aexol-studio
/
recommendation_hybrid
- Public
- 68 runs
Run aexol-studio/recommendation_hybrid with an API
Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.
Input schema
The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
data |
string
|
api:McAuley-Lab/Amazon-Reviews-2023 raw_review_Subscription_Boxes
|
HuggingFace Dataset API (api:McAuley-Lab/Amazon-Reviews-2023 raw_review_Magazine_Subscriptions) or path (path:data/reviews.csv)
|
user_id |
string
|
AHZKJ74LZJQMNNPISIOTL36TXDIA
|
User id
|
user_column |
string
|
user_id
|
Column storing the user ids
|
name_column |
string
|
title
|
Column storing the name of the items
|
text_column |
string
|
text
|
Column storing the reviews or descriptions of the items
|
item_column |
string
|
parent_asin
|
Column storing the items ids
|
top_n |
integer
|
10
|
Number of top recommendation to return
|
prediction |
string
(enum)
|
items
Options: items, users, both |
Prediction type: items (only items), users (only users), both (items and users)
|
pretrained |
boolean
|
False
|
Whether to use a pretrained models
|
show_metrics |
boolean
|
False
|
Whether to show the evaluation metrics
|
{
"type": "object",
"title": "Input",
"properties": {
"data": {
"type": "string",
"title": "Data",
"default": "api:McAuley-Lab/Amazon-Reviews-2023 raw_review_Subscription_Boxes",
"x-order": 0,
"description": "HuggingFace Dataset API (api:McAuley-Lab/Amazon-Reviews-2023 raw_review_Magazine_Subscriptions) or path (path:data/reviews.csv)"
},
"top_n": {
"type": "integer",
"title": "Top N",
"default": 10,
"x-order": 6,
"description": "Number of top recommendation to return"
},
"user_id": {
"type": "string",
"title": "User Id",
"default": "AHZKJ74LZJQMNNPISIOTL36TXDIA",
"x-order": 1,
"description": "User id"
},
"prediction": {
"enum": [
"items",
"users",
"both"
],
"type": "string",
"title": "prediction",
"description": "Prediction type: items (only items), users (only users), both (items and users)",
"default": "items",
"x-order": 7
},
"pretrained": {
"type": "boolean",
"title": "Pretrained",
"default": false,
"x-order": 8,
"description": "Whether to use a pretrained models"
},
"item_column": {
"type": "string",
"title": "Item Column",
"default": "parent_asin",
"x-order": 5,
"description": "Column storing the items ids"
},
"name_column": {
"type": "string",
"title": "Name Column",
"default": "title",
"x-order": 3,
"description": "Column storing the name of the items"
},
"text_column": {
"type": "string",
"title": "Text Column",
"default": "text",
"x-order": 4,
"description": "Column storing the reviews or descriptions of the items"
},
"user_column": {
"type": "string",
"title": "User Column",
"default": "user_id",
"x-order": 2,
"description": "Column storing the user ids"
},
"show_metrics": {
"type": "boolean",
"title": "Show Metrics",
"default": false,
"x-order": 9,
"description": "Whether to show the evaluation metrics"
}
}
}
Output schema
The shape of the response you’ll get when you run this model with an API.
Schema
{
"type": "string",
"title": "Output"
}