You're looking at a specific version of this model. Jump to the model overview.
afiaka87 /clip-guided-diffusion:a9650e4b
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run afiaka87/clip-guided-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"afiaka87/clip-guided-diffusion:a9650e4b263abd9e00d3e45bd991b32e458ba7df1b6413e98b88562440200260",
{
input: {
seed: 0,
respace: "250",
tv_scale: 50,
sat_scale: 0,
range_scale: 50,
use_magnitude: false,
use_augmentations: false,
clip_guidance_scale: 1000
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run afiaka87/clip-guided-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"afiaka87/clip-guided-diffusion:a9650e4b263abd9e00d3e45bd991b32e458ba7df1b6413e98b88562440200260",
input={
"seed": 0,
"respace": "250",
"tv_scale": 50,
"sat_scale": 0,
"range_scale": 50,
"use_magnitude": False,
"use_augmentations": False,
"clip_guidance_scale": 1000
}
)
# The afiaka87/clip-guided-diffusion model can stream output as it's running.
# The predict method returns an iterator, and you can iterate over that output.
for item in output:
# https://replicate.com/afiaka87/clip-guided-diffusion/api#output-schema
print(item)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run afiaka87/clip-guided-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "a9650e4b263abd9e00d3e45bd991b32e458ba7df1b6413e98b88562440200260",
"input": {
"seed": 0,
"respace": "250",
"tv_scale": 50,
"sat_scale": 0,
"range_scale": 50,
"use_magnitude": false,
"use_augmentations": false,
"clip_guidance_scale": 1000
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/afiaka87/clip-guided-diffusion@sha256:a9650e4b263abd9e00d3e45bd991b32e458ba7df1b6413e98b88562440200260 \
-i 'seed=0' \
-i 'respace="250"' \
-i 'tv_scale=50' \
-i 'sat_scale=0' \
-i 'range_scale=50' \
-i 'use_magnitude=false' \
-i 'use_augmentations=false' \
-i 'clip_guidance_scale=1000'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/afiaka87/clip-guided-diffusion@sha256:a9650e4b263abd9e00d3e45bd991b32e458ba7df1b6413e98b88562440200260
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 0, "respace": "250", "tv_scale": 50, "sat_scale": 0, "range_scale": 50, "use_magnitude": false, "use_augmentations": false, "clip_guidance_scale": 1000 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.080. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
No output yet! Press "Submit" to start a prediction.