Readme
Mamba-Chat
Mamba-Chat is the first chat language model based on mamba, which is a language model that leverages state-space model architecture. See the original repo and paper for more details.
Basic Usage
The API input arguments are as follows:
- message: The input message to the chatbot.
- message_history: The chat history as json string to condition the chatbot on.
- temperature: Adjusts randomness of outputs, greater than 1 is random and 0 is deterministic, 0.75 is a good starting value.
- top_p: Samples from the top p percentage of most likely tokens during text decoding, lower to ignore less likely tokens.
- top_k: Samples from the top k most likely tokens during text decoding, lower to ignore less likely tokens.
- repetition_penalty: Penalty for repeated words in generated text; 1 is no penalty, values greater than 1 discourage repetition, less than 1 encourage it.
- seed: The seed parameter for deterministic text generation. A specific seed can be used to reproduce results or left blank for random generation.
References
@article{mamba,
title={Mamba: Linear-Time Sequence Modeling with Selective State Spaces},
author={Gu, Albert and Dao, Tri},
journal={arXiv preprint arXiv:2312.00752},
year={2023}
}