32%|███▏ | 16/50 [00:13<00:22, 1.50it/s]\n 34%|███▍ | 17/50 [00:14<00:22, 1.50it/s]\n 36%|███▌ | 18/50 [00:14<00:21, 1.50it/s]\n 38%|███▊ | 19/50 [00:15<00:20, 1.49it/s]\n 40%|████ | 20/50 [00:16<00:20, 1.49it/s]\n 42%|████▏ | 21/50 [00:16<00:19, 1.49it/s]\n 44%|████▍ | 22/50 [00:17<00:18, 1.49it/s]\n 46%|████▌ | 23/50 [00:18<00:18, 1.49it/s]\n 48%|████▊ | 24/50 [00:18<00:17, 1.49it/s]\n 50%|█████ | 25/50 [00:19<00:16, 1.49it/s]\n 52%|█████▏ | 26/50 [00:20<00:16, 1.49it/s]\n 54%|█████▍ | 27/50 [00:20<00:15, 1.48it/s]\n 56%|█████▌ | 28/50 [00:21<00:14, 1.48it/s]\n 58%|█████▊ | 29/50 [00:22<00:14, 1.48it/s]\n 60%|██████ | 30/50 [00:23<00:13, 1.48it/s]\n 62%|██████▏ | 31/50 [00:23<00:12, 1.47it/s]\n 64%|██████▍ | 32/50 [00:24<00:12, 1.47it/s]\n 66%|██████▌ | 33/50 [00:25<00:11, 1.47it/s]\n 68%|██████▊ | 34/50 [00:25<00:10, 1.47it/s]\n 70%|███████ | 35/50 [00:26<00:10, 1.47it/s]\n 72%|███████▏ | 36/50 [00:27<00:09, 1.47it/s]\n 74%|███████▍ | 37/50 [00:27<00:08, 1.48it/s]\n 76%|███████▌ | 38/50 [00:28<00:08, 1.48it/s]\n 78%|███████▊ | 39/50 [00:29<00:07, 1.48it/s]\n 80%|████████ | 40/50 [00:29<00:06, 1.47it/s]\n 82%|████████▏ | 41/50 [00:30<00:06, 1.47it/s]\n 84%|████████▍ | 42/50 [00:31<00:05, 1.47it/s]\n 86%|████████▌ | 43/50 [00:31<00:04, 1.47it/s]\n 88%|████████▊ | 44/50 [00:32<00:04, 1.47it/s]\n 90%|█████████ | 45/50 [00:33<00:03, 1.46it/s]\n 92%|█████████▏| 46/50 [00:33<00:02, 1.46it/s]\n 94%|█████████▍| 47/50 [00:34<00:02, 1.46it/s]\n 96%|█████████▌| 48/50 [00:35<00:01, 1.45it/s]\n 98%|█████████▊| 49/50 [00:35<00:00, 1.45it/s]\n100%|██████████| 50/50 [00:36<00:00, 1.45it/s]\n100%|██████████| 50/50 [00:36<00:00, 1.36it/s]",
"metrics": {
"predict_time": 43.578777,
"total_time": 277.931278
},
"output": [
"https://replicate.delivery/pbxt/J9Fe0kK3pPTyKCoHumRB0UNRj1kNQf4IQKWkGW7y6U6welChA/out-0.png",
"https://replicate.delivery/pbxt/MDBJfwf6WIpGAUf83l93VGwooUbVWNHsi3uZ511xfTTE7LFCB/out-1.png",
"https://replicate.delivery/pbxt/LAy9vCHPC0aIP5D0Gn5pDt4f3MfYbhmY9PclHtFFb8byelChA/out-2.png",
"https://replicate.delivery/pbxt/VrVjCdeTrwyePkeZPAeB1nboIDbpcchtJl1V7dhhqJtK7LFCB/out-3.png"
],
"started_at": "2023-02-23T14:51:51.986754Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/znwtj76tsjecjexzo4a4zxacr4",
"cancel": "https://api.replicate.com/v1/predictions/znwtj76tsjecjexzo4a4zxacr4/cancel"
},
"version": "d04969e3b5bb16a806e7c5c49a90870cb4891c629a38fda542ce77ce2368e0bd"
}
Using seed: 51805
using txt2img
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:03<03:00, 3.68s/it]
4%|▍ | 2/50 [00:04<01:31, 1.91s/it]
6%|▌ | 3/50 [00:04<01:02, 1.33s/it]
8%|▊ | 4/50 [00:05<00:49, 1.07s/it]
10%|█ | 5/50 [00:06<00:41, 1.08it/s]
12%|█▏ | 6/50 [00:06<00:36, 1.21it/s]
14%|█▍ | 7/50 [00:07<00:33, 1.29it/s]
16%|█▌ | 8/50 [00:08<00:31, 1.35it/s]
18%|█▊ | 9/50 [00:08<00:29, 1.40it/s]
20%|██ | 10/50 [00:09<00:27, 1.43it/s]
22%|██▏ | 11/50 [00:10<00:26, 1.46it/s]
24%|██▍ | 12/50 [00:10<00:25, 1.47it/s]
26%|██▌ | 13/50 [00:11<00:24, 1.48it/s]
28%|██▊ | 14/50 [00:12<00:24, 1.49it/s]
30%|███ | 15/50 [00:12<00:23, 1.50it/s]
32%|███▏ | 16/50 [00:13<00:22, 1.50it/s]
34%|███▍ | 17/50 [00:14<00:22, 1.50it/s]
36%|███▌ | 18/50 [00:14<00:21, 1.50it/s]
38%|███▊ | 19/50 [00:15<00:20, 1.49it/s]
40%|████ | 20/50 [00:16<00:20, 1.49it/s]
42%|████▏ | 21/50 [00:16<00:19, 1.49it/s]
44%|████▍ | 22/50 [00:17<00:18, 1.49it/s]
46%|████▌ | 23/50 [00:18<00:18, 1.49it/s]
48%|████▊ | 24/50 [00:18<00:17, 1.49it/s]
50%|█████ | 25/50 [00:19<00:16, 1.49it/s]
52%|█████▏ | 26/50 [00:20<00:16, 1.49it/s]
54%|█████▍ | 27/50 [00:20<00:15, 1.48it/s]
56%|█████▌ | 28/50 [00:21<00:14, 1.48it/s]
58%|█████▊ | 29/50 [00:22<00:14, 1.48it/s]
60%|██████ | 30/50 [00:23<00:13, 1.48it/s]
62%|██████▏ | 31/50 [00:23<00:12, 1.47it/s]
64%|██████▍ | 32/50 [00:24<00:12, 1.47it/s]
66%|██████▌ | 33/50 [00:25<00:11, 1.47it/s]
68%|██████▊ | 34/50 [00:25<00:10, 1.47it/s]
70%|███████ | 35/50 [00:26<00:10, 1.47it/s]
72%|███████▏ | 36/50 [00:27<00:09, 1.47it/s]
74%|███████▍ | 37/50 [00:27<00:08, 1.48it/s]
76%|███████▌ | 38/50 [00:28<00:08, 1.48it/s]
78%|███████▊ | 39/50 [00:29<00:07, 1.48it/s]
80%|████████ | 40/50 [00:29<00:06, 1.47it/s]
82%|████████▏ | 41/50 [00:30<00:06, 1.47it/s]
84%|████████▍ | 42/50 [00:31<00:05, 1.47it/s]
86%|████████▌ | 43/50 [00:31<00:04, 1.47it/s]
88%|████████▊ | 44/50 [00:32<00:04, 1.47it/s]
90%|█████████ | 45/50 [00:33<00:03, 1.46it/s]
92%|█████████▏| 46/50 [00:33<00:02, 1.46it/s]
94%|█████████▍| 47/50 [00:34<00:02, 1.46it/s]
96%|█████████▌| 48/50 [00:35<00:01, 1.45it/s]
98%|█████████▊| 49/50 [00:35<00:00, 1.45it/s]
100%|██████████| 50/50 [00:36<00:00, 1.45it/s]
100%|██████████| 50/50 [00:36<00:00, 1.36it/s]