Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run andreasjansson/flux-allhands using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"andreasjansson/flux-allhands:33c54769ab5cdf7630a2a7c7a1d1a3a1f9f7c911285b74d8d7a07e62d5f3d3d7",
{
input: {
model: "dev",
prompt: "ALLHNDS video meeting",
go_fast: false,
lora_scale: 1.2,
megapixels: "1",
num_outputs: 4,
aspect_ratio: "16:9",
output_format: "png",
guidance_scale: 3,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run andreasjansson/flux-allhands using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"andreasjansson/flux-allhands:33c54769ab5cdf7630a2a7c7a1d1a3a1f9f7c911285b74d8d7a07e62d5f3d3d7",
input={
"model": "dev",
"prompt": "ALLHNDS video meeting",
"go_fast": False,
"lora_scale": 1.2,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "16:9",
"output_format": "png",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run andreasjansson/flux-allhands using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "andreasjansson/flux-allhands:33c54769ab5cdf7630a2a7c7a1d1a3a1f9f7c911285b74d8d7a07e62d5f3d3d7",
"input": {
"model": "dev",
"prompt": "ALLHNDS video meeting",
"go_fast": false,
"lora_scale": 1.2,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "16:9",
"output_format": "png",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2025-01-13T17:55:08.002429Z",
"created_at": "2025-01-13T17:54:32.732000Z",
"data_removed": false,
"error": null,
"id": "7yv5excjkhrma0cmc36vdffcz0",
"input": {
"model": "dev",
"prompt": "ALLHNDS video meeting",
"go_fast": false,
"lora_scale": 1.2,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "16:9",
"output_format": "png",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
},
"logs": "2025-01-13 17:54:39.830 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-01-13 17:54:39.831 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2817.42it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2707.88it/s]\n2025-01-13 17:54:39.943 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s\nfree=29136000258048\nDownloading weights\n2025-01-13T17:54:39Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpvwjamajb/weights url=https://replicate.delivery/xezq/vkHug8qgN95JLp2rbm5uhmuCTvINFFoF2IOxa17ktBzxEMBF/trained_model.tar\n2025-01-13T17:54:42Z | INFO | [ Complete ] dest=/tmp/tmpvwjamajb/weights size=\"172 MB\" total_elapsed=2.657s url=https://replicate.delivery/xezq/vkHug8qgN95JLp2rbm5uhmuCTvINFFoF2IOxa17ktBzxEMBF/trained_model.tar\nDownloaded weights in 2.68s\n2025-01-13 17:54:42.626 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/252fe4e9521e053e\n2025-01-13 17:54:42.695 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded\n2025-01-13 17:54:42.695 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-01-13 17:54:42.695 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 93%|█████████▎| 283/304 [00:00<00:00, 2820.15it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2713.82it/s]\n2025-01-13 17:54:42.807 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.18s\nUsing seed: 35348\n0it [00:00, ?it/s]\n1it [00:00, 8.40it/s]\n2it [00:00, 5.86it/s]\n3it [00:00, 5.35it/s]\n4it [00:00, 5.13it/s]\n5it [00:00, 4.99it/s]\n6it [00:01, 4.90it/s]\n7it [00:01, 4.86it/s]\n8it [00:01, 4.85it/s]\n9it [00:01, 4.84it/s]\n10it [00:01, 4.82it/s]\n11it [00:02, 4.81it/s]\n12it [00:02, 4.80it/s]\n13it [00:02, 4.80it/s]\n14it [00:02, 4.81it/s]\n15it [00:03, 4.81it/s]\n16it [00:03, 4.80it/s]\n17it [00:03, 4.80it/s]\n18it [00:03, 4.81it/s]\n19it [00:03, 4.80it/s]\n20it [00:04, 4.80it/s]\n21it [00:04, 4.79it/s]\n22it [00:04, 4.79it/s]\n23it [00:04, 4.79it/s]\n24it [00:04, 4.79it/s]\n25it [00:05, 4.79it/s]\n26it [00:05, 4.79it/s]\n27it [00:05, 4.79it/s]\n28it [00:05, 4.79it/s]\n28it [00:05, 4.87it/s]\n0it [00:00, ?it/s]\n1it [00:00, 4.82it/s]\n2it [00:00, 4.79it/s]\n3it [00:00, 4.78it/s]\n4it [00:00, 4.78it/s]\n5it [00:01, 4.80it/s]\n6it [00:01, 4.80it/s]\n7it [00:01, 4.79it/s]\n8it [00:01, 4.79it/s]\n9it [00:01, 4.78it/s]\n10it [00:02, 4.79it/s]\n11it [00:02, 4.78it/s]\n12it [00:02, 4.78it/s]\n13it [00:02, 4.78it/s]\n14it [00:02, 4.78it/s]\n15it [00:03, 4.79it/s]\n16it [00:03, 4.80it/s]\n17it [00:03, 4.80it/s]\n18it [00:03, 4.79it/s]\n19it [00:03, 4.78it/s]\n20it [00:04, 4.77it/s]\n21it [00:04, 4.78it/s]\n22it [00:04, 4.78it/s]\n23it [00:04, 4.77it/s]\n24it [00:05, 4.77it/s]\n25it [00:05, 4.78it/s]\n26it [00:05, 4.80it/s]\n27it [00:05, 4.81it/s]\n28it [00:05, 4.80it/s]\n28it [00:05, 4.79it/s]\n0it [00:00, ?it/s]\n1it [00:00, 4.81it/s]\n2it [00:00, 4.79it/s]\n3it [00:00, 4.79it/s]\n4it [00:00, 4.79it/s]\n5it [00:01, 4.79it/s]\n6it [00:01, 4.78it/s]\n7it [00:01, 4.78it/s]\n8it [00:01, 4.78it/s]\n9it [00:01, 4.78it/s]\n10it [00:02, 4.79it/s]\n11it [00:02, 4.80it/s]\n12it [00:02, 4.80it/s]\n13it [00:02, 4.80it/s]\n14it [00:02, 4.79it/s]\n15it [00:03, 4.79it/s]\n16it [00:03, 4.79it/s]\n17it [00:03, 4.79it/s]\n18it [00:03, 4.79it/s]\n19it [00:03, 4.78it/s]\n20it [00:04, 4.78it/s]\n21it [00:04, 4.78it/s]\n22it [00:04, 4.78it/s]\n23it [00:04, 4.79it/s]\n24it [00:05, 4.79it/s]\n25it [00:05, 4.79it/s]\n26it [00:05, 4.79it/s]\n27it [00:05, 4.79it/s]\n28it [00:05, 4.79it/s]\n28it [00:05, 4.79it/s]\n0it [00:00, ?it/s]\n1it [00:00, 4.83it/s]\n2it [00:00, 4.82it/s]\n3it [00:00, 4.80it/s]\n4it [00:00, 4.79it/s]\n5it [00:01, 4.79it/s]\n6it [00:01, 4.79it/s]\n7it [00:01, 4.79it/s]\n8it [00:01, 4.79it/s]\n9it [00:01, 4.79it/s]\n10it [00:02, 4.79it/s]\n11it [00:02, 4.78it/s]\n12it [00:02, 4.78it/s]\n13it [00:02, 4.78it/s]\n14it [00:02, 4.78it/s]\n15it [00:03, 4.80it/s]\n16it [00:03, 4.80it/s]\n17it [00:03, 4.79it/s]\n18it [00:03, 4.79it/s]\n19it [00:03, 4.78it/s]\n20it [00:04, 4.79it/s]\n21it [00:04, 4.80it/s]\n22it [00:04, 4.79it/s]\n23it [00:04, 4.79it/s]\n24it [00:05, 4.79it/s]\n25it [00:05, 4.79it/s]\n26it [00:05, 4.79it/s]\n27it [00:05, 4.79it/s]\n28it [00:05, 4.80it/s]\n28it [00:05, 4.79it/s]\nTotal safe images: 4 out of 4",
"metrics": {
"predict_time": 28.17153127,
"total_time": 35.270429
},
"output": [
"https://replicate.delivery/xezq/cxet7vagjDXQX6hPvrjSm5RVXDX2cNWMR0moCuBqzpo9KYCKA/out-0.png",
"https://replicate.delivery/xezq/a3rWYGqYN7b4JRua2VAe4mLewceAuZdsSbN4qvG15rT3rgJoA/out-1.png",
"https://replicate.delivery/xezq/eb6INFTzMRX0TqAk1EFifaj04JW9FOd4S4eoJ5kJZaM2rgJoA/out-2.png",
"https://replicate.delivery/xezq/9SLGG8ltShrnA5yVLBixxPZ5BZuj8GfGYPhCfndERKn7VwEUA/out-3.png"
],
"started_at": "2025-01-13T17:54:39.830898Z",
"status": "succeeded",
"urls": {
"stream": "https://stream.replicate.com/v1/files/bcwr-pc5gohyjijptduxzhxw7zip3shtlqjhxkas2v2yfle3y6qc7kqcq",
"get": "https://api.replicate.com/v1/predictions/7yv5excjkhrma0cmc36vdffcz0",
"cancel": "https://api.replicate.com/v1/predictions/7yv5excjkhrma0cmc36vdffcz0/cancel"
},
"version": "33c54769ab5cdf7630a2a7c7a1d1a3a1f9f7c911285b74d8d7a07e62d5f3d3d7"
}
2025-01-13 17:54:39.830 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-13 17:54:39.831 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2817.42it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2707.88it/s]
2025-01-13 17:54:39.943 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s
free=29136000258048
Downloading weights
2025-01-13T17:54:39Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpvwjamajb/weights url=https://replicate.delivery/xezq/vkHug8qgN95JLp2rbm5uhmuCTvINFFoF2IOxa17ktBzxEMBF/trained_model.tar
2025-01-13T17:54:42Z | INFO | [ Complete ] dest=/tmp/tmpvwjamajb/weights size="172 MB" total_elapsed=2.657s url=https://replicate.delivery/xezq/vkHug8qgN95JLp2rbm5uhmuCTvINFFoF2IOxa17ktBzxEMBF/trained_model.tar
Downloaded weights in 2.68s
2025-01-13 17:54:42.626 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/252fe4e9521e053e
2025-01-13 17:54:42.695 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded
2025-01-13 17:54:42.695 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-13 17:54:42.695 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 93%|█████████▎| 283/304 [00:00<00:00, 2820.15it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2713.82it/s]
2025-01-13 17:54:42.807 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.18s
Using seed: 35348
0it [00:00, ?it/s]
1it [00:00, 8.40it/s]
2it [00:00, 5.86it/s]
3it [00:00, 5.35it/s]
4it [00:00, 5.13it/s]
5it [00:00, 4.99it/s]
6it [00:01, 4.90it/s]
7it [00:01, 4.86it/s]
8it [00:01, 4.85it/s]
9it [00:01, 4.84it/s]
10it [00:01, 4.82it/s]
11it [00:02, 4.81it/s]
12it [00:02, 4.80it/s]
13it [00:02, 4.80it/s]
14it [00:02, 4.81it/s]
15it [00:03, 4.81it/s]
16it [00:03, 4.80it/s]
17it [00:03, 4.80it/s]
18it [00:03, 4.81it/s]
19it [00:03, 4.80it/s]
20it [00:04, 4.80it/s]
21it [00:04, 4.79it/s]
22it [00:04, 4.79it/s]
23it [00:04, 4.79it/s]
24it [00:04, 4.79it/s]
25it [00:05, 4.79it/s]
26it [00:05, 4.79it/s]
27it [00:05, 4.79it/s]
28it [00:05, 4.79it/s]
28it [00:05, 4.87it/s]
0it [00:00, ?it/s]
1it [00:00, 4.82it/s]
2it [00:00, 4.79it/s]
3it [00:00, 4.78it/s]
4it [00:00, 4.78it/s]
5it [00:01, 4.80it/s]
6it [00:01, 4.80it/s]
7it [00:01, 4.79it/s]
8it [00:01, 4.79it/s]
9it [00:01, 4.78it/s]
10it [00:02, 4.79it/s]
11it [00:02, 4.78it/s]
12it [00:02, 4.78it/s]
13it [00:02, 4.78it/s]
14it [00:02, 4.78it/s]
15it [00:03, 4.79it/s]
16it [00:03, 4.80it/s]
17it [00:03, 4.80it/s]
18it [00:03, 4.79it/s]
19it [00:03, 4.78it/s]
20it [00:04, 4.77it/s]
21it [00:04, 4.78it/s]
22it [00:04, 4.78it/s]
23it [00:04, 4.77it/s]
24it [00:05, 4.77it/s]
25it [00:05, 4.78it/s]
26it [00:05, 4.80it/s]
27it [00:05, 4.81it/s]
28it [00:05, 4.80it/s]
28it [00:05, 4.79it/s]
0it [00:00, ?it/s]
1it [00:00, 4.81it/s]
2it [00:00, 4.79it/s]
3it [00:00, 4.79it/s]
4it [00:00, 4.79it/s]
5it [00:01, 4.79it/s]
6it [00:01, 4.78it/s]
7it [00:01, 4.78it/s]
8it [00:01, 4.78it/s]
9it [00:01, 4.78it/s]
10it [00:02, 4.79it/s]
11it [00:02, 4.80it/s]
12it [00:02, 4.80it/s]
13it [00:02, 4.80it/s]
14it [00:02, 4.79it/s]
15it [00:03, 4.79it/s]
16it [00:03, 4.79it/s]
17it [00:03, 4.79it/s]
18it [00:03, 4.79it/s]
19it [00:03, 4.78it/s]
20it [00:04, 4.78it/s]
21it [00:04, 4.78it/s]
22it [00:04, 4.78it/s]
23it [00:04, 4.79it/s]
24it [00:05, 4.79it/s]
25it [00:05, 4.79it/s]
26it [00:05, 4.79it/s]
27it [00:05, 4.79it/s]
28it [00:05, 4.79it/s]
28it [00:05, 4.79it/s]
0it [00:00, ?it/s]
1it [00:00, 4.83it/s]
2it [00:00, 4.82it/s]
3it [00:00, 4.80it/s]
4it [00:00, 4.79it/s]
5it [00:01, 4.79it/s]
6it [00:01, 4.79it/s]
7it [00:01, 4.79it/s]
8it [00:01, 4.79it/s]
9it [00:01, 4.79it/s]
10it [00:02, 4.79it/s]
11it [00:02, 4.78it/s]
12it [00:02, 4.78it/s]
13it [00:02, 4.78it/s]
14it [00:02, 4.78it/s]
15it [00:03, 4.80it/s]
16it [00:03, 4.80it/s]
17it [00:03, 4.79it/s]
18it [00:03, 4.79it/s]
19it [00:03, 4.78it/s]
20it [00:04, 4.79it/s]
21it [00:04, 4.80it/s]
22it [00:04, 4.79it/s]
23it [00:04, 4.79it/s]
24it [00:05, 4.79it/s]
25it [00:05, 4.79it/s]
26it [00:05, 4.79it/s]
27it [00:05, 4.79it/s]
28it [00:05, 4.80it/s]
28it [00:05, 4.79it/s]
Total safe images: 4 out of 4
This model runs on Nvidia H100 GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
2025-01-13 17:54:39.830 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-13 17:54:39.831 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2817.42it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2707.88it/s]
2025-01-13 17:54:39.943 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s
free=29136000258048
Downloading weights
2025-01-13T17:54:39Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpvwjamajb/weights url=https://replicate.delivery/xezq/vkHug8qgN95JLp2rbm5uhmuCTvINFFoF2IOxa17ktBzxEMBF/trained_model.tar
2025-01-13T17:54:42Z | INFO | [ Complete ] dest=/tmp/tmpvwjamajb/weights size="172 MB" total_elapsed=2.657s url=https://replicate.delivery/xezq/vkHug8qgN95JLp2rbm5uhmuCTvINFFoF2IOxa17ktBzxEMBF/trained_model.tar
Downloaded weights in 2.68s
2025-01-13 17:54:42.626 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/252fe4e9521e053e
2025-01-13 17:54:42.695 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded
2025-01-13 17:54:42.695 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-13 17:54:42.695 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 93%|█████████▎| 283/304 [00:00<00:00, 2820.15it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2713.82it/s]
2025-01-13 17:54:42.807 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.18s
Using seed: 35348
0it [00:00, ?it/s]
1it [00:00, 8.40it/s]
2it [00:00, 5.86it/s]
3it [00:00, 5.35it/s]
4it [00:00, 5.13it/s]
5it [00:00, 4.99it/s]
6it [00:01, 4.90it/s]
7it [00:01, 4.86it/s]
8it [00:01, 4.85it/s]
9it [00:01, 4.84it/s]
10it [00:01, 4.82it/s]
11it [00:02, 4.81it/s]
12it [00:02, 4.80it/s]
13it [00:02, 4.80it/s]
14it [00:02, 4.81it/s]
15it [00:03, 4.81it/s]
16it [00:03, 4.80it/s]
17it [00:03, 4.80it/s]
18it [00:03, 4.81it/s]
19it [00:03, 4.80it/s]
20it [00:04, 4.80it/s]
21it [00:04, 4.79it/s]
22it [00:04, 4.79it/s]
23it [00:04, 4.79it/s]
24it [00:04, 4.79it/s]
25it [00:05, 4.79it/s]
26it [00:05, 4.79it/s]
27it [00:05, 4.79it/s]
28it [00:05, 4.79it/s]
28it [00:05, 4.87it/s]
0it [00:00, ?it/s]
1it [00:00, 4.82it/s]
2it [00:00, 4.79it/s]
3it [00:00, 4.78it/s]
4it [00:00, 4.78it/s]
5it [00:01, 4.80it/s]
6it [00:01, 4.80it/s]
7it [00:01, 4.79it/s]
8it [00:01, 4.79it/s]
9it [00:01, 4.78it/s]
10it [00:02, 4.79it/s]
11it [00:02, 4.78it/s]
12it [00:02, 4.78it/s]
13it [00:02, 4.78it/s]
14it [00:02, 4.78it/s]
15it [00:03, 4.79it/s]
16it [00:03, 4.80it/s]
17it [00:03, 4.80it/s]
18it [00:03, 4.79it/s]
19it [00:03, 4.78it/s]
20it [00:04, 4.77it/s]
21it [00:04, 4.78it/s]
22it [00:04, 4.78it/s]
23it [00:04, 4.77it/s]
24it [00:05, 4.77it/s]
25it [00:05, 4.78it/s]
26it [00:05, 4.80it/s]
27it [00:05, 4.81it/s]
28it [00:05, 4.80it/s]
28it [00:05, 4.79it/s]
0it [00:00, ?it/s]
1it [00:00, 4.81it/s]
2it [00:00, 4.79it/s]
3it [00:00, 4.79it/s]
4it [00:00, 4.79it/s]
5it [00:01, 4.79it/s]
6it [00:01, 4.78it/s]
7it [00:01, 4.78it/s]
8it [00:01, 4.78it/s]
9it [00:01, 4.78it/s]
10it [00:02, 4.79it/s]
11it [00:02, 4.80it/s]
12it [00:02, 4.80it/s]
13it [00:02, 4.80it/s]
14it [00:02, 4.79it/s]
15it [00:03, 4.79it/s]
16it [00:03, 4.79it/s]
17it [00:03, 4.79it/s]
18it [00:03, 4.79it/s]
19it [00:03, 4.78it/s]
20it [00:04, 4.78it/s]
21it [00:04, 4.78it/s]
22it [00:04, 4.78it/s]
23it [00:04, 4.79it/s]
24it [00:05, 4.79it/s]
25it [00:05, 4.79it/s]
26it [00:05, 4.79it/s]
27it [00:05, 4.79it/s]
28it [00:05, 4.79it/s]
28it [00:05, 4.79it/s]
0it [00:00, ?it/s]
1it [00:00, 4.83it/s]
2it [00:00, 4.82it/s]
3it [00:00, 4.80it/s]
4it [00:00, 4.79it/s]
5it [00:01, 4.79it/s]
6it [00:01, 4.79it/s]
7it [00:01, 4.79it/s]
8it [00:01, 4.79it/s]
9it [00:01, 4.79it/s]
10it [00:02, 4.79it/s]
11it [00:02, 4.78it/s]
12it [00:02, 4.78it/s]
13it [00:02, 4.78it/s]
14it [00:02, 4.78it/s]
15it [00:03, 4.80it/s]
16it [00:03, 4.80it/s]
17it [00:03, 4.79it/s]
18it [00:03, 4.79it/s]
19it [00:03, 4.78it/s]
20it [00:04, 4.79it/s]
21it [00:04, 4.80it/s]
22it [00:04, 4.79it/s]
23it [00:04, 4.79it/s]
24it [00:05, 4.79it/s]
25it [00:05, 4.79it/s]
26it [00:05, 4.79it/s]
27it [00:05, 4.79it/s]
28it [00:05, 4.80it/s]
28it [00:05, 4.79it/s]
Total safe images: 4 out of 4