Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run aisha-ai-official/sdxl-sim-v3-ultrares-b using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"aisha-ai-official/sdxl-sim-v3-ultrares-b:86a8bffc3c28a4bfdd56614cef93b46c8ca694aea7731ee1f9d4fed14e640d31",
{
input: {
vae: "default",
seed: -1,
model: "SDXL-Sim-v3-Ultrares-b",
steps: 50,
width: 1024,
height: 1024,
prompt: "a beautiful woman with dark-purple short hair and purple eyes on a street. She is wearing casual clothes with a hot cleavage. She is smiling when look to the viewer",
cfg_scale: 5,
clip_skip: 1,
pag_scale: 1,
scheduler: "Euler a",
batch_size: 1,
negative_prompt: "nsfw, naked",
guidance_rescale: 1,
prepend_preprompt: true
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run aisha-ai-official/sdxl-sim-v3-ultrares-b using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"aisha-ai-official/sdxl-sim-v3-ultrares-b:86a8bffc3c28a4bfdd56614cef93b46c8ca694aea7731ee1f9d4fed14e640d31",
input={
"vae": "default",
"seed": -1,
"model": "SDXL-Sim-v3-Ultrares-b",
"steps": 50,
"width": 1024,
"height": 1024,
"prompt": "a beautiful woman with dark-purple short hair and purple eyes on a street. She is wearing casual clothes with a hot cleavage. She is smiling when look to the viewer",
"cfg_scale": 5,
"clip_skip": 1,
"pag_scale": 1,
"scheduler": "Euler a",
"batch_size": 1,
"negative_prompt": "nsfw, naked",
"guidance_rescale": 1,
"prepend_preprompt": True
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run aisha-ai-official/sdxl-sim-v3-ultrares-b using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "aisha-ai-official/sdxl-sim-v3-ultrares-b:86a8bffc3c28a4bfdd56614cef93b46c8ca694aea7731ee1f9d4fed14e640d31",
"input": {
"vae": "default",
"seed": -1,
"model": "SDXL-Sim-v3-Ultrares-b",
"steps": 50,
"width": 1024,
"height": 1024,
"prompt": "a beautiful woman with dark-purple short hair and purple eyes on a street. She is wearing casual clothes with a hot cleavage. She is smiling when look to the viewer",
"cfg_scale": 5,
"clip_skip": 1,
"pag_scale": 1,
"scheduler": "Euler a",
"batch_size": 1,
"negative_prompt": "nsfw, naked",
"guidance_rescale": 1,
"prepend_preprompt": true
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/aisha-ai-official/sdxl-sim-v3-ultrares-b@sha256:86a8bffc3c28a4bfdd56614cef93b46c8ca694aea7731ee1f9d4fed14e640d31 \
-i 'vae="default"' \
-i 'seed=-1' \
-i 'model="SDXL-Sim-v3-Ultrares-b"' \
-i 'steps=50' \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="a beautiful woman with dark-purple short hair and purple eyes on a street. She is wearing casual clothes with a hot cleavage. She is smiling when look to the viewer"' \
-i 'cfg_scale=5' \
-i 'clip_skip=1' \
-i 'pag_scale=1' \
-i 'scheduler="Euler a"' \
-i 'batch_size=1' \
-i 'negative_prompt="nsfw, naked"' \
-i 'guidance_rescale=1' \
-i 'prepend_preprompt=true'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/aisha-ai-official/sdxl-sim-v3-ultrares-b@sha256:86a8bffc3c28a4bfdd56614cef93b46c8ca694aea7731ee1f9d4fed14e640d31
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "vae": "default", "seed": -1, "model": "SDXL-Sim-v3-Ultrares-b", "steps": 50, "width": 1024, "height": 1024, "prompt": "a beautiful woman with dark-purple short hair and purple eyes on a street. She is wearing casual clothes with a hot cleavage. She is smiling when look to the viewer", "cfg_scale": 5, "clip_skip": 1, "pag_scale": 1, "scheduler": "Euler a", "batch_size": 1, "negative_prompt": "nsfw, naked", "guidance_rescale": 1, "prepend_preprompt": true } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2025-02-27T01:24:20.121928Z",
"created_at": "2025-02-27T01:24:10.911000Z",
"data_removed": false,
"error": null,
"id": "he3hy58a3xrma0cn8m0svrnm7m",
"input": {
"vae": "default",
"seed": -1,
"model": "SDXL-Sim-v3-Ultrares-b",
"steps": 50,
"width": 1024,
"height": 1024,
"prompt": "a beautiful woman with dark-purple short hair and purple eyes on a street. She is wearing casual clothes with a hot cleavage. She is smiling when look to the viewer",
"cfg_scale": 5,
"clip_skip": 1,
"pag_scale": 1,
"scheduler": "Euler a",
"batch_size": 1,
"negative_prompt": "nsfw, naked",
"guidance_rescale": 1,
"prepend_preprompt": true
},
"logs": "Using text to image mode.\nUsing seed: 615852690\n 0%| | 0/50 [00:00<?, ?it/s]\n 4%|▍ | 2/50 [00:00<00:05, 9.09it/s]\n 6%|▌ | 3/50 [00:00<00:05, 7.83it/s]\n 8%|▊ | 4/50 [00:00<00:06, 7.33it/s]\n 10%|█ | 5/50 [00:00<00:06, 7.06it/s]\n 12%|█▏ | 6/50 [00:00<00:06, 6.91it/s]\n 14%|█▍ | 7/50 [00:00<00:06, 6.81it/s]\n 16%|█▌ | 8/50 [00:01<00:06, 6.74it/s]\n 18%|█▊ | 9/50 [00:01<00:06, 6.69it/s]\n 20%|██ | 10/50 [00:01<00:06, 6.66it/s]\n 22%|██▏ | 11/50 [00:01<00:05, 6.63it/s]\n 24%|██▍ | 12/50 [00:01<00:05, 6.61it/s]\n 26%|██▌ | 13/50 [00:01<00:05, 6.60it/s]\n 28%|██▊ | 14/50 [00:02<00:05, 6.58it/s]\n 30%|███ | 15/50 [00:02<00:05, 6.58it/s]\n 32%|███▏ | 16/50 [00:02<00:05, 6.57it/s]\n 34%|███▍ | 17/50 [00:02<00:05, 6.57it/s]\n 36%|███▌ | 18/50 [00:02<00:04, 6.56it/s]\n 38%|███▊ | 19/50 [00:02<00:04, 6.55it/s]\n 40%|████ | 20/50 [00:02<00:04, 6.56it/s]\n 42%|████▏ | 21/50 [00:03<00:04, 6.55it/s]\n 44%|████▍ | 22/50 [00:03<00:04, 6.55it/s]\n 46%|████▌ | 23/50 [00:03<00:04, 6.55it/s]\n 48%|████▊ | 24/50 [00:03<00:03, 6.54it/s]\n 50%|█████ | 25/50 [00:03<00:03, 6.55it/s]\n 52%|█████▏ | 26/50 [00:03<00:03, 6.54it/s]\n 54%|█████▍ | 27/50 [00:04<00:03, 6.53it/s]\n 56%|█████▌ | 28/50 [00:04<00:03, 6.54it/s]\n 58%|█████▊ | 29/50 [00:04<00:03, 6.54it/s]\n 60%|██████ | 30/50 [00:04<00:03, 6.54it/s]\n 62%|██████▏ | 31/50 [00:04<00:02, 6.54it/s]\n 64%|██████▍ | 32/50 [00:04<00:02, 6.53it/s]\n 66%|██████▌ | 33/50 [00:04<00:02, 6.52it/s]\n 68%|██████▊ | 34/50 [00:05<00:02, 6.53it/s]\n 70%|███████ | 35/50 [00:05<00:02, 6.52it/s]\n 72%|███████▏ | 36/50 [00:05<00:02, 6.51it/s]\n 74%|███████▍ | 37/50 [00:05<00:01, 6.51it/s]\n 76%|███████▌ | 38/50 [00:05<00:01, 6.51it/s]\n 78%|███████▊ | 39/50 [00:05<00:01, 6.51it/s]\n 80%|████████ | 40/50 [00:06<00:01, 6.51it/s]\n 82%|████████▏ | 41/50 [00:06<00:01, 6.52it/s]\n 84%|████████▍ | 42/50 [00:06<00:01, 6.51it/s]\n 86%|████████▌ | 43/50 [00:06<00:01, 6.51it/s]\n 88%|████████▊ | 44/50 [00:06<00:00, 6.51it/s]\n 90%|█████████ | 45/50 [00:06<00:00, 6.50it/s]\n 92%|█████████▏| 46/50 [00:06<00:00, 6.51it/s]\n 94%|█████████▍| 47/50 [00:07<00:00, 6.50it/s]\n 96%|█████████▌| 48/50 [00:07<00:00, 6.50it/s]\n 98%|█████████▊| 49/50 [00:07<00:00, 6.49it/s]\n100%|██████████| 50/50 [00:07<00:00, 6.49it/s]\n100%|██████████| 50/50 [00:07<00:00, 6.61it/s]",
"metrics": {
"predict_time": 9.203185678,
"total_time": 9.210928
},
"output": [
"https://replicate.delivery/xezq/twewu43AZA1nMayFkHFDNyM1cerGjmITuwB5peyiI7XIGumoA/0.png"
],
"started_at": "2025-02-27T01:24:10.918743Z",
"status": "succeeded",
"urls": {
"stream": "https://stream.replicate.com/v1/files/bcwr-dx4ftxw72a72c6fmab3yrjub5q2okcptkljyv2g5j75anffrvgja",
"get": "https://api.replicate.com/v1/predictions/he3hy58a3xrma0cn8m0svrnm7m",
"cancel": "https://api.replicate.com/v1/predictions/he3hy58a3xrma0cn8m0svrnm7m/cancel"
},
"version": "86a8bffc3c28a4bfdd56614cef93b46c8ca694aea7731ee1f9d4fed14e640d31"
}
Using text to image mode.
Using seed: 615852690
0%| | 0/50 [00:00<?, ?it/s]
4%|▍ | 2/50 [00:00<00:05, 9.09it/s]
6%|▌ | 3/50 [00:00<00:05, 7.83it/s]
8%|▊ | 4/50 [00:00<00:06, 7.33it/s]
10%|█ | 5/50 [00:00<00:06, 7.06it/s]
12%|█▏ | 6/50 [00:00<00:06, 6.91it/s]
14%|█▍ | 7/50 [00:00<00:06, 6.81it/s]
16%|█▌ | 8/50 [00:01<00:06, 6.74it/s]
18%|█▊ | 9/50 [00:01<00:06, 6.69it/s]
20%|██ | 10/50 [00:01<00:06, 6.66it/s]
22%|██▏ | 11/50 [00:01<00:05, 6.63it/s]
24%|██▍ | 12/50 [00:01<00:05, 6.61it/s]
26%|██▌ | 13/50 [00:01<00:05, 6.60it/s]
28%|██▊ | 14/50 [00:02<00:05, 6.58it/s]
30%|███ | 15/50 [00:02<00:05, 6.58it/s]
32%|███▏ | 16/50 [00:02<00:05, 6.57it/s]
34%|███▍ | 17/50 [00:02<00:05, 6.57it/s]
36%|███▌ | 18/50 [00:02<00:04, 6.56it/s]
38%|███▊ | 19/50 [00:02<00:04, 6.55it/s]
40%|████ | 20/50 [00:02<00:04, 6.56it/s]
42%|████▏ | 21/50 [00:03<00:04, 6.55it/s]
44%|████▍ | 22/50 [00:03<00:04, 6.55it/s]
46%|████▌ | 23/50 [00:03<00:04, 6.55it/s]
48%|████▊ | 24/50 [00:03<00:03, 6.54it/s]
50%|█████ | 25/50 [00:03<00:03, 6.55it/s]
52%|█████▏ | 26/50 [00:03<00:03, 6.54it/s]
54%|█████▍ | 27/50 [00:04<00:03, 6.53it/s]
56%|█████▌ | 28/50 [00:04<00:03, 6.54it/s]
58%|█████▊ | 29/50 [00:04<00:03, 6.54it/s]
60%|██████ | 30/50 [00:04<00:03, 6.54it/s]
62%|██████▏ | 31/50 [00:04<00:02, 6.54it/s]
64%|██████▍ | 32/50 [00:04<00:02, 6.53it/s]
66%|██████▌ | 33/50 [00:04<00:02, 6.52it/s]
68%|██████▊ | 34/50 [00:05<00:02, 6.53it/s]
70%|███████ | 35/50 [00:05<00:02, 6.52it/s]
72%|███████▏ | 36/50 [00:05<00:02, 6.51it/s]
74%|███████▍ | 37/50 [00:05<00:01, 6.51it/s]
76%|███████▌ | 38/50 [00:05<00:01, 6.51it/s]
78%|███████▊ | 39/50 [00:05<00:01, 6.51it/s]
80%|████████ | 40/50 [00:06<00:01, 6.51it/s]
82%|████████▏ | 41/50 [00:06<00:01, 6.52it/s]
84%|████████▍ | 42/50 [00:06<00:01, 6.51it/s]
86%|████████▌ | 43/50 [00:06<00:01, 6.51it/s]
88%|████████▊ | 44/50 [00:06<00:00, 6.51it/s]
90%|█████████ | 45/50 [00:06<00:00, 6.50it/s]
92%|█████████▏| 46/50 [00:06<00:00, 6.51it/s]
94%|█████████▍| 47/50 [00:07<00:00, 6.50it/s]
96%|█████████▌| 48/50 [00:07<00:00, 6.50it/s]
98%|█████████▊| 49/50 [00:07<00:00, 6.49it/s]
100%|██████████| 50/50 [00:07<00:00, 6.49it/s]
100%|██████████| 50/50 [00:07<00:00, 6.61it/s]
This model runs on Nvidia L40S GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Using text to image mode.
Using seed: 615852690
0%| | 0/50 [00:00<?, ?it/s]
4%|▍ | 2/50 [00:00<00:05, 9.09it/s]
6%|▌ | 3/50 [00:00<00:05, 7.83it/s]
8%|▊ | 4/50 [00:00<00:06, 7.33it/s]
10%|█ | 5/50 [00:00<00:06, 7.06it/s]
12%|█▏ | 6/50 [00:00<00:06, 6.91it/s]
14%|█▍ | 7/50 [00:00<00:06, 6.81it/s]
16%|█▌ | 8/50 [00:01<00:06, 6.74it/s]
18%|█▊ | 9/50 [00:01<00:06, 6.69it/s]
20%|██ | 10/50 [00:01<00:06, 6.66it/s]
22%|██▏ | 11/50 [00:01<00:05, 6.63it/s]
24%|██▍ | 12/50 [00:01<00:05, 6.61it/s]
26%|██▌ | 13/50 [00:01<00:05, 6.60it/s]
28%|██▊ | 14/50 [00:02<00:05, 6.58it/s]
30%|███ | 15/50 [00:02<00:05, 6.58it/s]
32%|███▏ | 16/50 [00:02<00:05, 6.57it/s]
34%|███▍ | 17/50 [00:02<00:05, 6.57it/s]
36%|███▌ | 18/50 [00:02<00:04, 6.56it/s]
38%|███▊ | 19/50 [00:02<00:04, 6.55it/s]
40%|████ | 20/50 [00:02<00:04, 6.56it/s]
42%|████▏ | 21/50 [00:03<00:04, 6.55it/s]
44%|████▍ | 22/50 [00:03<00:04, 6.55it/s]
46%|████▌ | 23/50 [00:03<00:04, 6.55it/s]
48%|████▊ | 24/50 [00:03<00:03, 6.54it/s]
50%|█████ | 25/50 [00:03<00:03, 6.55it/s]
52%|█████▏ | 26/50 [00:03<00:03, 6.54it/s]
54%|█████▍ | 27/50 [00:04<00:03, 6.53it/s]
56%|█████▌ | 28/50 [00:04<00:03, 6.54it/s]
58%|█████▊ | 29/50 [00:04<00:03, 6.54it/s]
60%|██████ | 30/50 [00:04<00:03, 6.54it/s]
62%|██████▏ | 31/50 [00:04<00:02, 6.54it/s]
64%|██████▍ | 32/50 [00:04<00:02, 6.53it/s]
66%|██████▌ | 33/50 [00:04<00:02, 6.52it/s]
68%|██████▊ | 34/50 [00:05<00:02, 6.53it/s]
70%|███████ | 35/50 [00:05<00:02, 6.52it/s]
72%|███████▏ | 36/50 [00:05<00:02, 6.51it/s]
74%|███████▍ | 37/50 [00:05<00:01, 6.51it/s]
76%|███████▌ | 38/50 [00:05<00:01, 6.51it/s]
78%|███████▊ | 39/50 [00:05<00:01, 6.51it/s]
80%|████████ | 40/50 [00:06<00:01, 6.51it/s]
82%|████████▏ | 41/50 [00:06<00:01, 6.52it/s]
84%|████████▍ | 42/50 [00:06<00:01, 6.51it/s]
86%|████████▌ | 43/50 [00:06<00:01, 6.51it/s]
88%|████████▊ | 44/50 [00:06<00:00, 6.51it/s]
90%|█████████ | 45/50 [00:06<00:00, 6.50it/s]
92%|█████████▏| 46/50 [00:06<00:00, 6.51it/s]
94%|█████████▍| 47/50 [00:07<00:00, 6.50it/s]
96%|█████████▌| 48/50 [00:07<00:00, 6.50it/s]
98%|█████████▊| 49/50 [00:07<00:00, 6.49it/s]
100%|██████████| 50/50 [00:07<00:00, 6.49it/s]
100%|██████████| 50/50 [00:07<00:00, 6.61it/s]