andreasjansson / create-dynamic-system

  • Public
  • 58 runs
  • CPU

Input

*file
Preview
target1
*file
Preview
target2
integer
(minimum: 1)

Default: 20

integer

Default: 128

integer

Default: 128

integer

Default: 1000

integer

Default: 100

integer

Default: 20

integer

Default: 4

integer

Default: 6

number

Default: 0.005

boolean

Default: true

integer

Default: 600

Output

code

class WaveInterferenceOscillator(DynamicSystem): """A dynamic system that generates oscillating patterns through wave interactions and non-linear feedback, with very few parameters.""" def __init__(self): super().__init__() # Use a small grid to reduce parameter count self.grid_size = 16 # Define only 3 channels (RGB) self.channels = 3 # Wave parameters (wavelength, direction, phase) self.wave_params = nn.Parameter(torch.rand(3, 4)) # Interaction parameters between channels self.interaction = nn.Parameter(0.2 * torch.randn(3, 3)) # Feedback strength and bias self.feedback = nn.Parameter(0.1 * torch.randn(3)) self.bias = nn.Parameter(0.1 * torch.randn(3)) # Non-linearity control self.activation = nn.Parameter(torch.ones(1) * 2.0) # Memory decay factor self.memory = nn.Parameter(torch.tensor([0.7])) # Core pattern - small 4x4 pattern that we'll tile for efficiency self.pattern_seed = nn.Parameter(0.1 * torch.randn(3, 4, 4)) # Reset state variables self.reset_state() def reset_state(self): # Initialize state by tiling the pattern seed self.state = self.pattern_seed.repeat(1, self.grid_size // 4, self.grid_size // 4) self.prev_state = self.state.clone() self.phase = torch.zeros(self.channels, device=self.pattern_seed.device) def spatial_filter(self, x): # Create simple spatial filtering with minimal parameters # This is much more parameter-efficient than a full Conv2d padded = torch.nn.functional.pad(x, (1, 1, 1, 1), mode='circular') # Apply blurring/diffusion using a 3x3 kernel neighbors = 0 neighbors += padded[:, :-2, 1:-1] # left neighbors += padded[:, 2:, 1:-1] # right neighbors += padded[:, 1:-1, :-2] # top neighbors += padded[:, 1:-1, 2:] # bottom return 0.1 * neighbors + 0.6 * x def step(self): # Update phase for wave effects self.phase = (self.phase + 0.1) % (2 * torch.pi) # Store previous state with memory decay self.prev_state = self.memory * self.prev_state + (1 - self.memory) * self.state # Generate wave influence at each point in the grid y_grid, x_grid = torch.meshgrid( torch.linspace(0, 1, self.grid_size, device=self.phase.device), torch.linspace(0, 1, self.grid_size, device=self.phase.device), indexing='ij' ) wave_effect = torch.zeros_like(self.state) for c in range(self.channels): # Different wave patterns for each channel wx, wy, freq, phase_offset = self.wave_params[c] wave = torch.sin( 2 * torch.pi * freq * (wx * x_grid + wy * y_grid) + self.phase[c] + phase_offset ) wave_effect[c] = 0.1 * wave # Calculate interactions between channels channel_interaction = torch.einsum('ij,jkl->ikl', self.interaction, self.state) # Add feedback from previous state feedback_term = self.feedback.view(-1, 1, 1) * self.prev_state # Update state with diffusion, interactions and waves diffused = self.spatial_filter(self.state) state_update = ( diffused + channel_interaction + wave_effect + feedback_term + self.bias.view(-1, 1, 1) ) # Apply non-linear activation with learnable steepness self.state = torch.tanh(self.activation * state_update) def get_image(self, width, height): # Ensure values are in [0,1] range img = (self.state + 1) * 0.5 img = torch.clamp(img, 0, 1) # Resize to requested dimensions if self.grid_size != height or self.grid_size != width: img = torch.nn.functional.interpolate(img.unsqueeze(0), size=(height, width), mode='bilinear', align_corners=False).squeeze(0) # Return in [H, W, C] format return img.permute(1, 2, 0)

critique

NO, this dynamic system needs significant improvement. Let me provide a detailed critique: 1. Regarding vividness and color: - The generated images do have colorful elements, but they lack crispness and definition - The colors appear blurred and smeared together without clear boundaries - The vibrance is there, but without structure to make it visually meaningful 2. Regarding similarity to targets: - Target 1 shows a unicorn with rainbow elements and distinct features, but the odd cycles (1, 3, 5) show only vague pink/purple/blue color blobs without any recognizable unicorn shape - Target 2 shows a rainbow/prismatic landscape with green base, but even cycles (2, 4, 6) only capture the general blue/green/yellow color palette without the structural elements - The "Distance to Targets Over Steps" graph confirms this - there's cyclical behavior but the loss never gets particularly low for either target 3. Overall assessment: - The system does successfully oscillate between two different states - The loss graph shows the training converged, which is positive - However, the quality of reproduction is extremely poor - these are at best abstract color fields loosely inspired by the targets - The system captures only the broadest color distributions but none of the structural elements or details This appears to be a very simple dynamic system that can capture basic color patterns but lacks the complexity needed to generate the detailed features in the target images. You would need a more sophisticated model with higher dimensional state representation to capture the detailed structures in the targets.

animation

model_state

tmp14uty2nk.pt

cycle_images

outputoutputoutputoutputoutputoutput

visualization

visualization

optimizer_state

tmpgkm07hl4.pt

historical_losses

[ 0.12666499614715576, 0.1411130577325821, 0.123764768242836, 0.12161019444465637, 0.1199849545955658, 0.11803129315376282, 0.12170319259166718, 0.08971667289733887, 0.07579156756401062, 0.07163667678833008, 0.06596732139587402, 0.06747419387102127, 0.07704654335975647, 0.08119787275791168, 0.07865089178085327, 0.0716547742486, 0.06249312311410904, 0.05517628788948059, 0.050741538405418396, 0.05181753635406494, 0.0541224330663681, 0.053816720843315125, 0.050614431500434875, 0.046315476298332214, 0.044002875685691833, 0.043613284826278687, 0.043761759996414185, 0.04432697594165802, 0.043627262115478516, 0.04150910675525665, 0.03962543606758118, 0.034852758049964905, 0.037527114152908325, 0.048876985907554626, 0.043850257992744446, 0.030366376042366028, 0.031566694378852844, 0.034226834774017334, 0.03305734694004059, 0.02728457748889923, 0.028389722108840942, 0.03817082941532135, 0.032919347286224365, 0.022231489419937134, 0.028281718492507935, 0.032507359981536865, 0.030147269368171692, 0.022934123873710632, 0.023630082607269287, 0.030751585960388184, 0.027689337730407715, 0.02019841969013214, 0.0202159583568573, 0.02298635244369507, 0.02090558409690857, 0.01669439673423767, 0.0171116441488266, 0.018655985593795776, 0.016467034816741943, 0.015396833419799805, 0.01675310730934143, 0.015454709529876709, 0.013570040464401245, 0.01494482159614563, 0.014364928007125854, 0.012387663125991821, 0.013045325875282288, 0.012881994247436523, 0.01234610378742218, 0.012619942426681519, 0.011992484331130981, 0.012237876653671265, 0.011895895004272461, 0.012207940220832825, 0.011885866522789001, 0.012137085199356079, 0.011699125170707703, 0.011741980910301208, 0.01131071150302887, 0.011270135641098022, 0.010994642972946167, 0.01097753643989563, 0.010660424828529358, 0.010557636618614197, 0.010688155889511108, 0.012033790349960327, 0.011458486318588257, 0.010353267192840576, 0.010810792446136475, 0.00992538034915924, 0.010432153940200806, 0.009609267115592957, 0.010019659996032715, 0.009469091892242432, 0.009812414646148682, 0.009259253740310669, 0.00939837098121643, 0.00896066427230835, 0.009160116314888, 0.00875827670097351, 0.008872762322425842, 0.008558511734008789, 0.008589208126068115, 0.008397072553634644, 0.008298933506011963, 0.008295997977256775, 0.008082389831542969, 0.00809238851070404, 0.007878541946411133, 0.007892206311225891, 0.007729098200798035, 0.007715895771980286, 0.007571294903755188, 0.007514134049415588, 0.007399439811706543, 0.007322832942008972, 0.007252246141433716, 0.007148802280426025, 0.007082164287567139, 0.006956368684768677, 0.006906464695930481, 0.006797507405281067, 0.006712168455123901, 0.006641000509262085, 0.006526842713356018, 0.006456315517425537, 0.006358355283737183, 0.0062650591135025024, 0.00619150698184967, 0.006087824702262878, 0.0060006678104400635, 0.005909234285354614, 0.005804404616355896, 0.005718886852264404, 0.00561976432800293, 0.005516871809959412, 0.005425944924354553, 0.005322560667991638, 0.005221635103225708, 0.0051302313804626465, 0.00503009557723999, 0.004930362105369568, 0.004839092493057251, 0.004743173718452454, 0.004644930362701416, 0.004553809762001038, 0.0044628530740737915, 0.004367649555206299, 0.0042746663093566895, 0.004185006022453308, 0.004093140363693237, 0.003998681902885437, 0.0039060860872268677, 0.003815189003944397, 0.003722548484802246, 0.0036278367042541504, 0.003532230854034424, 0.0034371018409729004, 0.003342047333717346, 0.0032455772161483765, 0.0031473934650421143, 0.0030469000339508057, 0.0029447972774505615, 0.002840667963027954, 0.0027348995208740234, 0.002627149224281311, 0.0025181472301483154, 0.002408832311630249, 0.0023041367530822754, 0.0022199153900146484, 0.0021957606077194214, 0.0023967623710632324, 0.0026453733444213867, 0.001843094825744629, 0.0015596747398376465, 0.0016973167657852173, 0.002234905958175659, 0.0012674927711486816, 0.0010945051908493042, 0.0014987140893936157, 0.0014584064483642578, 0.0006192624568939209, 0.0005590915679931641, 0.0009069442749023438, 0.0004767179489135742, -0.00007209181785583496, -0.00021922588348388672, -0.00006866455078125, -0.000021919608116149902, -0.0006359219551086426, -0.0010325908660888672, -0.0011619031429290771, -0.0010530799627304077, -0.0006805956363677979, -0.0017021149396896362, -0.0018919557332992554, -0.001388639211654663, -0.0016346275806427002, -0.002360612154006958, -0.0026371628046035767, -0.002772510051727295, -0.0026842057704925537, -0.0017146021127700806, -0.003272324800491333, -0.0012204945087432861, -0.0035430043935775757, -0.0012421905994415283, -0.0033625811338424683, 0.00381644070148468, 0.006192848086357117, -0.002988100051879883, 0.004841849207878113, 0.01262025535106659, 0.0050936490297317505, -0.0034552067518234253, 0.0033809691667556763, 0.004214435815811157, -0.0029556751251220703, 0.0035092532634735107, 0.011759087443351746, 0.006071910262107849, -0.0038707107305526733, 0.006714120507240295, 0.017359107732772827, 0.012010455131530762, -0.0016583800315856934, 0.0017048418521881104, 0.012416794896125793, 0.009996339678764343, -0.0009480118751525879, -0.00016611814498901367, 0.007127478718757629, 0.00455041229724884, -0.0031211823225021362, 0.0024453401565551758, 0.010130614042282104, 0.006137490272521973, -0.0031899958848953247, 0.0027441680431365967, 0.012931540608406067, 0.011016562581062317, -0.00014188885688781738, -0.002969026565551758, 0.002528354525566101, 0.0003887265920639038, -0.0047904253005981445, 0.00007268786430358887, 0.002664223313331604, -0.0024736225605010986, -0.003890708088874817, -0.00155600905418396, -0.004323214292526245, -0.003085613250732422, -0.000897139310836792, -0.00467275083065033, -0.002632319927215576, 0.0005559176206588745, -0.003398701548576355, -0.0048342496156692505, -0.0030458271503448486, -0.005803778767585754, -0.002846077084541321, -0.0013127624988555908, -0.0054382383823394775, -0.0019684582948684692, 0.002314448356628418, -0.002019941806793213, -0.006306305527687073, -0.004303842782974243, -0.006114736199378967, -0.0037367790937423706, -0.00202295184135437, -0.0061646997928619385, -0.0028862804174423218, 0.0012230873107910156, -0.0031915605068206787, -0.0068527162075042725, -0.005191907286643982, -0.007178634405136108, -0.004971221089363098, -0.004834085702896118, -0.007623776793479919, -0.005311340093612671, -0.006711125373840332, -0.006489425897598267, -0.006048768758773804, -0.008025318384170532, -0.007048606872558594, -0.00828513503074646, -0.007799357175827026, -0.008228018879890442, -0.00861753523349762, -0.008546322584152222, -0.008371293544769287, -0.008825257420539856, -0.00902402400970459, -0.008927956223487854, -0.008821472525596619, -0.009214043617248535, -0.00945940613746643, -0.009475484490394592, -0.00942029058933258, -0.0094451904296875, -0.009738564491271973, -0.009973600506782532, -0.010048463940620422, -0.010042861104011536, -0.01008424162864685, -0.010246559977531433, -0.010386347770690918, -0.010462895035743713, -0.01048983633518219, -0.01050366461277008, -0.010550811886787415, -0.010652169585227966, -0.01077619194984436, -0.010885089635848999, -0.010949462652206421, -0.010981649160385132, -0.011017769575119019, -0.011089920997619629, -0.011187136173248291, -0.01128588616847992, -0.011363238096237183, -0.011418238282203674, -0.011469200253486633, -0.01153506338596344, -0.011611953377723694, -0.01168641448020935, -0.01174783706665039, -0.01180008053779602, -0.011854887008666992, -0.011916771531105042, -0.011979162693023682, -0.012033313512802124, -0.012080579996109009, -0.012129604816436768, -0.012183517217636108, -0.012237399816513062, -0.012285321950912476, -0.012328490614891052, -0.012372612953186035, -0.012419462203979492, -0.012465506792068481, -0.012507617473602295, -0.01254718005657196, -0.012587472796440125, -0.012629121541976929, -0.012670323252677917, -0.012709394097328186, -0.012746855616569519, -0.012784287333488464, -0.012822270393371582, -0.012860357761383057, -0.012897521257400513, -0.012933552265167236, -0.012968957424163818, -0.01300443708896637, -0.013040199875831604, -0.013075590133666992, -0.013110250234603882, -0.01314420998096466, -0.013178035616874695, -0.013212054967880249, -0.013245999813079834, -0.013279572129249573, -0.013312652707099915, -0.013345479965209961, -0.013378322124481201, -0.01341111958026886, -0.01344384253025055, -0.013476371765136719, -0.013508722186088562, -0.013541042804718018, -0.013573378324508667, -0.013605877757072449, -0.013638496398925781, -0.013671264052391052, -0.013704255223274231, -0.013737544417381287, -0.01377132534980774, -0.013805866241455078, -0.013841480016708374, -0.013878494501113892, -0.013917699456214905, -0.013959884643554688, -0.014005854725837708, -0.01405365765094757, -0.014096587896347046, -0.014140188694000244, -0.014189034700393677, -0.014228060841560364, -0.014270201325416565, -0.014310359954833984, -0.014342248439788818, -0.014381304383277893, -0.014413982629776001, -0.014453187584877014, -0.014485940337181091, -0.01452028751373291, -0.014551296830177307, -0.01458171010017395, -0.014609009027481079, -0.014629870653152466, -0.01464080810546875, -0.014629587531089783, -0.014576882123947144, -0.014427900314331055, -0.014118403196334839, -0.014763325452804565, -0.014794126152992249, -0.014363855123519897, -0.014292091131210327, -0.014889925718307495, -0.014867156744003296, -0.01433078944683075, -0.014686569571495056, -0.014805465936660767, -0.014807149767875671, -0.014692112803459167, -0.01450762152671814, -0.014973700046539307, -0.01511932909488678, -0.015067577362060547, -0.014854997396469116, -0.014254599809646606, -0.015178695321083069, -0.01456749439239502, -0.014624089002609253, -0.015229254961013794, -0.01494838297367096, -0.013834431767463684, -0.015033602714538574, -0.01138395071029663, -0.011148825287818909, -0.015302523970603943, -0.011931180953979492, -0.013609558343887329, -0.013536378741264343, -0.0129280686378479, -0.015237092971801758, -0.01455804705619812, -0.01489187777042389, -0.015415161848068237, -0.015069633722305298, -0.01415964961051941, -0.01519089937210083, -0.011509358882904053, -0.011136531829833984, -0.015411317348480225, -0.011795058846473694, -0.012388095259666443, -0.015193164348602295, -0.014537841081619263, -0.014971181750297546, -0.015528909862041473, -0.014806598424911499, -0.015398219227790833, -0.015560649335384369, -0.015249788761138916, -0.014632850885391235, -0.015651345252990723, -0.014385715126991272, -0.015468984842300415, -0.014251559972763062, -0.015489235520362854, -0.012283608317375183, -0.012951046228408813, -0.01513950526714325, -0.015271447598934174, -0.013753458857536316, -0.014161497354507446, -0.01447083055973053, -0.014966323971748352, -0.014148682355880737, -0.014384984970092773, -0.014352619647979736, -0.014551311731338501, -0.014604926109313965, -0.014980942010879517, -0.014214150607585907, -0.014281019568443298, -0.014982402324676514, -0.015268728137016296, -0.014052286744117737, -0.014261908829212189, -0.015039458870887756, -0.015284575521945953, -0.014053449034690857, -0.014301635324954987, -0.015241049230098724, -0.015412017703056335, -0.014167338609695435, -0.01445028930902481, -0.015212014317512512, -0.015403464436531067, -0.014209926128387451, -0.01444978266954422, -0.015416733920574188, -0.01558908075094223, -0.014100484549999237, -0.014400139451026917, -0.015470169484615326, -0.015635676681995392, -0.014166168868541718, -0.01443561166524887, -0.01557132601737976, -0.015720263123512268, -0.014211080968379974, -0.014510184526443481, -0.015585683286190033, -0.01574702560901642, -0.014293424785137177, -0.014549992978572845, -0.015676066279411316, -0.01583634316921234, -0.014287076890468597, -0.014567829668521881, -0.015730656683444977, -0.015894271433353424, -0.014297790825366974, -0.014540955424308777, -0.015846967697143555, -0.016001909971237183, -0.014319188892841339, -0.014646559953689575, -0.01582089066505432, -0.01596367359161377, -0.014517650008201599, -0.014792487025260925, -0.015836596488952637, -0.015987485647201538, -0.014618992805480957, -0.014885962009429932, -0.015868425369262695, -0.016033872961997986, -0.01464584469795227, -0.014886140823364258, -0.01596340537071228, -0.01612432301044464, -0.014614909887313843, -0.01486082375049591, -0.016059644520282745, -0.016218475997447968, -0.014553174376487732, -0.014790073037147522, -0.016180187463760376, -0.01632539927959442, -0.01485595852136612, -0.015382640063762665, -0.015652671456336975, -0.015680328011512756, -0.015787072479724884, -0.01609373837709427, -0.014978393912315369, -0.015097714960575104, -0.016234874725341797, -0.016413912177085876, -0.014866113662719727, -0.015313588082790375, -0.01600005477666855, -0.01610010862350464, -0.015499062836170197, -0.015809401869773865, -0.01569370925426483, -0.015831217169761658, -0.015906453132629395, -0.016143441200256348, -0.015419259667396545, -0.015604279935359955, -0.016166329383850098, -0.016361676156520844, -0.01521187275648117, -0.015401087701320648, -0.016395434737205505, -0.016560159623622894, -0.01503589004278183, -0.015289075672626495, -0.016493260860443115, -0.01663697510957718, -0.015096180140972137, -0.015378221869468689, -0.016504570841789246, -0.016631893813610077, -0.015260115265846252, -0.015517055988311768, -0.016519926488399506, -0.01666855812072754, -0.015317708253860474, -0.015560105443000793, -0.016583524644374847, -0.01672406494617462, -0.015365928411483765, -0.015608735382556915, -0.016647078096866608, -0.016789935529232025, -0.015376247465610504, -0.015618987381458282, -0.016722865402698517, -0.016862064599990845, -0.015380099415779114, -0.015615686774253845, -0.016810975968837738, -0.0169467031955719, -0.015605337917804718, -0.01602780818939209, -0.016502253711223602, -0.016573287546634674, -0.016269870102405548, -0.01655447483062744, -0.016135118901729584, -0.016269981861114502, -0.01662600040435791, -0.01682616025209427, -0.01593036949634552, -0.016124770045280457, -0.016794241964817047, -0.016963444650173187, -0.015852555632591248, -0.01607143133878708, -0.016897916793823242, -0.0170498788356781, -0.015865668654441833, -0.01609736680984497, -0.016943320631980896, -0.01710212230682373, -0.01591651141643524, -0.016162142157554626, -0.0169379860162735, -0.017110571265220642, -0.016073942184448242, -0.016263194382190704, -0.016912013292312622, -0.017092660069465637, -0.016224876046180725, -0.016460329294204712, -0.016728855669498444, -0.016963757574558258, -0.016467556357383728, -0.016619570553302765, -0.016730666160583496, -0.01697412133216858, -0.016711093485355377, -0.01691928505897522, -0.016426339745521545, -0.016645029187202454, -0.016945019364356995, -0.017138153314590454, -0.016537241637706757, -0.016671881079673767, -0.01714952290058136, -0.017364032566547394, -0.016231834888458252, -0.016385674476623535, -0.01738917827606201, -0.017553314566612244, -0.016301758587360382, -0.01656973361968994, -0.01735268533229828, -0.017492808401584625, -0.016493983566761017, -0.01672758162021637, -0.017361141741275787, -0.017504438757896423, -0.0166509747505188, -0.01686175912618637, -0.017413541674613953, -0.017571136355400085, -0.016660600900650024, -0.016879647970199585, -0.01749803125858307, -0.017638131976127625, -0.01671682298183441, -0.016933031380176544, -0.017571859061717987, -0.017714783549308777, -0.016753852367401123, -0.01698918640613556, -0.017619222402572632, -0.017753615975379944, -0.016844742000102997, -0.017062753438949585, -0.017671436071395874, -0.017811298370361328, -0.016925789415836334, -0.01715337485074997, -0.017704740166664124, -0.017847910523414612, -0.017012298107147217, -0.0172262042760849, -0.017756976187229156, -0.01790090650320053, -0.01708783209323883, -0.017302416265010834, -0.01780712604522705, -0.017954491078853607, -0.017146185040473938, -0.017357245087623596, -0.017870426177978516, -0.018015146255493164, -0.017201587557792664, -0.017409242689609528, -0.01793856918811798, -0.018083877861499786, -0.017246589064598083, -0.017458036541938782, -0.01800394058227539, -0.018146805465221405, -0.017297059297561646, -0.01750582456588745, -0.018072500824928284, -0.018213145434856415, -0.017350375652313232, -0.017563097178936005, -0.018133297562599182, -0.018272846937179565, -0.01740957796573639, -0.017623253166675568, -0.018191471695899963, -0.018328547477722168, -0.017478853464126587, -0.017691947519779205, -0.018245652318000793, -0.018382824957370758, -0.017550349235534668, -0.01776409149169922, -0.01829613745212555, -0.01843317598104477, -0.017625555396080017, -0.01783653348684311, -0.01834747940301895, -0.01848457008600235, -0.01770162582397461, -0.017911873757839203, -0.01839607208967209, -0.018533840775489807, -0.017778724431991577, -0.017987720668315887, -0.018443040549755096, -0.018580615520477295, -0.017860040068626404, -0.018067091703414917, -0.01848718523979187, -0.018625423312187195, -0.017943978309631348, -0.018149837851524353, -0.01852729171514511, -0.018666185438632965, -0.018031612038612366, -0.018234580755233765, -0.018565088510513306, -0.018704988062381744, -0.0181213840842247, -0.018321730196475983, -0.01859964430332184, -0.018741048872470856, -0.01821228861808777, -0.01840939372777939, -0.018631957471370697, -0.01877473294734955, -0.018304601311683655, -0.01849822700023651, -0.018661513924598694, -0.018806010484695435, -0.018398001790046692, -0.018588267266750336, -0.018687725067138672, -0.018833965063095093, -0.018492944538593292, -0.018679179251194, -0.01871095597743988, -0.018859148025512695, -0.018588826060295105, -0.018770985305309296, -0.01873055100440979, -0.018881037831306458, -0.018685534596443176, -0.018863119184970856, -0.018747225403785706, -0.018900111317634583, -0.018782474100589752, -0.01895540952682495, -0.01876060664653778, -0.018916018307209015, -0.018879666924476624, -0.019047684967517853, -0.018770530819892883, -0.018928632140159607, -0.018977120518684387, -0.019140079617500305, -0.018776744604110718, -0.01893763244152069, -0.019074946641921997, -0.019232667982578278, -0.01877860724925995, -0.01894250512123108, -0.019173167645931244, -0.01932547241449356, -0.018775999546051025, -0.018942996859550476, -0.019271790981292725, -0.01941843330860138, -0.01876823604106903, -0.01893850415945053, -0.01937093585729599, -0.019511617720127106, -0.01875504106283188, -0.018928758800029755, -0.019470572471618652, -0.019605189561843872, -0.018772363662719727, -0.01897817850112915, -0.01950802654027939, -0.019631095230579376, -0.01885797828435898, -0.01904742419719696, -0.019557975232601166, -0.01968790590763092, -0.018893122673034668, -0.019074514508247375, -0.019634008407592773, -0.019764333963394165, -0.01896882802248001, -0.01920311152935028, -0.019593417644500732, -0.019706428050994873, -0.019169464707374573, -0.01936512440443039, -0.019569575786590576, -0.019703835248947144, -0.019277654588222504, -0.019453346729278564, -0.01959618180990219, -0.01974046230316162, -0.019336402416229248, -0.019503779709339142, -0.019650466740131378, -0.019797690212726593, -0.019370771944522858, -0.019535623490810394, -0.019717589020729065, -0.01986459642648697, -0.019391663372516632, -0.019555553793907166, -0.019794225692749023, -0.019940055906772614, -0.019397884607315063, -0.01956161856651306, -0.019879981875419617, -0.02002359926700592, -0.019388258457183838, -0.019551873207092285, -0.019977062940597534, -0.020116202533245087, -0.019359998404979706, -0.01952652633190155, -0.020078107714653015, -0.020212166011333466, -0.01948940008878708, -0.019781380891799927, -0.01985519379377365, -0.01993531733751297, -0.019903093576431274, -0.020098567008972168, -0.01962520182132721, -0.019761309027671814, -0.020112834870815277, -0.020261377096176147, -0.01952601969242096, -0.01969442516565323, -0.020224519073963165, -0.02035363018512726, -0.019651077687740326, -0.019939199090003967, -0.020023778080940247, -0.020097829401493073, -0.02007291465997696, -0.020288556814193726, -0.019737333059310913, -0.01983511447906494, -0.02037312090396881, -0.020525604486465454, -0.019880928099155426, -0.020284436643123627, -0.01971590518951416, -0.019680708646774292, -0.020623445510864258, -0.020507335662841797, -0.02011185884475708, -0.020503051578998566, -0.019516289234161377, -0.01940511167049408, -0.02084040641784668, -0.020135536789894104, -0.02093443274497986, -0.02047751098871231, -0.020824439823627472, -0.020898684859275818, -0.020628303289413452, -0.0210067480802536, -0.020862415432929993, -0.020781755447387695, -0.02106255292892456, -0.02094881236553192, -0.020890414714813232, -0.021102190017700195, -0.021052181720733643, -0.020981892943382263, -0.021133534610271454, -0.02114035189151764, -0.021063849329948425, -0.021157443523406982, -0.021210499107837677, -0.02114710956811905, -0.02118605375289917, -0.021260373294353485, -0.02122553437948227, -0.021223604679107666, -0.021294526755809784, -0.021295711398124695, -0.021272800862789154, -0.021318882703781128, -0.021352067589759827, -0.021335557103157043, -0.021347373723983765, -0.021387532353401184, -0.02139744907617569, -0.02139192819595337, -0.021413832902908325, -0.021441981196403503, -0.021445035934448242, -0.021449655294418335, -0.021474294364452362, -0.02149173617362976, -0.021495066583156586, -0.021507911384105682, -0.021529018878936768, -0.02154006063938141, -0.02154705673456192, -0.021563082933425903, -0.021579772233963013, -0.021588660776615143, -0.021599173545837402, -0.021615520119667053, -0.021628670394420624, -0.02163798362016678, -0.021650828421115875, -0.021665707230567932, -0.021677076816558838, -0.021687708795070648, -0.021701306104660034, -0.021714642643928528, -0.021725594997406006, -0.021737322211265564, -0.02175077795982361, -0.02176307886838913, -0.021774277091026306, -0.021786659955978394, -0.02179960161447525, -0.02181144803762436, -0.021823078393936157, -0.021835647523403168, -0.021848157048225403, -0.021859891712665558, -0.02187187969684601, -0.021884411573410034, -0.02189663052558899, -0.021908484399318695, -0.02192065119743347, -0.021933116018772125, -0.021945230662822723, -0.021957233548164368, -0.021969527006149292, -0.021981894969940186, -0.021994054317474365, -0.022006206214427948, -0.022018566727638245, -0.022030934691429138, -0.02204316109418869, -0.02205546945333481, -0.02206788957118988, -0.022080302238464355, -0.02209267020225525, -0.022105097770690918, -0.022117622196674347, -0.022130146622657776, -0.022142626345157623, -0.022155210375785828, -0.022167861461639404, -0.02218054234981537, -0.022193193435668945, -0.02220594882965088, -0.022218763828277588, -0.02223159372806549, -0.02224445343017578, -0.02225738763809204, -0.022270411252975464, -0.022283457219600677, -0.022296547889709473, -0.022309720516204834 ]

cycle_losses_target1

[ 0.1358814537525177, 0.23682372272014618, 0.11118382215499878, 0.23416918516159058, 0.22229433059692383, 0.1737680286169052 ]

cycle_losses_target2

[ 0.3061038851737976, 0.11514925956726074, 0.3049167990684509, 0.08771948516368866, 0.2762921452522278, 0.20045599341392517 ]
Generated in
Steps
IDModelStatus
z0qawvz6chrm80cp1zmvqk0pz4anthropic/claude-3.7-sonnet
Succeeded
ae8aneq2xnrma0cp1zktp3phvgandreasjansson/train-dynamic-system
Succeeded
azhs6tjps9rmc0cp1zkrpdj98manthropic/claude-3.7-sonnet
Succeeded
3y5xm67x99rme0cp1zka6x4xk0andreasjansson/train-dynamic-system
Failed
8f6aqj2hbsrme0cp1zk9hrdhc4anthropic/claude-3.7-sonnet
Succeeded

Run time and cost

This model runs on CPU hardware. We don't yet have enough runs of this model to provide performance information.

Readme

This model doesn't have a readme.