You're looking at a specific version of this model. Jump to the model overview.
abdulali025 /andro-upscaler:a237f480
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run abdulali025/andro-upscaler using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"abdulali025/andro-upscaler:a237f48001f2030d88f943d82e92266a365e9384b4c05ec81ba430977f742f56",
{
input: {
prompt: "",
guidance_scale: 5,
upscale_factor: 4,
apply_cc_preset: false,
num_inference_steps: 28,
controlnet_conditioning_scale: 0.6
}
}
);
// To access the file URL:
console.log(output.url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run abdulali025/andro-upscaler using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"abdulali025/andro-upscaler:a237f48001f2030d88f943d82e92266a365e9384b4c05ec81ba430977f742f56",
input={
"prompt": "",
"guidance_scale": 5,
"upscale_factor": 4,
"apply_cc_preset": False,
"num_inference_steps": 28,
"controlnet_conditioning_scale": 0.6
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run abdulali025/andro-upscaler using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "a237f48001f2030d88f943d82e92266a365e9384b4c05ec81ba430977f742f56",
"input": {
"prompt": "",
"guidance_scale": 5,
"upscale_factor": 4,
"apply_cc_preset": false,
"num_inference_steps": 28,
"controlnet_conditioning_scale": 0.6
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/abdulali025/andro-upscaler@sha256:a237f48001f2030d88f943d82e92266a365e9384b4c05ec81ba430977f742f56 \
-i 'prompt=""' \
-i 'guidance_scale=5' \
-i 'upscale_factor=4' \
-i 'apply_cc_preset=false' \
-i 'num_inference_steps=28' \
-i 'controlnet_conditioning_scale=0.6'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/abdulali025/andro-upscaler@sha256:a237f48001f2030d88f943d82e92266a365e9384b4c05ec81ba430977f742f56
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "prompt": "", "guidance_scale": 5, "upscale_factor": 4, "apply_cc_preset": false, "num_inference_steps": 28, "controlnet_conditioning_scale": 0.6 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
No output yet! Press "Submit" to start a prediction.