anotherjesse
/
temporalnet-v2
draft version of temporalnet v2
- Public
- 78 runs
Run anotherjesse/temporalnet-v2 with an API
Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.
Input schema
The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
prompt |
string
|
Prompt for the model
|
|
input_video |
string
|
Input video
|
|
strength |
number
|
0.7
|
How heavily stylization affects the image
|
controlnet_scale |
number
|
1
|
Controlnet conditioning scale
|
canny_scale |
number
|
1
|
Canny conditioning scale
|
width |
integer
|
512
|
width
|
height |
integer
|
512
|
height
|
batch_size |
integer
|
4
|
Batch size (more = faster but more memory)
|
num_inference_steps |
integer
|
20
|
Steps to run denoising
|
guidance_scale |
number
|
7.5
Min: 0.1 Max: 30 |
Scale for classifier-free guidance
|
seed |
integer
|
Seed
|
{
"type": "object",
"title": "Input",
"required": [
"prompt",
"input_video"
],
"properties": {
"seed": {
"type": "integer",
"title": "Seed",
"x-order": 10,
"description": "Seed"
},
"width": {
"type": "integer",
"title": "Width",
"default": 512,
"x-order": 5,
"description": "width"
},
"height": {
"type": "integer",
"title": "Height",
"default": 512,
"x-order": 6,
"description": "height"
},
"prompt": {
"type": "string",
"title": "Prompt",
"x-order": 0,
"description": "Prompt for the model"
},
"strength": {
"type": "number",
"title": "Strength",
"default": 0.7,
"x-order": 2,
"description": "How heavily stylization affects the image"
},
"batch_size": {
"type": "integer",
"title": "Batch Size",
"default": 4,
"x-order": 7,
"description": "Batch size (more = faster but more memory)"
},
"canny_scale": {
"type": "number",
"title": "Canny Scale",
"default": 1,
"x-order": 4,
"description": "Canny conditioning scale"
},
"input_video": {
"type": "string",
"title": "Input Video",
"format": "uri",
"x-order": 1,
"description": "Input video"
},
"guidance_scale": {
"type": "number",
"title": "Guidance Scale",
"default": 7.5,
"maximum": 30,
"minimum": 0.1,
"x-order": 9,
"description": "Scale for classifier-free guidance"
},
"controlnet_scale": {
"type": "number",
"title": "Controlnet Scale",
"default": 1,
"x-order": 3,
"description": "Controlnet conditioning scale"
},
"num_inference_steps": {
"type": "integer",
"title": "Num Inference Steps",
"default": 20,
"x-order": 8,
"description": "Steps to run denoising"
}
}
}
Output schema
The shape of the response you’ll get when you run this model with an API.
Schema
{
"type": "array",
"items": {
"type": "string",
"format": "uri"
},
"title": "Output"
}