Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
yuni-eng /controlnet-sdxl:0bdd2d10
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run yuni-eng/controlnet-sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"yuni-eng/controlnet-sdxl:0bdd2d10541b2210ebd284aaec263a20c855e59c7e1a2d905063ed717501b5ef",
{
input: {
seed: 9465,
image: "https://replicate.delivery/pbxt/JsFpilrSx3ulOeVYX91Nw3rfofoRnNL7QRF9t2v3US9SOBMw/kungfupanda.png",
width: 768,
height: 768,
prompt: "a realistic photo ",
num_outputs: 1,
guidance_scale: 7.5,
negative_prompt: "poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face, blurry, draft, grainy",
num_inference_steps: 100
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run yuni-eng/controlnet-sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"yuni-eng/controlnet-sdxl:0bdd2d10541b2210ebd284aaec263a20c855e59c7e1a2d905063ed717501b5ef",
input={
"seed": 9465,
"image": "https://replicate.delivery/pbxt/JsFpilrSx3ulOeVYX91Nw3rfofoRnNL7QRF9t2v3US9SOBMw/kungfupanda.png",
"width": 768,
"height": 768,
"prompt": "a realistic photo ",
"num_outputs": 1,
"guidance_scale": 7.5,
"negative_prompt": "poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face, blurry, draft, grainy",
"num_inference_steps": 100
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run yuni-eng/controlnet-sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "yuni-eng/controlnet-sdxl:0bdd2d10541b2210ebd284aaec263a20c855e59c7e1a2d905063ed717501b5ef",
"input": {
"seed": 9465,
"image": "https://replicate.delivery/pbxt/JsFpilrSx3ulOeVYX91Nw3rfofoRnNL7QRF9t2v3US9SOBMw/kungfupanda.png",
"width": 768,
"height": 768,
"prompt": "a realistic photo ",
"num_outputs": 1,
"guidance_scale": 7.5,
"negative_prompt": "poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face, blurry, draft, grainy",
"num_inference_steps": 100
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-11-14T06:33:22.214749Z",
"created_at": "2023-11-14T06:32:49.835943Z",
"data_removed": false,
"error": null,
"id": "nswepbtbudf2znjbi6gthixv7u",
"input": {
"seed": 9465,
"image": "https://replicate.delivery/pbxt/JsFpilrSx3ulOeVYX91Nw3rfofoRnNL7QRF9t2v3US9SOBMw/kungfupanda.png",
"width": 768,
"height": 768,
"prompt": "a realistic photo ",
"num_outputs": 1,
"guidance_scale": 7.5,
"negative_prompt": "poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face, blurry, draft, grainy",
"num_inference_steps": 100
},
"logs": "Using seed: 9465\n 0%| | 0/100 [00:00<?, ?it/s]\n 1%| | 1/100 [00:00<00:29, 3.36it/s]\n 2%|▏ | 2/100 [00:00<00:29, 3.36it/s]\n 3%|▎ | 3/100 [00:00<00:28, 3.36it/s]\n 4%|▍ | 4/100 [00:01<00:28, 3.36it/s]\n 5%|▌ | 5/100 [00:01<00:28, 3.36it/s]\n 6%|▌ | 6/100 [00:01<00:28, 3.36it/s]\n 7%|▋ | 7/100 [00:02<00:27, 3.36it/s]\n 8%|▊ | 8/100 [00:02<00:27, 3.35it/s]\n 9%|▉ | 9/100 [00:02<00:27, 3.35it/s]\n 10%|█ | 10/100 [00:02<00:26, 3.35it/s]\n 11%|█ | 11/100 [00:03<00:26, 3.35it/s]\n 12%|█▏ | 12/100 [00:03<00:26, 3.35it/s]\n 13%|█▎ | 13/100 [00:03<00:25, 3.35it/s]\n 14%|█▍ | 14/100 [00:04<00:25, 3.35it/s]\n 15%|█▌ | 15/100 [00:04<00:25, 3.35it/s]\n 16%|█▌ | 16/100 [00:04<00:25, 3.35it/s]\n 17%|█▋ | 17/100 [00:05<00:24, 3.35it/s]\n 18%|█▊ | 18/100 [00:05<00:24, 3.35it/s]\n 19%|█▉ | 19/100 [00:05<00:24, 3.34it/s]\n 20%|██ | 20/100 [00:05<00:23, 3.34it/s]\n 21%|██ | 21/100 [00:06<00:23, 3.34it/s]\n 22%|██▏ | 22/100 [00:06<00:23, 3.34it/s]\n 23%|██▎ | 23/100 [00:06<00:23, 3.34it/s]\n 24%|██▍ | 24/100 [00:07<00:22, 3.34it/s]\n 25%|██▌ | 25/100 [00:07<00:22, 3.34it/s]\n 26%|██▌ | 26/100 [00:07<00:22, 3.34it/s]\n 27%|██▋ | 27/100 [00:08<00:21, 3.34it/s]\n 28%|██▊ | 28/100 [00:08<00:21, 3.34it/s]\n 29%|██▉ | 29/100 [00:08<00:21, 3.34it/s]\n 30%|███ | 30/100 [00:08<00:20, 3.34it/s]\n 31%|███ | 31/100 [00:09<00:20, 3.34it/s]\n 32%|███▏ | 32/100 [00:09<00:20, 3.34it/s]\n 33%|███▎ | 33/100 [00:09<00:20, 3.34it/s]\n 34%|███▍ | 34/100 [00:10<00:19, 3.34it/s]\n 35%|███▌ | 35/100 [00:10<00:19, 3.33it/s]\n 36%|███▌ | 36/100 [00:10<00:19, 3.33it/s]\n 37%|███▋ | 37/100 [00:11<00:18, 3.33it/s]\n 38%|███▊ | 38/100 [00:11<00:18, 3.33it/s]\n 39%|███▉ | 39/100 [00:11<00:18, 3.33it/s]\n 40%|████ | 40/100 [00:11<00:18, 3.33it/s]\n 41%|████ | 41/100 [00:12<00:17, 3.33it/s]\n 42%|████▏ | 42/100 [00:12<00:17, 3.33it/s]\n 43%|████▎ | 43/100 [00:12<00:17, 3.33it/s]\n 44%|████▍ | 44/100 [00:13<00:16, 3.33it/s]\n 45%|████▌ | 45/100 [00:13<00:16, 3.33it/s]\n 46%|████▌ | 46/100 [00:13<00:16, 3.33it/s]\n 47%|████▋ | 47/100 [00:14<00:15, 3.33it/s]\n 48%|████▊ | 48/100 [00:14<00:15, 3.33it/s]\n 49%|████▉ | 49/100 [00:14<00:15, 3.33it/s]\n 50%|█████ | 50/100 [00:14<00:15, 3.33it/s]\n 51%|█████ | 51/100 [00:15<00:14, 3.33it/s]\n 52%|█████▏ | 52/100 [00:15<00:14, 3.33it/s]\n 53%|█████▎ | 53/100 [00:15<00:14, 3.33it/s]\n 54%|█████▍ | 54/100 [00:16<00:13, 3.33it/s]\n 55%|█████▌ | 55/100 [00:16<00:13, 3.33it/s]\n 56%|█████▌ | 56/100 [00:16<00:13, 3.33it/s]\n 57%|█████▋ | 57/100 [00:17<00:12, 3.33it/s]\n 58%|█████▊ | 58/100 [00:17<00:12, 3.33it/s]\n 59%|█████▉ | 59/100 [00:17<00:12, 3.33it/s]\n 60%|██████ | 60/100 [00:17<00:11, 3.33it/s]\n 61%|██████ | 61/100 [00:18<00:11, 3.33it/s]\n 62%|██████▏ | 62/100 [00:18<00:11, 3.34it/s]\n 63%|██████▎ | 63/100 [00:18<00:11, 3.34it/s]\n 64%|██████▍ | 64/100 [00:19<00:10, 3.33it/s]\n 65%|██████▌ | 65/100 [00:19<00:10, 3.33it/s]\n 66%|██████▌ | 66/100 [00:19<00:10, 3.33it/s]\n 67%|██████▋ | 67/100 [00:20<00:09, 3.33it/s]\n 68%|██████▊ | 68/100 [00:20<00:09, 3.33it/s]\n 69%|██████▉ | 69/100 [00:20<00:09, 3.33it/s]\n 70%|███████ | 70/100 [00:20<00:08, 3.34it/s]\n 71%|███████ | 71/100 [00:21<00:08, 3.33it/s]\n 72%|███████▏ | 72/100 [00:21<00:08, 3.33it/s]\n 73%|███████▎ | 73/100 [00:21<00:08, 3.33it/s]\n 74%|███████▍ | 74/100 [00:22<00:07, 3.33it/s]\n 75%|███████▌ | 75/100 [00:22<00:07, 3.33it/s]\n 76%|███████▌ | 76/100 [00:22<00:07, 3.33it/s]\n 77%|███████▋ | 77/100 [00:23<00:06, 3.33it/s]\n 78%|███████▊ | 78/100 [00:23<00:06, 3.33it/s]\n 79%|███████▉ | 79/100 [00:23<00:06, 3.33it/s]\n 80%|████████ | 80/100 [00:23<00:06, 3.33it/s]\n 81%|████████ | 81/100 [00:24<00:05, 3.33it/s]\n 82%|████████▏ | 82/100 [00:24<00:05, 3.33it/s]\n 83%|████████▎ | 83/100 [00:24<00:05, 3.33it/s]\n 84%|████████▍ | 84/100 [00:25<00:04, 3.33it/s]\n 85%|████████▌ | 85/100 [00:25<00:04, 3.33it/s]\n 86%|████████▌ | 86/100 [00:25<00:04, 3.33it/s]\n 87%|████████▋ | 87/100 [00:26<00:03, 3.33it/s]\n 88%|████████▊ | 88/100 [00:26<00:03, 3.33it/s]\n 89%|████████▉ | 89/100 [00:26<00:03, 3.33it/s]\n 90%|█████████ | 90/100 [00:26<00:03, 3.33it/s]\n 91%|█████████ | 91/100 [00:27<00:02, 3.33it/s]\n 92%|█████████▏| 92/100 [00:27<00:02, 3.33it/s]\n 93%|█████████▎| 93/100 [00:27<00:02, 3.33it/s]\n 94%|█████████▍| 94/100 [00:28<00:01, 3.32it/s]\n 95%|█████████▌| 95/100 [00:28<00:01, 3.32it/s]\n 96%|█████████▌| 96/100 [00:28<00:01, 3.32it/s]\n 97%|█████████▋| 97/100 [00:29<00:00, 3.32it/s]\n 98%|█████████▊| 98/100 [00:29<00:00, 3.32it/s]\n 99%|█████████▉| 99/100 [00:29<00:00, 3.32it/s]\n100%|██████████| 100/100 [00:29<00:00, 3.32it/s]\n100%|██████████| 100/100 [00:29<00:00, 3.33it/s]\nPrediction complete",
"metrics": {
"predict_time": 32.393994,
"total_time": 32.378806
},
"output": [
"https://replicate.delivery/pbxt/I2qbBAinaQ6OKRJ8M3Mdd73S4UxEPKWHFJocunwLTHTsGDeIA/out-0.png"
],
"started_at": "2023-11-14T06:32:49.820755Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/nswepbtbudf2znjbi6gthixv7u",
"cancel": "https://api.replicate.com/v1/predictions/nswepbtbudf2znjbi6gthixv7u/cancel"
},
"version": "0bdd2d10541b2210ebd284aaec263a20c855e59c7e1a2d905063ed717501b5ef"
}
Using seed: 9465
0%| | 0/100 [00:00<?, ?it/s]
1%| | 1/100 [00:00<00:29, 3.36it/s]
2%|▏ | 2/100 [00:00<00:29, 3.36it/s]
3%|▎ | 3/100 [00:00<00:28, 3.36it/s]
4%|▍ | 4/100 [00:01<00:28, 3.36it/s]
5%|▌ | 5/100 [00:01<00:28, 3.36it/s]
6%|▌ | 6/100 [00:01<00:28, 3.36it/s]
7%|▋ | 7/100 [00:02<00:27, 3.36it/s]
8%|▊ | 8/100 [00:02<00:27, 3.35it/s]
9%|▉ | 9/100 [00:02<00:27, 3.35it/s]
10%|█ | 10/100 [00:02<00:26, 3.35it/s]
11%|█ | 11/100 [00:03<00:26, 3.35it/s]
12%|█▏ | 12/100 [00:03<00:26, 3.35it/s]
13%|█▎ | 13/100 [00:03<00:25, 3.35it/s]
14%|█▍ | 14/100 [00:04<00:25, 3.35it/s]
15%|█▌ | 15/100 [00:04<00:25, 3.35it/s]
16%|█▌ | 16/100 [00:04<00:25, 3.35it/s]
17%|█▋ | 17/100 [00:05<00:24, 3.35it/s]
18%|█▊ | 18/100 [00:05<00:24, 3.35it/s]
19%|█▉ | 19/100 [00:05<00:24, 3.34it/s]
20%|██ | 20/100 [00:05<00:23, 3.34it/s]
21%|██ | 21/100 [00:06<00:23, 3.34it/s]
22%|██▏ | 22/100 [00:06<00:23, 3.34it/s]
23%|██▎ | 23/100 [00:06<00:23, 3.34it/s]
24%|██▍ | 24/100 [00:07<00:22, 3.34it/s]
25%|██▌ | 25/100 [00:07<00:22, 3.34it/s]
26%|██▌ | 26/100 [00:07<00:22, 3.34it/s]
27%|██▋ | 27/100 [00:08<00:21, 3.34it/s]
28%|██▊ | 28/100 [00:08<00:21, 3.34it/s]
29%|██▉ | 29/100 [00:08<00:21, 3.34it/s]
30%|███ | 30/100 [00:08<00:20, 3.34it/s]
31%|███ | 31/100 [00:09<00:20, 3.34it/s]
32%|███▏ | 32/100 [00:09<00:20, 3.34it/s]
33%|███▎ | 33/100 [00:09<00:20, 3.34it/s]
34%|███▍ | 34/100 [00:10<00:19, 3.34it/s]
35%|███▌ | 35/100 [00:10<00:19, 3.33it/s]
36%|███▌ | 36/100 [00:10<00:19, 3.33it/s]
37%|███▋ | 37/100 [00:11<00:18, 3.33it/s]
38%|███▊ | 38/100 [00:11<00:18, 3.33it/s]
39%|███▉ | 39/100 [00:11<00:18, 3.33it/s]
40%|████ | 40/100 [00:11<00:18, 3.33it/s]
41%|████ | 41/100 [00:12<00:17, 3.33it/s]
42%|████▏ | 42/100 [00:12<00:17, 3.33it/s]
43%|████▎ | 43/100 [00:12<00:17, 3.33it/s]
44%|████▍ | 44/100 [00:13<00:16, 3.33it/s]
45%|████▌ | 45/100 [00:13<00:16, 3.33it/s]
46%|████▌ | 46/100 [00:13<00:16, 3.33it/s]
47%|████▋ | 47/100 [00:14<00:15, 3.33it/s]
48%|████▊ | 48/100 [00:14<00:15, 3.33it/s]
49%|████▉ | 49/100 [00:14<00:15, 3.33it/s]
50%|█████ | 50/100 [00:14<00:15, 3.33it/s]
51%|█████ | 51/100 [00:15<00:14, 3.33it/s]
52%|█████▏ | 52/100 [00:15<00:14, 3.33it/s]
53%|█████▎ | 53/100 [00:15<00:14, 3.33it/s]
54%|█████▍ | 54/100 [00:16<00:13, 3.33it/s]
55%|█████▌ | 55/100 [00:16<00:13, 3.33it/s]
56%|█████▌ | 56/100 [00:16<00:13, 3.33it/s]
57%|█████▋ | 57/100 [00:17<00:12, 3.33it/s]
58%|█████▊ | 58/100 [00:17<00:12, 3.33it/s]
59%|█████▉ | 59/100 [00:17<00:12, 3.33it/s]
60%|██████ | 60/100 [00:17<00:11, 3.33it/s]
61%|██████ | 61/100 [00:18<00:11, 3.33it/s]
62%|██████▏ | 62/100 [00:18<00:11, 3.34it/s]
63%|██████▎ | 63/100 [00:18<00:11, 3.34it/s]
64%|██████▍ | 64/100 [00:19<00:10, 3.33it/s]
65%|██████▌ | 65/100 [00:19<00:10, 3.33it/s]
66%|██████▌ | 66/100 [00:19<00:10, 3.33it/s]
67%|██████▋ | 67/100 [00:20<00:09, 3.33it/s]
68%|██████▊ | 68/100 [00:20<00:09, 3.33it/s]
69%|██████▉ | 69/100 [00:20<00:09, 3.33it/s]
70%|███████ | 70/100 [00:20<00:08, 3.34it/s]
71%|███████ | 71/100 [00:21<00:08, 3.33it/s]
72%|███████▏ | 72/100 [00:21<00:08, 3.33it/s]
73%|███████▎ | 73/100 [00:21<00:08, 3.33it/s]
74%|███████▍ | 74/100 [00:22<00:07, 3.33it/s]
75%|███████▌ | 75/100 [00:22<00:07, 3.33it/s]
76%|███████▌ | 76/100 [00:22<00:07, 3.33it/s]
77%|███████▋ | 77/100 [00:23<00:06, 3.33it/s]
78%|███████▊ | 78/100 [00:23<00:06, 3.33it/s]
79%|███████▉ | 79/100 [00:23<00:06, 3.33it/s]
80%|████████ | 80/100 [00:23<00:06, 3.33it/s]
81%|████████ | 81/100 [00:24<00:05, 3.33it/s]
82%|████████▏ | 82/100 [00:24<00:05, 3.33it/s]
83%|████████▎ | 83/100 [00:24<00:05, 3.33it/s]
84%|████████▍ | 84/100 [00:25<00:04, 3.33it/s]
85%|████████▌ | 85/100 [00:25<00:04, 3.33it/s]
86%|████████▌ | 86/100 [00:25<00:04, 3.33it/s]
87%|████████▋ | 87/100 [00:26<00:03, 3.33it/s]
88%|████████▊ | 88/100 [00:26<00:03, 3.33it/s]
89%|████████▉ | 89/100 [00:26<00:03, 3.33it/s]
90%|█████████ | 90/100 [00:26<00:03, 3.33it/s]
91%|█████████ | 91/100 [00:27<00:02, 3.33it/s]
92%|█████████▏| 92/100 [00:27<00:02, 3.33it/s]
93%|█████████▎| 93/100 [00:27<00:02, 3.33it/s]
94%|█████████▍| 94/100 [00:28<00:01, 3.32it/s]
95%|█████████▌| 95/100 [00:28<00:01, 3.32it/s]
96%|█████████▌| 96/100 [00:28<00:01, 3.32it/s]
97%|█████████▋| 97/100 [00:29<00:00, 3.32it/s]
98%|█████████▊| 98/100 [00:29<00:00, 3.32it/s]
99%|█████████▉| 99/100 [00:29<00:00, 3.32it/s]
100%|██████████| 100/100 [00:29<00:00, 3.32it/s]
100%|██████████| 100/100 [00:29<00:00, 3.33it/s]
Prediction complete