anotherjesse / control-paul

this should be same as multi-control but testing different inputs

  • Public
  • 26 runs

Run anotherjesse/control-paul with an API

Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.

Input schema

The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.

Field Type Default value Description
prompt
string
Prompt for the model
negative_prompt
string
Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality
Negative prompt
controlnet_1
string (enum)

Options:

canny, depth, normal, hed, scribble, hough, seg, pose, qr

Structure of controlnet
controlnet_1_image
string
Control image for controlnet
controlnet_1_conditioning_scale
number
override scale for controlnet
controlnet_2
string (enum)

Options:

canny, depth, normal, hed, scribble, hough, seg, pose, qr

Structure of controlnet
controlnet_2_image
string
Control image for controlnet
controlnet_2_conditioning_scale
number
override scale for controlnet
controlnet_3
string (enum)

Options:

canny, depth, normal, hed, scribble, hough, seg, pose, qr

Structure of controlnet
controlnet_3_image
string
Control image for controlnet
controlnet_3_conditioning_scale
number
override scale for controlnet
controlnet_4
string (enum)

Options:

canny, depth, normal, hed, scribble, hough, seg, pose, qr

Structure of controlnet
controlnet_4_image
string
Control image for controlnet
controlnet_4_conditioning_scale
number
override scale for controlnet
num_outputs
integer
1

Min: 1

Max: 10

Number of images to generate
image_resolution
integer (enum)
512

Options:

256, 512, 768

Resolution of image (smallest dimension)
scheduler
string (enum)
KerrasDPM

Options:

DDIM, DPMSolverMultistep, HeunDiscrete, KerrasDPM, K_EULER_ANCESTRAL, K_EULER, KLMS, PNDM, UniPCMultistep

Choose a scheduler.
num_inference_steps
integer
20
Steps to run denoising
guidance_scale
number
9

Min: 0.1

Max: 30

Scale for classifier-free guidance
seed
integer
Seed
eta
number
0
Controls the amount of noise that is added to the input data during the denoising diffusion process. Higher value -> more noise
low_threshold
integer
100

Min: 1

Max: 255

[canny only] Line detection low threshold`
high_threshold
integer
200

Min: 1

Max: 255

[canny only] Line detection high threshold
guess_mode
boolean
False
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
disable_safety_check
boolean
False
Disable safety check. Use at your own risk!

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{
  "type": "array",
  "items": {
    "type": "string",
    "format": "uri"
  },
  "title": "Output"
}