aramintak/pola-style

Trigger phrase: Polaroid style

A model that makes a soft and quiet world. Can use "daiton" as a trigger but it isn't needed.

A very blocky and bold cartoon style with some anime elements. You should use daiton style to trigger the image generation.

A style model, ligne claire esque with eastern influence

A style that creates a paint wash, great for anime.

An anime style

Stylized sketch anime model that has a bit of a watercolor undertone to it

A watercolor style painting model that does impressionism well and lends itself to anime.

A manga style

A rough sketch style manga

A mid-century Japanese block print style

Flux lora, use "flmft style" to trigger the image generation

Flux lora in a realistic film style. Use flmft photo style to trigger the image generation.

Flux lora, use "frstingln illustration" to trigger the image generation

Flux lora, use "sftsrv style illustration" to trigger the image generation

An original character LoRA

A hand drawn sketch style LoRA

Trigger phrase: surreal style
Illustration style model with gritty depth.
Prediction
aramintak/pola-style:def181881b9a46c435b8a73baa906de9c0c2fb9b9c0716f31dc38c3a48fa2e89ID4tc8rrjyk1rm20cj2tbrp5k978StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a girl laughing, polaroid style
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a girl laughing, polaroid style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:def181881b9a46c435b8a73baa906de9c0c2fb9b9c0716f31dc38c3a48fa2e89", { input: { model: "dev", prompt: "a girl laughing, polaroid style", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:def181881b9a46c435b8a73baa906de9c0c2fb9b9c0716f31dc38c3a48fa2e89", input={ "model": "dev", "prompt": "a girl laughing, polaroid style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:def181881b9a46c435b8a73baa906de9c0c2fb9b9c0716f31dc38c3a48fa2e89", "input": { "model": "dev", "prompt": "a girl laughing, polaroid style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-21T21:59:26.213684Z", "created_at": "2024-09-21T21:57:51.896000Z", "data_removed": false, "error": null, "id": "4tc8rrjyk1rm20cj2tbrp5k978", "input": { "model": "dev", "prompt": "a girl laughing, polaroid style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 43712\nPrompt: a girl laughing, polaroid style\n[!] txt2img mode\nUsing dev model\nfree=6624785854464\nDownloading weights\n2024-09-21T21:58:59Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpv2hv6qp4/weights url=https://replicate.delivery/yhqm/gZfePNb6kFhImkp77cf44zOCUSEj4ceF6gE8HtlBWe2ZF35bC/trained_model.tar\n2024-09-21T21:59:02Z | INFO | [ Complete ] dest=/tmp/tmpv2hv6qp4/weights size=\"462 MB\" total_elapsed=3.353s url=https://replicate.delivery/yhqm/gZfePNb6kFhImkp77cf44zOCUSEj4ceF6gE8HtlBWe2ZF35bC/trained_model.tar\nDownloaded weights in 3.40s\nLoaded LoRAs in 17.89s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:08, 3.29it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.72it/s]\n 11%|█ | 3/28 [00:00<00:07, 3.51it/s]\n 14%|█▍ | 4/28 [00:01<00:07, 3.42it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.37it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.34it/s]\n 25%|██▌ | 7/28 [00:02<00:06, 3.33it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 3.32it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.31it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.30it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 3.30it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.30it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.29it/s]\n 50%|█████ | 14/28 [00:04<00:04, 3.29it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.29it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.29it/s]\n 61%|██████ | 17/28 [00:05<00:03, 3.29it/s]\n 64%|██████▍ | 18/28 [00:05<00:03, 3.29it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.29it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 3.29it/s]\n 75%|███████▌ | 21/28 [00:06<00:02, 3.29it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.29it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.29it/s]\n 86%|████████▌ | 24/28 [00:07<00:01, 3.29it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.29it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.29it/s]\n 96%|█████████▋| 27/28 [00:08<00:00, 3.28it/s]\n100%|██████████| 28/28 [00:08<00:00, 3.28it/s]\n100%|██████████| 28/28 [00:08<00:00, 3.31it/s]", "metrics": { "predict_time": 26.892301235, "total_time": 94.317684 }, "output": [ "https://replicate.delivery/yhqm/XtOfme6TvopCHk8EDVBdjLfYeH98juZNV2yRKjkI2Nq6788NB/out-0.webp" ], "started_at": "2024-09-21T21:58:59.321383Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/4tc8rrjyk1rm20cj2tbrp5k978", "cancel": "https://api.replicate.com/v1/predictions/4tc8rrjyk1rm20cj2tbrp5k978/cancel" }, "version": "def181881b9a46c435b8a73baa906de9c0c2fb9b9c0716f31dc38c3a48fa2e89" }
Generated inUsing seed: 43712 Prompt: a girl laughing, polaroid style [!] txt2img mode Using dev model free=6624785854464 Downloading weights 2024-09-21T21:58:59Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpv2hv6qp4/weights url=https://replicate.delivery/yhqm/gZfePNb6kFhImkp77cf44zOCUSEj4ceF6gE8HtlBWe2ZF35bC/trained_model.tar 2024-09-21T21:59:02Z | INFO | [ Complete ] dest=/tmp/tmpv2hv6qp4/weights size="462 MB" total_elapsed=3.353s url=https://replicate.delivery/yhqm/gZfePNb6kFhImkp77cf44zOCUSEj4ceF6gE8HtlBWe2ZF35bC/trained_model.tar Downloaded weights in 3.40s Loaded LoRAs in 17.89s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:08, 3.29it/s] 7%|▋ | 2/28 [00:00<00:06, 3.72it/s] 11%|█ | 3/28 [00:00<00:07, 3.51it/s] 14%|█▍ | 4/28 [00:01<00:07, 3.42it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.37it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.34it/s] 25%|██▌ | 7/28 [00:02<00:06, 3.33it/s] 29%|██▊ | 8/28 [00:02<00:06, 3.32it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.31it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.30it/s] 39%|███▉ | 11/28 [00:03<00:05, 3.30it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.30it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.29it/s] 50%|█████ | 14/28 [00:04<00:04, 3.29it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.29it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.29it/s] 61%|██████ | 17/28 [00:05<00:03, 3.29it/s] 64%|██████▍ | 18/28 [00:05<00:03, 3.29it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.29it/s] 71%|███████▏ | 20/28 [00:06<00:02, 3.29it/s] 75%|███████▌ | 21/28 [00:06<00:02, 3.29it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.29it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.29it/s] 86%|████████▌ | 24/28 [00:07<00:01, 3.29it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.29it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.29it/s] 96%|█████████▋| 27/28 [00:08<00:00, 3.28it/s] 100%|██████████| 28/28 [00:08<00:00, 3.28it/s] 100%|██████████| 28/28 [00:08<00:00, 3.31it/s]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badIDqb8rdndz9drm20cj3519negyb0StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- A tabby cat lounging on a sun-dappled windowsill, half its body in shadow, half in bright light, polaroid style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "A tabby cat lounging on a sun-dappled windowsill, half its body in shadow, half in bright light, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "A tabby cat lounging on a sun-dappled windowsill, half its body in shadow, half in bright light, polaroid style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "A tabby cat lounging on a sun-dappled windowsill, half its body in shadow, half in bright light, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "A tabby cat lounging on a sun-dappled windowsill, half its body in shadow, half in bright light, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:25:16.659785Z", "created_at": "2024-09-22T10:24:17.739000Z", "data_removed": false, "error": null, "id": "qb8rdndz9drm20cj3519negyb0", "input": { "model": "dev", "prompt": "A tabby cat lounging on a sun-dappled windowsill, half its body in shadow, half in bright light, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 24023\nPrompt: A tabby cat lounging on a sun-dappled windowsill, half its body in shadow, half in bright light, polaroid style\n[!] txt2img mode\nUsing dev model\nfree=7953882656768\nDownloading weights\n2024-09-22T10:24:20Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpx6o95ddd/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\n2024-09-22T10:24:23Z | INFO | [ Complete ] dest=/tmp/tmpx6o95ddd/weights size=\"462 MB\" total_elapsed=3.326s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\nDownloaded weights in 3.38s\nLoaded LoRAs in 22.90s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.13s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.01it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.06s/it]\n 14%|█▍ | 4/28 [00:04<00:26, 1.08s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.11s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it]\n 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it]\n 39%|███▉ | 11/28 [00:12<00:19, 1.13s/it]\n 43%|████▎ | 12/28 [00:13<00:18, 1.13s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.13s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.13s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.13s/it]\n 61%|██████ | 17/28 [00:18<00:12, 1.13s/it]\n 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.13s/it]\n 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it]\n 89%|████████▉ | 25/28 [00:28<00:03, 1.13s/it]\n 93%|█████████▎| 26/28 [00:29<00:02, 1.13s/it]\n 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.12s/it]", "metrics": { "predict_time": 56.082145181, "total_time": 58.920785 }, "output": [ "https://replicate.delivery/yhqm/zYuU4HGdyI7VNJfxQGFfIMPAvyN9WIAlAbwQvjk8CgKMKafmA/out-0.webp", "https://replicate.delivery/yhqm/dNF2BBf74EUsACYdNr9ewwqQY1m4Gd3WNs5QoddvpjTMKafmA/out-1.webp", "https://replicate.delivery/yhqm/3Uafg1J9NNSoCKdL9Lv7q6sI6XA8oarP0CRr8RHavHLGFtvJA/out-2.webp", "https://replicate.delivery/yhqm/pldUDzDJyx4eM6c1tfBoZeBb65vKpJNeeHuuZf8OPXAMji23E/out-3.webp" ], "started_at": "2024-09-22T10:24:20.577640Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/qb8rdndz9drm20cj3519negyb0", "cancel": "https://api.replicate.com/v1/predictions/qb8rdndz9drm20cj3519negyb0/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 24023 Prompt: A tabby cat lounging on a sun-dappled windowsill, half its body in shadow, half in bright light, polaroid style [!] txt2img mode Using dev model free=7953882656768 Downloading weights 2024-09-22T10:24:20Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpx6o95ddd/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar 2024-09-22T10:24:23Z | INFO | [ Complete ] dest=/tmp/tmpx6o95ddd/weights size="462 MB" total_elapsed=3.326s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar Downloaded weights in 3.38s Loaded LoRAs in 22.90s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.13s/it] 7%|▋ | 2/28 [00:02<00:25, 1.01it/s] 11%|█ | 3/28 [00:03<00:26, 1.06s/it] 14%|█▍ | 4/28 [00:04<00:26, 1.08s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.11s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it] 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it] 39%|███▉ | 11/28 [00:12<00:19, 1.13s/it] 43%|████▎ | 12/28 [00:13<00:18, 1.13s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.13s/it] 50%|█████ | 14/28 [00:15<00:15, 1.13s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.13s/it] 61%|██████ | 17/28 [00:18<00:12, 1.13s/it] 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.13s/it] 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it] 89%|████████▉ | 25/28 [00:28<00:03, 1.13s/it] 93%|█████████▎| 26/28 [00:29<00:02, 1.13s/it] 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.12s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badIDtnxffernq9rm20cj35298s0pdwStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- A tabby cat lounging on a sun-dappled windowsill, faded, polaroid style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "A tabby cat lounging on a sun-dappled windowsill, faded, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "A tabby cat lounging on a sun-dappled windowsill, faded, polaroid style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "A tabby cat lounging on a sun-dappled windowsill, faded, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "A tabby cat lounging on a sun-dappled windowsill, faded, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:26:47.197266Z", "created_at": "2024-09-22T10:25:45.402000Z", "data_removed": false, "error": null, "id": "tnxffernq9rm20cj35298s0pdw", "input": { "model": "dev", "prompt": "A tabby cat lounging on a sun-dappled windowsill, faded, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 12959\nPrompt: A tabby cat lounging on a sun-dappled windowsill, faded, polaroid style\n[!] txt2img mode\nUsing dev model\nfree=6583963889664\nDownloading weights\n2024-09-22T10:25:58Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmptanpies6/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\n2024-09-22T10:26:00Z | INFO | [ Complete ] dest=/tmp/tmptanpies6/weights size=\"462 MB\" total_elapsed=1.507s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\nDownloaded weights in 1.55s\nLoaded LoRAs in 15.63s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.13s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.01it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.05s/it]\n 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.11s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it]\n 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it]\n 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it]\n 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.13s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.13s/it]\n 61%|██████ | 17/28 [00:18<00:12, 1.13s/it]\n 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.13s/it]\n 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it]\n 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it]\n 93%|█████████▎| 26/28 [00:29<00:02, 1.13s/it]\n 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.12s/it]", "metrics": { "predict_time": 48.696478185, "total_time": 61.795266 }, "output": [ "https://replicate.delivery/yhqm/Kmv7puJD5tYIBZa65f37kPluDsoS6j6opeevZM05PPLNX0eNB/out-0.webp", "https://replicate.delivery/yhqm/gHt3i3sYGc5jCBrjeiN7q72prR5bAtXSrfedETjWfaRZuo9NB/out-1.webp", "https://replicate.delivery/yhqm/KmBomV5Tm2ZFHxkMfazRBMaJu4UWp9OEPUqTZdalLejmLafmA/out-2.webp", "https://replicate.delivery/yhqm/2lPb8yQkmg5jAdqDBFIZ0HuyQmrFPeuPHVBchMCVrJmzFtvJA/out-3.webp" ], "started_at": "2024-09-22T10:25:58.500788Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/tnxffernq9rm20cj35298s0pdw", "cancel": "https://api.replicate.com/v1/predictions/tnxffernq9rm20cj35298s0pdw/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 12959 Prompt: A tabby cat lounging on a sun-dappled windowsill, faded, polaroid style [!] txt2img mode Using dev model free=6583963889664 Downloading weights 2024-09-22T10:25:58Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmptanpies6/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar 2024-09-22T10:26:00Z | INFO | [ Complete ] dest=/tmp/tmptanpies6/weights size="462 MB" total_elapsed=1.507s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar Downloaded weights in 1.55s Loaded LoRAs in 15.63s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.13s/it] 7%|▋ | 2/28 [00:02<00:25, 1.01it/s] 11%|█ | 3/28 [00:03<00:26, 1.05s/it] 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.11s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it] 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it] 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it] 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it] 50%|█████ | 14/28 [00:15<00:15, 1.13s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.13s/it] 61%|██████ | 17/28 [00:18<00:12, 1.13s/it] 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.13s/it] 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it] 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it] 93%|█████████▎| 26/28 [00:29<00:02, 1.13s/it] 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.12s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badIDxys00f9vq1rm40cj352sbne49wStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- woman, polaroid style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "woman, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "woman, polaroid style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "woman, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "woman, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:28:12.663478Z", "created_at": "2024-09-22T10:27:00.664000Z", "data_removed": false, "error": null, "id": "xys00f9vq1rm40cj352sbne49w", "input": { "model": "dev", "prompt": "woman, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 9131\nPrompt: woman, polaroid style\n[!] txt2img mode\nUsing dev model\nfree=6833853698048\nDownloading weights\n2024-09-22T10:27:21Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpvp_qb2c8/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\n2024-09-22T10:27:24Z | INFO | [ Complete ] dest=/tmp/tmpvp_qb2c8/weights size=\"462 MB\" total_elapsed=3.133s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\nDownloaded weights in 3.19s\nLoaded LoRAs in 18.36s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.13s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.01it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.05s/it]\n 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.09s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it]\n 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it]\n 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it]\n 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.12s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.13s/it]\n 61%|██████ | 17/28 [00:18<00:12, 1.13s/it]\n 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.13s/it]\n 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it]\n 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it]\n 93%|█████████▎| 26/28 [00:29<00:02, 1.13s/it]\n 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.12s/it]", "metrics": { "predict_time": 51.290427747, "total_time": 71.999478 }, "output": [ "https://replicate.delivery/yhqm/kA46GgkgFc5dCtqwy1RV8kQWjbE5QNvOjMo002VKksMPj23E/out-0.webp", "https://replicate.delivery/yhqm/XnP6z1sEM5pUFJz4FppG7fWDQKf7P6c5XEtBpzAYPSR8MafmA/out-1.webp", "https://replicate.delivery/yhqm/0fHfakHtWdpB2U87izup1e5LeHFLNCFfi4GRc6COeefV8MafmA/out-2.webp", "https://replicate.delivery/yhqm/GwPWjeLyTOzjVyvFH8CwZhNEvfcJNs1c0uUdFs6eIRW5Z0eNB/out-3.webp" ], "started_at": "2024-09-22T10:27:21.373050Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/xys00f9vq1rm40cj352sbne49w", "cancel": "https://api.replicate.com/v1/predictions/xys00f9vq1rm40cj352sbne49w/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 9131 Prompt: woman, polaroid style [!] txt2img mode Using dev model free=6833853698048 Downloading weights 2024-09-22T10:27:21Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpvp_qb2c8/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar 2024-09-22T10:27:24Z | INFO | [ Complete ] dest=/tmp/tmpvp_qb2c8/weights size="462 MB" total_elapsed=3.133s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar Downloaded weights in 3.19s Loaded LoRAs in 18.36s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.13s/it] 7%|▋ | 2/28 [00:02<00:25, 1.01it/s] 11%|█ | 3/28 [00:03<00:26, 1.05s/it] 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.09s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it] 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it] 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it] 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it] 50%|█████ | 14/28 [00:15<00:15, 1.12s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.13s/it] 61%|██████ | 17/28 [00:18<00:12, 1.13s/it] 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.13s/it] 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it] 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it] 93%|█████████▎| 26/28 [00:29<00:02, 1.13s/it] 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.12s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badIDzqnzpqp0c9rm20cj353aze65smStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- Road trip, view through car window of desert highway, light leak effect, polaroid style style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "Road trip, view through car window of desert highway, light leak effect, polaroid style style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "Road trip, view through car window of desert highway, light leak effect, polaroid style style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "Road trip, view through car window of desert highway, light leak effect, polaroid style style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "Road trip, view through car window of desert highway, light leak effect, polaroid style style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:29:29.750715Z", "created_at": "2024-09-22T10:28:40.162000Z", "data_removed": false, "error": null, "id": "zqnzpqp0c9rm20cj353aze65sm", "input": { "model": "dev", "prompt": "Road trip, view through car window of desert highway, light leak effect, polaroid style style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 276\nPrompt: Road trip, view through car window of desert highway, light leak effect, polaroid style style\n[!] txt2img mode\nUsing dev model\nfree=9119141801984\nDownloading weights\n2024-09-22T10:28:40Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp6phxjy4u/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\n2024-09-22T10:28:43Z | INFO | [ Complete ] dest=/tmp/tmp6phxjy4u/weights size=\"462 MB\" total_elapsed=3.303s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\nDownloaded weights in 3.35s\nLoaded LoRAs in 16.66s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.13s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.01it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.05s/it]\n 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.11s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.11s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it]\n 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it]\n 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it]\n 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.12s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.12s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it]\n 61%|██████ | 17/28 [00:18<00:12, 1.12s/it]\n 64%|██████▍ | 18/28 [00:20<00:11, 1.12s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.12s/it]\n 71%|███████▏ | 20/28 [00:22<00:08, 1.12s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.12s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.12s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.12s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.12s/it]\n 89%|████████▉ | 25/28 [00:27<00:03, 1.12s/it]\n 93%|█████████▎| 26/28 [00:28<00:02, 1.12s/it]\n 96%|█████████▋| 27/28 [00:30<00:01, 1.12s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.12s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.12s/it]", "metrics": { "predict_time": 49.57388277, "total_time": 49.588715 }, "output": [ "https://replicate.delivery/yhqm/8GuXZC1gRP6xLFadlf3CCBJXFasBPPyod92Es4C0YSzEHtvJA/out-0.webp", "https://replicate.delivery/yhqm/f2lB9a3R44WwO68C61TVg0zf94SmGb8BHfAHOH44ofIm4o9NB/out-1.webp", "https://replicate.delivery/yhqm/bfhGsqGsDbVpeUC7x6pfEodW8LNFugJVl3QJ3EKtHgfm4o9NB/out-2.webp", "https://replicate.delivery/yhqm/9BKG5cz8FXLwJ19tB5R2JNzAe2sp6ewvkwaowTlHt1iJOafmA/out-3.webp" ], "started_at": "2024-09-22T10:28:40.176832Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/zqnzpqp0c9rm20cj353aze65sm", "cancel": "https://api.replicate.com/v1/predictions/zqnzpqp0c9rm20cj353aze65sm/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 276 Prompt: Road trip, view through car window of desert highway, light leak effect, polaroid style style [!] txt2img mode Using dev model free=9119141801984 Downloading weights 2024-09-22T10:28:40Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp6phxjy4u/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar 2024-09-22T10:28:43Z | INFO | [ Complete ] dest=/tmp/tmp6phxjy4u/weights size="462 MB" total_elapsed=3.303s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar Downloaded weights in 3.35s Loaded LoRAs in 16.66s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.13s/it] 7%|▋ | 2/28 [00:02<00:25, 1.01it/s] 11%|█ | 3/28 [00:03<00:26, 1.05s/it] 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.11s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.11s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it] 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it] 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it] 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it] 50%|█████ | 14/28 [00:15<00:15, 1.12s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.12s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it] 61%|██████ | 17/28 [00:18<00:12, 1.12s/it] 64%|██████▍ | 18/28 [00:20<00:11, 1.12s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.12s/it] 71%|███████▏ | 20/28 [00:22<00:08, 1.12s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.12s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.12s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.12s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.12s/it] 89%|████████▉ | 25/28 [00:27<00:03, 1.12s/it] 93%|█████████▎| 26/28 [00:28<00:02, 1.12s/it] 96%|█████████▋| 27/28 [00:30<00:01, 1.12s/it] 100%|██████████| 28/28 [00:31<00:00, 1.12s/it] 100%|██████████| 28/28 [00:31<00:00, 1.12s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badID0asfgnf6nxrm60cj353sjaa41cStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- the morning after new years eve with scattered party tinsel on the floor, still life, light particles, no humans, polaroid style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "the morning after new years eve with scattered party tinsel on the floor, still life, light particles, no humans, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "the morning after new years eve with scattered party tinsel on the floor, still life, light particles, no humans, polaroid style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "the morning after new years eve with scattered party tinsel on the floor, still life, light particles, no humans, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "the morning after new years eve with scattered party tinsel on the floor, still life, light particles, no humans, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:30:42.505295Z", "created_at": "2024-09-22T10:29:55.503000Z", "data_removed": false, "error": null, "id": "0asfgnf6nxrm60cj353sjaa41c", "input": { "model": "dev", "prompt": "the morning after new years eve with scattered party tinsel on the floor, still life, light particles, no humans, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 3393\nPrompt: the morning after new years eve with scattered party tinsel on the floor, still life, light particles, no humans, polaroid style\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 13.94s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.12s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.01it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.05s/it]\n 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.09s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it]\n 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it]\n 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it]\n 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.12s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it]\n 61%|██████ | 17/28 [00:18<00:12, 1.13s/it]\n 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.13s/it]\n 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it]\n 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it]\n 93%|█████████▎| 26/28 [00:29<00:02, 1.13s/it]\n 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.12s/it]", "metrics": { "predict_time": 46.994679965, "total_time": 47.002295 }, "output": [ "https://replicate.delivery/yhqm/rU8ZAn145UJZNpmNz6i4u9fl4GGAQ7MBxuzsz0utzxApHtvJA/out-0.webp", "https://replicate.delivery/yhqm/fMW2oeZujHn8R0veoCXagneRleME0R6H3SGMgECOBvHX6R7bC/out-1.webp", "https://replicate.delivery/yhqm/tQKB9aLhgD48LBzBlBdnL5jt310oc9P9LFQvPV9gOeCpHtvJA/out-2.webp", "https://replicate.delivery/yhqm/welCcvmEGIXLKSql1Z1zeCx5HieduQYC8bwd9SMLxYUleo9NB/out-3.webp" ], "started_at": "2024-09-22T10:29:55.510615Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/0asfgnf6nxrm60cj353sjaa41c", "cancel": "https://api.replicate.com/v1/predictions/0asfgnf6nxrm60cj353sjaa41c/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 3393 Prompt: the morning after new years eve with scattered party tinsel on the floor, still life, light particles, no humans, polaroid style [!] txt2img mode Using dev model Loaded LoRAs in 13.94s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.12s/it] 7%|▋ | 2/28 [00:02<00:25, 1.01it/s] 11%|█ | 3/28 [00:03<00:26, 1.05s/it] 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.09s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it] 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it] 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it] 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it] 50%|█████ | 14/28 [00:15<00:15, 1.12s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it] 61%|██████ | 17/28 [00:18<00:12, 1.13s/it] 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.13s/it] 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it] 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it] 93%|█████████▎| 26/28 [00:29<00:02, 1.13s/it] 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.12s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badID6fvtsfbadsrm60cj354r3xpxbwStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- Teenage bedroom with posters and clutter, warm color palette, polaroid style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "Teenage bedroom with posters and clutter, warm color palette, polaroid style ", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "Teenage bedroom with posters and clutter, warm color palette, polaroid style ", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "Teenage bedroom with posters and clutter, warm color palette, polaroid style ", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "Teenage bedroom with posters and clutter, warm color palette, polaroid style ", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:33:55.290526Z", "created_at": "2024-09-22T10:31:34.766000Z", "data_removed": false, "error": null, "id": "6fvtsfbadsrm60cj354r3xpxbw", "input": { "model": "dev", "prompt": "Teenage bedroom with posters and clutter, warm color palette, polaroid style ", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 57949\nPrompt: Teenage bedroom with posters and clutter, warm color palette, polaroid style\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 21.41s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.12s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.01it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.05s/it]\n 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.09s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it]\n 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it]\n 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it]\n 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.12s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.12s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it]\n 61%|██████ | 17/28 [00:18<00:12, 1.12s/it]\n 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.13s/it]\n 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it]\n 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it]\n 93%|█████████▎| 26/28 [00:29<00:02, 1.13s/it]\n 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.12s/it]", "metrics": { "predict_time": 54.438393068, "total_time": 140.524526 }, "output": [ "https://replicate.delivery/yhqm/6ePWeIWEVUidg0J6OJsq6R7DwWNXcPe1q58ru8BLqOFkk0eNB/out-0.webp", "https://replicate.delivery/yhqm/vLUul30eMaWoayI0r6wRuebbI2aRsJrStagb7zGD3xenk0eNB/out-1.webp", "https://replicate.delivery/yhqm/hSrmb5m07trjA1IuQsEn3lup0mXS33eVedNshqOylsmTSafmA/out-2.webp", "https://replicate.delivery/yhqm/y5MiBzmtAu79HpUSBmGexIRkvy2IT41RMyZVIBaoe6gTSafmA/out-3.webp" ], "started_at": "2024-09-22T10:33:00.852133Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/6fvtsfbadsrm60cj354r3xpxbw", "cancel": "https://api.replicate.com/v1/predictions/6fvtsfbadsrm60cj354r3xpxbw/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 57949 Prompt: Teenage bedroom with posters and clutter, warm color palette, polaroid style [!] txt2img mode Using dev model Loaded LoRAs in 21.41s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.12s/it] 7%|▋ | 2/28 [00:02<00:25, 1.01it/s] 11%|█ | 3/28 [00:03<00:26, 1.05s/it] 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.09s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it] 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it] 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it] 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it] 50%|█████ | 14/28 [00:15<00:15, 1.12s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.12s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it] 61%|██████ | 17/28 [00:18<00:12, 1.12s/it] 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.13s/it] 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it] 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it] 93%|█████████▎| 26/28 [00:29<00:02, 1.13s/it] 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.12s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badIDngb3g57nhsrm40cj355r1xya7rStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- A young woman with tousled hair and minimal makeup, wearing a oversized flannel shirt, looking directly at the camera with a slight smile. The background is slightly out of focus, suggesting a cozy bedroom, polaroid style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "A young woman with tousled hair and minimal makeup, wearing a oversized flannel shirt, looking directly at the camera with a slight smile. The background is slightly out of focus, suggesting a cozy bedroom, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "A young woman with tousled hair and minimal makeup, wearing a oversized flannel shirt, looking directly at the camera with a slight smile. The background is slightly out of focus, suggesting a cozy bedroom, polaroid style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "A young woman with tousled hair and minimal makeup, wearing a oversized flannel shirt, looking directly at the camera with a slight smile. The background is slightly out of focus, suggesting a cozy bedroom, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "A young woman with tousled hair and minimal makeup, wearing a oversized flannel shirt, looking directly at the camera with a slight smile. The background is slightly out of focus, suggesting a cozy bedroom, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:35:08.768152Z", "created_at": "2024-09-22T10:34:21.454000Z", "data_removed": false, "error": null, "id": "ngb3g57nhsrm40cj355r1xya7r", "input": { "model": "dev", "prompt": "A young woman with tousled hair and minimal makeup, wearing a oversized flannel shirt, looking directly at the camera with a slight smile. The background is slightly out of focus, suggesting a cozy bedroom, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 22471\nPrompt: A young woman with tousled hair and minimal makeup, wearing a oversized flannel shirt, looking directly at the camera with a slight smile. The background is slightly out of focus, suggesting a cozy bedroom, polaroid style\n[!] txt2img mode\nUsing dev model\nfree=7476212371456\nDownloading weights\n2024-09-22T10:34:21Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpk6g_no0a/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\n2024-09-22T10:34:23Z | INFO | [ Complete ] dest=/tmp/tmpk6g_no0a/weights size=\"462 MB\" total_elapsed=1.511s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\nDownloaded weights in 1.62s\nLoaded LoRAs in 14.18s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.12s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.01it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.05s/it]\n 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.11s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it]\n 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it]\n 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it]\n 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.13s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.13s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.13s/it]\n 61%|██████ | 17/28 [00:18<00:12, 1.13s/it]\n 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.13s/it]\n 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it]\n 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it]\n 93%|█████████▎| 26/28 [00:29<00:02, 1.13s/it]\n 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.12s/it]", "metrics": { "predict_time": 47.302577354, "total_time": 47.314152 }, "output": [ "https://replicate.delivery/yhqm/AG9EwhdjRp7YOhO2x1Sj0vFdfYtVX3oOJxOUyqjLOeAcTafmA/out-0.webp", "https://replicate.delivery/yhqm/R3Wra6hn2rpMD9MeUvreDcCoGQbZALVySmVY554wgRacTafmA/out-1.webp", "https://replicate.delivery/yhqm/lpObMfM4ZVWqNyeC70C4Yw3cA3rAIIC5cm7XcWirfsn4m0eNB/out-2.webp", "https://replicate.delivery/yhqm/c6O9Ipx7OjIEOBNs9AqOHdJ6QIvbkBoOClJfGhUKooYuJtvJA/out-3.webp" ], "started_at": "2024-09-22T10:34:21.465574Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ngb3g57nhsrm40cj355r1xya7r", "cancel": "https://api.replicate.com/v1/predictions/ngb3g57nhsrm40cj355r1xya7r/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 22471 Prompt: A young woman with tousled hair and minimal makeup, wearing a oversized flannel shirt, looking directly at the camera with a slight smile. The background is slightly out of focus, suggesting a cozy bedroom, polaroid style [!] txt2img mode Using dev model free=7476212371456 Downloading weights 2024-09-22T10:34:21Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpk6g_no0a/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar 2024-09-22T10:34:23Z | INFO | [ Complete ] dest=/tmp/tmpk6g_no0a/weights size="462 MB" total_elapsed=1.511s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar Downloaded weights in 1.62s Loaded LoRAs in 14.18s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.12s/it] 7%|▋ | 2/28 [00:02<00:25, 1.01it/s] 11%|█ | 3/28 [00:03<00:26, 1.05s/it] 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.11s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it] 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it] 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it] 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.13s/it] 50%|█████ | 14/28 [00:15<00:15, 1.13s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.13s/it] 61%|██████ | 17/28 [00:18<00:12, 1.13s/it] 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.13s/it] 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it] 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it] 93%|█████████▎| 26/28 [00:29<00:02, 1.13s/it] 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.12s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badIDd98dqar1hdrm00cj356spb48n4StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- closeup of an eye, pink white and blue, aesthetic polaroid style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "closeup of an eye, pink white and blue, aesthetic polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "closeup of an eye, pink white and blue, aesthetic polaroid style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "closeup of an eye, pink white and blue, aesthetic polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "closeup of an eye, pink white and blue, aesthetic polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:36:17.610413Z", "created_at": "2024-09-22T10:35:30.059000Z", "data_removed": false, "error": null, "id": "d98dqar1hdrm00cj356spb48n4", "input": { "model": "dev", "prompt": "closeup of an eye, pink white and blue, aesthetic polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 14220\nPrompt: closeup of an eye, pink white and blue, aesthetic polaroid style\n[!] txt2img mode\nUsing dev model\nfree=6896858685440\nDownloading weights\n2024-09-22T10:35:30Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp47m2vam9/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\n2024-09-22T10:35:32Z | INFO | [ Complete ] dest=/tmp/tmp47m2vam9/weights size=\"462 MB\" total_elapsed=2.061s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\nDownloaded weights in 2.11s\nLoaded LoRAs in 14.61s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.12s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.01it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.05s/it]\n 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.11s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it]\n 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it]\n 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it]\n 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.12s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.12s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it]\n 61%|██████ | 17/28 [00:18<00:12, 1.12s/it]\n 64%|██████▍ | 18/28 [00:20<00:11, 1.12s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.12s/it]\n 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it]\n 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it]\n 93%|█████████▎| 26/28 [00:29<00:02, 1.13s/it]\n 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.12s/it]", "metrics": { "predict_time": 47.542324645, "total_time": 47.551413 }, "output": [ "https://replicate.delivery/yhqm/SFJtTCVQ7BqRGFNtsQ4SN9GlJ3OIfui16e84bkcIJC3hUafmA/out-0.webp", "https://replicate.delivery/yhqm/eDEs38YECAT8biiLmdd0yTGrCrV3LhXqsux1VLfOCe8Cp0eNB/out-1.webp", "https://replicate.delivery/yhqm/cnf0XqxFoSS2NqX7noAlEj3aqd6r6Ozte6ieGzQ5W3PCp0eNB/out-2.webp", "https://replicate.delivery/yhqm/sb0dqiY3W45fDy35XymeH2eYLGiYEfqDTBzyQFpbqz9FSp9NB/out-3.webp" ], "started_at": "2024-09-22T10:35:30.068089Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/d98dqar1hdrm00cj356spb48n4", "cancel": "https://api.replicate.com/v1/predictions/d98dqar1hdrm00cj356spb48n4/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 14220 Prompt: closeup of an eye, pink white and blue, aesthetic polaroid style [!] txt2img mode Using dev model free=6896858685440 Downloading weights 2024-09-22T10:35:30Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp47m2vam9/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar 2024-09-22T10:35:32Z | INFO | [ Complete ] dest=/tmp/tmp47m2vam9/weights size="462 MB" total_elapsed=2.061s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar Downloaded weights in 2.11s Loaded LoRAs in 14.61s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.12s/it] 7%|▋ | 2/28 [00:02<00:25, 1.01it/s] 11%|█ | 3/28 [00:03<00:26, 1.05s/it] 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.11s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it] 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it] 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it] 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it] 50%|█████ | 14/28 [00:15<00:15, 1.12s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.12s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it] 61%|██████ | 17/28 [00:18<00:12, 1.12s/it] 64%|██████▍ | 18/28 [00:20<00:11, 1.12s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.12s/it] 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it] 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it] 93%|█████████▎| 26/28 [00:29<00:02, 1.13s/it] 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.12s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badIDhefc68yv2hrm00cj3579e8a8a4StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a woman with long red hair smiling, polaroid style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a woman with long red hair smiling, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "a woman with long red hair smiling, polaroid style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "a woman with long red hair smiling, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "a woman with long red hair smiling, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:38:38.278791Z", "created_at": "2024-09-22T10:37:31.284000Z", "data_removed": false, "error": null, "id": "hefc68yv2hrm00cj3579e8a8a4", "input": { "model": "dev", "prompt": "a woman with long red hair smiling, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 21784\nPrompt: a woman with long red hair smiling, polaroid style\n[!] txt2img mode\nUsing dev model\nfree=7887031742464\nDownloading weights\n2024-09-22T10:37:31Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpgv41qvxu/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\n2024-09-22T10:37:32Z | INFO | [ Complete ] dest=/tmp/tmpgv41qvxu/weights size=\"462 MB\" total_elapsed=1.588s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\nDownloaded weights in 1.64s\nLoaded LoRAs in 34.09s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.12s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.02it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.04s/it]\n 14%|█▍ | 4/28 [00:04<00:25, 1.07s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.09s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.11s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.11s/it]\n 36%|███▌ | 10/28 [00:10<00:20, 1.12s/it]\n 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it]\n 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.12s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.12s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it]\n 61%|██████ | 17/28 [00:18<00:12, 1.12s/it]\n 64%|██████▍ | 18/28 [00:19<00:11, 1.12s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.12s/it]\n 71%|███████▏ | 20/28 [00:22<00:08, 1.12s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.12s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.12s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it]\n 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it]\n 93%|█████████▎| 26/28 [00:28<00:02, 1.13s/it]\n 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.11s/it]", "metrics": { "predict_time": 66.984164864, "total_time": 66.994791 }, "output": [ "https://replicate.delivery/yhqm/l6FQpn4YjP7CJpSMElUI5jdMfCqvufiPC9qHP5o0YIJtWafmA/out-0.webp", "https://replicate.delivery/yhqm/YkAq91WSE1J8BRnOY0KMuOULpdzKP6iCSxXNQJj8iiirl23E/out-1.webp", "https://replicate.delivery/yhqm/1xgdvMOZlDaLKFgGJx0MggefgfhJ6VevfLiEGtu7MQJw1S7bC/out-2.webp", "https://replicate.delivery/yhqm/f8hv3xQIfgpvx0niQS91ebfXunl8NmGxa2S1tGOJSiY6ap9NB/out-3.webp" ], "started_at": "2024-09-22T10:37:31.294626Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/hefc68yv2hrm00cj3579e8a8a4", "cancel": "https://api.replicate.com/v1/predictions/hefc68yv2hrm00cj3579e8a8a4/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 21784 Prompt: a woman with long red hair smiling, polaroid style [!] txt2img mode Using dev model free=7887031742464 Downloading weights 2024-09-22T10:37:31Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpgv41qvxu/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar 2024-09-22T10:37:32Z | INFO | [ Complete ] dest=/tmp/tmpgv41qvxu/weights size="462 MB" total_elapsed=1.588s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar Downloaded weights in 1.64s Loaded LoRAs in 34.09s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.12s/it] 7%|▋ | 2/28 [00:02<00:25, 1.02it/s] 11%|█ | 3/28 [00:03<00:26, 1.04s/it] 14%|█▍ | 4/28 [00:04<00:25, 1.07s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.09s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.11s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.11s/it] 36%|███▌ | 10/28 [00:10<00:20, 1.12s/it] 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it] 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it] 50%|█████ | 14/28 [00:15<00:15, 1.12s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.12s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it] 61%|██████ | 17/28 [00:18<00:12, 1.12s/it] 64%|██████▍ | 18/28 [00:19<00:11, 1.12s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.12s/it] 71%|███████▏ | 20/28 [00:22<00:08, 1.12s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.12s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.12s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it] 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it] 93%|█████████▎| 26/28 [00:28<00:02, 1.13s/it] 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.11s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badIDsakpgjh3xnrm40cj3588qny7v8StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a cute kitten, polaroid style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a cute kitten, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "a cute kitten, polaroid style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "a cute kitten, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "a cute kitten, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:39:46.759931Z", "created_at": "2024-09-22T10:38:55.469000Z", "data_removed": false, "error": null, "id": "sakpgjh3xnrm40cj3588qny7v8", "input": { "model": "dev", "prompt": "a cute kitten, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 7932\nPrompt: a cute kitten, polaroid style\n[!] txt2img mode\nUsing dev model\nfree=7782126473216\nDownloading weights\n2024-09-22T10:38:59Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpr2r613_3/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\n2024-09-22T10:39:00Z | INFO | [ Complete ] dest=/tmp/tmpr2r613_3/weights size=\"462 MB\" total_elapsed=1.269s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\nDownloaded weights in 1.31s\nLoaded LoRAs in 14.82s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.12s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.02it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.04s/it]\n 14%|█▍ | 4/28 [00:04<00:25, 1.07s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.09s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.11s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.11s/it]\n 36%|███▌ | 10/28 [00:10<00:20, 1.11s/it]\n 39%|███▉ | 11/28 [00:12<00:18, 1.11s/it]\n 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.12s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.12s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it]\n 61%|██████ | 17/28 [00:18<00:12, 1.12s/it]\n 64%|██████▍ | 18/28 [00:19<00:11, 1.12s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.12s/it]\n 71%|███████▏ | 20/28 [00:22<00:08, 1.12s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.12s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.12s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.12s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.12s/it]\n 89%|████████▉ | 25/28 [00:27<00:03, 1.12s/it]\n 93%|█████████▎| 26/28 [00:28<00:02, 1.12s/it]\n 96%|█████████▋| 27/28 [00:29<00:01, 1.12s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.12s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.11s/it]", "metrics": { "predict_time": 47.517586986, "total_time": 51.290931 }, "output": [ "https://replicate.delivery/yhqm/mUw9MCbN3JKbJpwU4B0VuUgzg7UMrf4nZfduPnOeJlVkv0eNB/out-0.webp", "https://replicate.delivery/yhqm/y9AmPIygET7QOtgxTWBnDiWErfBOnvX7vpfftjcBa27kv0eNB/out-1.webp", "https://replicate.delivery/yhqm/Rqc83dfJW80UekFOR8sy1xPBeyQyfhfFz6N4bbXnDlRSel23E/out-2.webp", "https://replicate.delivery/yhqm/7uzrQqJmBvp1M16KVM8JV06azQXWeAQe3cyjsxC7R6vyXafmA/out-3.webp" ], "started_at": "2024-09-22T10:38:59.242344Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/sakpgjh3xnrm40cj3588qny7v8", "cancel": "https://api.replicate.com/v1/predictions/sakpgjh3xnrm40cj3588qny7v8/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 7932 Prompt: a cute kitten, polaroid style [!] txt2img mode Using dev model free=7782126473216 Downloading weights 2024-09-22T10:38:59Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpr2r613_3/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar 2024-09-22T10:39:00Z | INFO | [ Complete ] dest=/tmp/tmpr2r613_3/weights size="462 MB" total_elapsed=1.269s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar Downloaded weights in 1.31s Loaded LoRAs in 14.82s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.12s/it] 7%|▋ | 2/28 [00:02<00:25, 1.02it/s] 11%|█ | 3/28 [00:03<00:26, 1.04s/it] 14%|█▍ | 4/28 [00:04<00:25, 1.07s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.09s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.11s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.11s/it] 36%|███▌ | 10/28 [00:10<00:20, 1.11s/it] 39%|███▉ | 11/28 [00:12<00:18, 1.11s/it] 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it] 50%|█████ | 14/28 [00:15<00:15, 1.12s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.12s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it] 61%|██████ | 17/28 [00:18<00:12, 1.12s/it] 64%|██████▍ | 18/28 [00:19<00:11, 1.12s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.12s/it] 71%|███████▏ | 20/28 [00:22<00:08, 1.12s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.12s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.12s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.12s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.12s/it] 89%|████████▉ | 25/28 [00:27<00:03, 1.12s/it] 93%|█████████▎| 26/28 [00:28<00:02, 1.12s/it] 96%|█████████▋| 27/28 [00:29<00:01, 1.12s/it] 100%|██████████| 28/28 [00:31<00:00, 1.12s/it] 100%|██████████| 28/28 [00:31<00:00, 1.11s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badIDzhhmq3gnksrm00cj358rfwc4tmStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a woman with long blonde hair wearing big round hippie sunglasses with a slight smile, white oversized fur coat, black dress, early evening in the city, polaroid style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a woman with long blonde hair wearing big round hippie sunglasses with a slight smile, white oversized fur coat, black dress, early evening in the city, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "a woman with long blonde hair wearing big round hippie sunglasses with a slight smile, white oversized fur coat, black dress, early evening in the city, polaroid style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "a woman with long blonde hair wearing big round hippie sunglasses with a slight smile, white oversized fur coat, black dress, early evening in the city, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "a woman with long blonde hair wearing big round hippie sunglasses with a slight smile, white oversized fur coat, black dress, early evening in the city, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:40:43.823594Z", "created_at": "2024-09-22T10:39:57.342000Z", "data_removed": false, "error": null, "id": "zhhmq3gnksrm00cj358rfwc4tm", "input": { "model": "dev", "prompt": "a woman with long blonde hair wearing big round hippie sunglasses with a slight smile, white oversized fur coat, black dress, early evening in the city, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 11935\nPrompt: a woman with long blonde hair wearing big round hippie sunglasses with a slight smile, white oversized fur coat, black dress, early evening in the city, polaroid style\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 13.50s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.12s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.01it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.05s/it]\n 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.11s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it]\n 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it]\n 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it]\n 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.13s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.13s/it]\n 61%|██████ | 17/28 [00:18<00:12, 1.13s/it]\n 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.13s/it]\n 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it]\n 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it]\n 93%|█████████▎| 26/28 [00:29<00:02, 1.13s/it]\n 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.12s/it]", "metrics": { "predict_time": 46.470104144, "total_time": 46.481594 }, "output": [ "https://replicate.delivery/yhqm/INmWfWYgexqFUktIExod3kJWszinc8PIfXomGfR7plefKm23E/out-0.webp", "https://replicate.delivery/yhqm/KlNakheDHT2aM6qaR2li1Q93xP6EGn9JPYfTmlkyibCrYafmA/out-1.webp", "https://replicate.delivery/yhqm/XEFk2wU3B45JF5At23AxLAniuEko8kFGMS48hepGWQwVMtvJA/out-2.webp", "https://replicate.delivery/yhqm/lJvzyvW8MEYtNRRKvVX8HA1rXf4Xdfl4hYo44jxRSkprYafmA/out-3.webp" ], "started_at": "2024-09-22T10:39:57.353489Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/zhhmq3gnksrm00cj358rfwc4tm", "cancel": "https://api.replicate.com/v1/predictions/zhhmq3gnksrm00cj358rfwc4tm/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 11935 Prompt: a woman with long blonde hair wearing big round hippie sunglasses with a slight smile, white oversized fur coat, black dress, early evening in the city, polaroid style [!] txt2img mode Using dev model Loaded LoRAs in 13.50s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.12s/it] 7%|▋ | 2/28 [00:02<00:25, 1.01it/s] 11%|█ | 3/28 [00:03<00:26, 1.05s/it] 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.11s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it] 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it] 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it] 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it] 50%|█████ | 14/28 [00:15<00:15, 1.13s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.13s/it] 61%|██████ | 17/28 [00:18<00:12, 1.13s/it] 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.13s/it] 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it] 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it] 93%|█████████▎| 26/28 [00:29<00:02, 1.13s/it] 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.12s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badIDgx0j52smsdrm00cj359atsap3mStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- A candid shot of a child's hand reaching out to pet a curious deer at a petting zoo. The deer's nose is slightly blurred as it moves towards the hand, creating a sense of motion. The background is busy but out of focus, hinting at other animals and visitors, polaroid style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "A candid shot of a child's hand reaching out to pet a curious deer at a petting zoo. The deer's nose is slightly blurred as it moves towards the hand, creating a sense of motion. The background is busy but out of focus, hinting at other animals and visitors, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "A candid shot of a child's hand reaching out to pet a curious deer at a petting zoo. The deer's nose is slightly blurred as it moves towards the hand, creating a sense of motion. The background is busy but out of focus, hinting at other animals and visitors, polaroid style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "A candid shot of a child's hand reaching out to pet a curious deer at a petting zoo. The deer's nose is slightly blurred as it moves towards the hand, creating a sense of motion. The background is busy but out of focus, hinting at other animals and visitors, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "A candid shot of a child\'s hand reaching out to pet a curious deer at a petting zoo. The deer\'s nose is slightly blurred as it moves towards the hand, creating a sense of motion. The background is busy but out of focus, hinting at other animals and visitors, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:41:59.344247Z", "created_at": "2024-09-22T10:41:10.859000Z", "data_removed": false, "error": null, "id": "gx0j52smsdrm00cj359atsap3m", "input": { "model": "dev", "prompt": "A candid shot of a child's hand reaching out to pet a curious deer at a petting zoo. The deer's nose is slightly blurred as it moves towards the hand, creating a sense of motion. The background is busy but out of focus, hinting at other animals and visitors, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 38900\nPrompt: A candid shot of a child's hand reaching out to pet a curious deer at a petting zoo. The deer's nose is slightly blurred as it moves towards the hand, creating a sense of motion. The background is busy but out of focus, hinting at other animals and visitors, polaroid style\n[!] txt2img mode\nUsing dev model\nfree=7885125451776\nDownloading weights\n2024-09-22T10:41:10Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpc0731zhn/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\n2024-09-22T10:41:12Z | INFO | [ Complete ] dest=/tmp/tmpc0731zhn/weights size=\"462 MB\" total_elapsed=1.660s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\nDownloaded weights in 1.72s\nLoaded LoRAs in 15.60s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.12s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.01it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.05s/it]\n 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.09s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.11s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.11s/it]\n 36%|███▌ | 10/28 [00:10<00:20, 1.12s/it]\n 39%|███▉ | 11/28 [00:12<00:18, 1.12s/it]\n 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.12s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.12s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it]\n 61%|██████ | 17/28 [00:18<00:12, 1.12s/it]\n 64%|██████▍ | 18/28 [00:19<00:11, 1.12s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.12s/it]\n 71%|███████▏ | 20/28 [00:22<00:08, 1.12s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.12s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.12s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.12s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.12s/it]\n 89%|████████▉ | 25/28 [00:27<00:03, 1.12s/it]\n 93%|█████████▎| 26/28 [00:28<00:02, 1.12s/it]\n 96%|█████████▋| 27/28 [00:30<00:01, 1.12s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.12s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.11s/it]", "metrics": { "predict_time": 48.47645544, "total_time": 48.485247 }, "output": [ "https://replicate.delivery/yhqm/IepYZkZ8fFo2IUAZtg5fMdCurxVk7UrCWlJAqChmGIDtz0eNB/out-0.webp", "https://replicate.delivery/yhqm/fmDs7DfelEKfOTIfVp66emTDHxohejdsaVHriN8wEaiu7MtvJA/out-1.webp", "https://replicate.delivery/yhqm/fffQx2TXUIe62Rrgkcbx7fdZgBottP6sSYb3KLntwS29OT7bC/out-2.webp", "https://replicate.delivery/yhqm/1msV4NfKSg2XFKWOF9hSlhHK2MQv5lxnZBnYKO9Mo4m7MtvJA/out-3.webp" ], "started_at": "2024-09-22T10:41:10.867791Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/gx0j52smsdrm00cj359atsap3m", "cancel": "https://api.replicate.com/v1/predictions/gx0j52smsdrm00cj359atsap3m/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 38900 Prompt: A candid shot of a child's hand reaching out to pet a curious deer at a petting zoo. The deer's nose is slightly blurred as it moves towards the hand, creating a sense of motion. The background is busy but out of focus, hinting at other animals and visitors, polaroid style [!] txt2img mode Using dev model free=7885125451776 Downloading weights 2024-09-22T10:41:10Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpc0731zhn/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar 2024-09-22T10:41:12Z | INFO | [ Complete ] dest=/tmp/tmpc0731zhn/weights size="462 MB" total_elapsed=1.660s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar Downloaded weights in 1.72s Loaded LoRAs in 15.60s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.12s/it] 7%|▋ | 2/28 [00:02<00:25, 1.01it/s] 11%|█ | 3/28 [00:03<00:26, 1.05s/it] 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.09s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.11s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.11s/it] 36%|███▌ | 10/28 [00:10<00:20, 1.12s/it] 39%|███▉ | 11/28 [00:12<00:18, 1.12s/it] 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it] 50%|█████ | 14/28 [00:15<00:15, 1.12s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.12s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it] 61%|██████ | 17/28 [00:18<00:12, 1.12s/it] 64%|██████▍ | 18/28 [00:19<00:11, 1.12s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.12s/it] 71%|███████▏ | 20/28 [00:22<00:08, 1.12s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.12s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.12s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.12s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.12s/it] 89%|████████▉ | 25/28 [00:27<00:03, 1.12s/it] 93%|█████████▎| 26/28 [00:28<00:02, 1.12s/it] 96%|█████████▋| 27/28 [00:30<00:01, 1.12s/it] 100%|██████████| 28/28 [00:31<00:00, 1.12s/it] 100%|██████████| 28/28 [00:31<00:00, 1.11s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badID0x0nv23b6drm00cj359v15vswgStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- A candid shot of a japanese skateboarder mid-laugh, sitting on the curb of a suburban street. He's wearing a baggy graphic tee, The lighting suggests late afternoon, casting a warm glow on the scene, golden hour, blur, polaroid style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "A candid shot of a japanese skateboarder mid-laugh, sitting on the curb of a suburban street. He's wearing a baggy graphic tee, The lighting suggests late afternoon, casting a warm glow on the scene, golden hour, blur, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "A candid shot of a japanese skateboarder mid-laugh, sitting on the curb of a suburban street. He's wearing a baggy graphic tee, The lighting suggests late afternoon, casting a warm glow on the scene, golden hour, blur, polaroid style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "A candid shot of a japanese skateboarder mid-laugh, sitting on the curb of a suburban street. He's wearing a baggy graphic tee, The lighting suggests late afternoon, casting a warm glow on the scene, golden hour, blur, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "A candid shot of a japanese skateboarder mid-laugh, sitting on the curb of a suburban street. He\'s wearing a baggy graphic tee, The lighting suggests late afternoon, casting a warm glow on the scene, golden hour, blur, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:43:15.861760Z", "created_at": "2024-09-22T10:42:30.323000Z", "data_removed": false, "error": null, "id": "0x0nv23b6drm00cj359v15vswg", "input": { "model": "dev", "prompt": "A candid shot of a japanese skateboarder mid-laugh, sitting on the curb of a suburban street. He's wearing a baggy graphic tee, The lighting suggests late afternoon, casting a warm glow on the scene, golden hour, blur, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 1951\nPrompt: A candid shot of a japanese skateboarder mid-laugh, sitting on the curb of a suburban street. He's wearing a baggy graphic tee, The lighting suggests late afternoon, casting a warm glow on the scene, golden hour, blur, polaroid style\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 12.58s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.12s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.01it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.05s/it]\n 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.09s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.11s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.11s/it]\n 36%|███▌ | 10/28 [00:10<00:20, 1.12s/it]\n 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it]\n 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.12s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.12s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it]\n 61%|██████ | 17/28 [00:18<00:12, 1.12s/it]\n 64%|██████▍ | 18/28 [00:19<00:11, 1.12s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.12s/it]\n 71%|███████▏ | 20/28 [00:22<00:08, 1.12s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.12s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.12s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.12s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.12s/it]\n 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it]\n 93%|█████████▎| 26/28 [00:28<00:02, 1.12s/it]\n 96%|█████████▋| 27/28 [00:30<00:01, 1.12s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.12s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.11s/it]", "metrics": { "predict_time": 45.531386366, "total_time": 45.53876 }, "output": [ "https://replicate.delivery/yhqm/ZjBdZ7wSn6aOMZ55X2p6eCyfsDuFW5c6flDGK2dlHkeMsp9NB/out-0.webp", "https://replicate.delivery/yhqm/iJWTlAkeAT1CUCvBlXQEFfGGpWae2ZreYFGkvtqnzfIfwm23E/out-1.webp", "https://replicate.delivery/yhqm/Y4XVyR4qizJkCV5NAtlaOdzWIscfbRc2fVKXjBEYFeEG20eNB/out-2.webp", "https://replicate.delivery/yhqm/NWoBlsPnik4LOheJhmUn4g4ybpCbZ5EhCXH7D1yhZNuhNtvJA/out-3.webp" ], "started_at": "2024-09-22T10:42:30.330374Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/0x0nv23b6drm00cj359v15vswg", "cancel": "https://api.replicate.com/v1/predictions/0x0nv23b6drm00cj359v15vswg/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 1951 Prompt: A candid shot of a japanese skateboarder mid-laugh, sitting on the curb of a suburban street. He's wearing a baggy graphic tee, The lighting suggests late afternoon, casting a warm glow on the scene, golden hour, blur, polaroid style [!] txt2img mode Using dev model Loaded LoRAs in 12.58s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.12s/it] 7%|▋ | 2/28 [00:02<00:25, 1.01it/s] 11%|█ | 3/28 [00:03<00:26, 1.05s/it] 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.09s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.11s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.11s/it] 36%|███▌ | 10/28 [00:10<00:20, 1.12s/it] 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it] 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it] 50%|█████ | 14/28 [00:15<00:15, 1.12s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.12s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it] 61%|██████ | 17/28 [00:18<00:12, 1.12s/it] 64%|██████▍ | 18/28 [00:19<00:11, 1.12s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.12s/it] 71%|███████▏ | 20/28 [00:22<00:08, 1.12s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.12s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.12s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.12s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.12s/it] 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it] 93%|█████████▎| 26/28 [00:28<00:02, 1.12s/it] 96%|█████████▋| 27/28 [00:30<00:01, 1.12s/it] 100%|██████████| 28/28 [00:31<00:00, 1.12s/it] 100%|██████████| 28/28 [00:31<00:00, 1.11s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badIDprt4n76jfhrm00cj35a8b2s8srStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a bottle of water with the text "clean" on it, polaroid style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a bottle of water with the text \"clean\" on it, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "a bottle of water with the text \"clean\" on it, polaroid style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "a bottle of water with the text \"clean\" on it, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "a bottle of water with the text \\"clean\\" on it, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:45:11.782585Z", "created_at": "2024-09-22T10:44:02.300000Z", "data_removed": false, "error": null, "id": "prt4n76jfhrm00cj35a8b2s8sr", "input": { "model": "dev", "prompt": "a bottle of water with the text \"clean\" on it, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 52760\nPrompt: a bottle of water with the text \"clean\" on it, polaroid style\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 25.14s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.12s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.01it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.05s/it]\n 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.09s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.11s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it]\n 36%|███▌ | 10/28 [00:10<00:20, 1.12s/it]\n 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it]\n 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.12s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.12s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it]\n 61%|██████ | 17/28 [00:18<00:12, 1.12s/it]\n 64%|██████▍ | 18/28 [00:19<00:11, 1.12s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.12s/it]\n 71%|███████▏ | 20/28 [00:22<00:08, 1.12s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.12s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.12s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.12s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.12s/it]\n 89%|████████▉ | 25/28 [00:27<00:03, 1.12s/it]\n 93%|█████████▎| 26/28 [00:28<00:02, 1.12s/it]\n 96%|█████████▋| 27/28 [00:30<00:01, 1.12s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.12s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.11s/it]", "metrics": { "predict_time": 57.972268467, "total_time": 69.482585 }, "output": [ "https://replicate.delivery/yhqm/qvGS2ZS2G5ZxHdGKAQTLAiyvefofuHObEb1SczkibQxu50eNB/out-0.webp", "https://replicate.delivery/yhqm/AWhHjewnUsUUZC53i7EiK3ga6Z8euUoeNJ9hx58wcoou50eNB/out-1.webp", "https://replicate.delivery/yhqm/G9i0l8Zk5XojBhKuqhUVYx63dliNUDeGA9HXGHtPUk6bOtvJA/out-2.webp", "https://replicate.delivery/yhqm/vIFpOYiZtC6oI9hdapM8GRUsbDsfcQW3aGo61J1Nzfev50eNB/out-3.webp" ], "started_at": "2024-09-22T10:44:13.810317Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/prt4n76jfhrm00cj35a8b2s8sr", "cancel": "https://api.replicate.com/v1/predictions/prt4n76jfhrm00cj35a8b2s8sr/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 52760 Prompt: a bottle of water with the text "clean" on it, polaroid style [!] txt2img mode Using dev model Loaded LoRAs in 25.14s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.12s/it] 7%|▋ | 2/28 [00:02<00:25, 1.01it/s] 11%|█ | 3/28 [00:03<00:26, 1.05s/it] 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.09s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.11s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it] 36%|███▌ | 10/28 [00:10<00:20, 1.12s/it] 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it] 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it] 50%|█████ | 14/28 [00:15<00:15, 1.12s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.12s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it] 61%|██████ | 17/28 [00:18<00:12, 1.12s/it] 64%|██████▍ | 18/28 [00:19<00:11, 1.12s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.12s/it] 71%|███████▏ | 20/28 [00:22<00:08, 1.12s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.12s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.12s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.12s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.12s/it] 89%|████████▉ | 25/28 [00:27<00:03, 1.12s/it] 93%|█████████▎| 26/28 [00:28<00:02, 1.12s/it] 96%|█████████▋| 27/28 [00:30<00:01, 1.12s/it] 100%|██████████| 28/28 [00:31<00:00, 1.12s/it] 100%|██████████| 28/28 [00:31<00:00, 1.11s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badIDt7dmn9tn9srm20cj35b9aypyscStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a fluffy white kitten, polaroid style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a fluffy white kitten, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "a fluffy white kitten, polaroid style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "a fluffy white kitten, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "a fluffy white kitten, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:46:37.733538Z", "created_at": "2024-09-22T10:45:41.326000Z", "data_removed": false, "error": null, "id": "t7dmn9tn9srm20cj35b9aypysc", "input": { "model": "dev", "prompt": "a fluffy white kitten, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 28666\nPrompt: a fluffy white kitten, polaroid style\n[!] txt2img mode\nUsing dev model\nfree=6747783479296\nDownloading weights\n2024-09-22T10:45:50Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmph7yc2uxn/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\n2024-09-22T10:45:51Z | INFO | [ Complete ] dest=/tmp/tmph7yc2uxn/weights size=\"462 MB\" total_elapsed=1.530s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\nDownloaded weights in 1.58s\nLoaded LoRAs in 14.26s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.13s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.01it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.06s/it]\n 14%|█▍ | 4/28 [00:04<00:26, 1.09s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.11s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.12s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.13s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.13s/it]\n 36%|███▌ | 10/28 [00:11<00:20, 1.13s/it]\n 39%|███▉ | 11/28 [00:12<00:19, 1.13s/it]\n 43%|████▎ | 12/28 [00:13<00:18, 1.13s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.13s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.13s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.13s/it]\n 61%|██████ | 17/28 [00:19<00:12, 1.13s/it]\n 64%|██████▍ | 18/28 [00:20<00:11, 1.14s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.14s/it]\n 71%|███████▏ | 20/28 [00:22<00:09, 1.14s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.14s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.14s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.14s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.14s/it]\n 89%|████████▉ | 25/28 [00:28<00:03, 1.14s/it]\n 93%|█████████▎| 26/28 [00:29<00:02, 1.14s/it]\n 96%|█████████▋| 27/28 [00:30<00:01, 1.14s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.14s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.13s/it]", "metrics": { "predict_time": 47.433867796, "total_time": 56.407538 }, "output": [ "https://replicate.delivery/yhqm/6BVWPrwDx15ACtNbWLn1O5E9pCTC9Pkg7Q04elWjZLwGPtvJA/out-0.webp", "https://replicate.delivery/yhqm/8P4Moo7TYt7fGCWWr14ETcUCzxHq1m7cG3mPQ5wcR23GPtvJA/out-1.webp", "https://replicate.delivery/yhqm/bcT9vVyWeOygKK5rtm6Iqa2SVOQC8uK8m7wOZyZLXy9GPtvJA/out-2.webp", "https://replicate.delivery/yhqm/L62kpjgeE2R1bCkF1ZfB8JIUQamOfJx1uS0mEul8eRo34p9NB/out-3.webp" ], "started_at": "2024-09-22T10:45:50.299670Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/t7dmn9tn9srm20cj35b9aypysc", "cancel": "https://api.replicate.com/v1/predictions/t7dmn9tn9srm20cj35b9aypysc/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 28666 Prompt: a fluffy white kitten, polaroid style [!] txt2img mode Using dev model free=6747783479296 Downloading weights 2024-09-22T10:45:50Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmph7yc2uxn/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar 2024-09-22T10:45:51Z | INFO | [ Complete ] dest=/tmp/tmph7yc2uxn/weights size="462 MB" total_elapsed=1.530s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar Downloaded weights in 1.58s Loaded LoRAs in 14.26s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.13s/it] 7%|▋ | 2/28 [00:02<00:25, 1.01it/s] 11%|█ | 3/28 [00:03<00:26, 1.06s/it] 14%|█▍ | 4/28 [00:04<00:26, 1.09s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.11s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.12s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.13s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.13s/it] 36%|███▌ | 10/28 [00:11<00:20, 1.13s/it] 39%|███▉ | 11/28 [00:12<00:19, 1.13s/it] 43%|████▎ | 12/28 [00:13<00:18, 1.13s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.13s/it] 50%|█████ | 14/28 [00:15<00:15, 1.13s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.13s/it] 61%|██████ | 17/28 [00:19<00:12, 1.13s/it] 64%|██████▍ | 18/28 [00:20<00:11, 1.14s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.14s/it] 71%|███████▏ | 20/28 [00:22<00:09, 1.14s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.14s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.14s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.14s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.14s/it] 89%|████████▉ | 25/28 [00:28<00:03, 1.14s/it] 93%|█████████▎| 26/28 [00:29<00:02, 1.14s/it] 96%|█████████▋| 27/28 [00:30<00:01, 1.14s/it] 100%|██████████| 28/28 [00:31<00:00, 1.14s/it] 100%|██████████| 28/28 [00:31<00:00, 1.13s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badIDpeqjyr4q89rm00cj35bv6r6vscStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a man, polaroid style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a man, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "a man, polaroid style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "a man, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "a man, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:48:09.201990Z", "created_at": "2024-09-22T10:47:03.746000Z", "data_removed": false, "error": null, "id": "peqjyr4q89rm00cj35bv6r6vsc", "input": { "model": "dev", "prompt": "a man, polaroid style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 24282\nPrompt: a man, polaroid style\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 13.43s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.12s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.01it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.05s/it]\n 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it]\n 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it]\n 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it]\n 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.13s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.13s/it]\n 61%|██████ | 17/28 [00:18<00:12, 1.13s/it]\n 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.13s/it]\n 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it]\n 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it]\n 93%|█████████▎| 26/28 [00:29<00:02, 1.13s/it]\n 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.13s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.12s/it]", "metrics": { "predict_time": 46.458984377, "total_time": 65.45599 }, "output": [ "https://replicate.delivery/yhqm/eioVceueZhQrtJ3AMp7AKwCQnUKWFCYoNA7NUebQIcWjeT7bC/out-0.webp", "https://replicate.delivery/yhqm/25UmvfMa0EysF6JfRdMUQ3KW97as8Zsl9p6oWZG9w1Lof0eNB/out-1.webp", "https://replicate.delivery/yhqm/GYEAUQVGJI6lDdiZhuqXx4kfOGV4alR8KiRL779fE4cpf0eNB/out-2.webp", "https://replicate.delivery/yhqm/xmj0snalKnLzHBjuS4m4iN9iRcz3JbRhXCcPJnRiRKc6n23E/out-3.webp" ], "started_at": "2024-09-22T10:47:22.743005Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/peqjyr4q89rm00cj35bv6r6vsc", "cancel": "https://api.replicate.com/v1/predictions/peqjyr4q89rm00cj35bv6r6vsc/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 24282 Prompt: a man, polaroid style [!] txt2img mode Using dev model Loaded LoRAs in 13.43s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.12s/it] 7%|▋ | 2/28 [00:02<00:25, 1.01it/s] 11%|█ | 3/28 [00:03<00:26, 1.05s/it] 14%|█▍ | 4/28 [00:04<00:25, 1.08s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.11s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.12s/it] 36%|███▌ | 10/28 [00:11<00:20, 1.12s/it] 39%|███▉ | 11/28 [00:12<00:19, 1.12s/it] 43%|████▎ | 12/28 [00:13<00:17, 1.12s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.12s/it] 50%|█████ | 14/28 [00:15<00:15, 1.13s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.13s/it] 61%|██████ | 17/28 [00:18<00:12, 1.13s/it] 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.13s/it] 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.13s/it] 89%|████████▉ | 25/28 [00:27<00:03, 1.13s/it] 93%|█████████▎| 26/28 [00:29<00:02, 1.13s/it] 96%|█████████▋| 27/28 [00:30<00:01, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.13s/it] 100%|██████████| 28/28 [00:31<00:00, 1.12s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badID427z880429rm00cj35crrv5xz0StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a gray day with mt fuji in the distance, polaroid photo style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a gray day with mt fuji in the distance, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "a gray day with mt fuji in the distance, polaroid photo style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "a gray day with mt fuji in the distance, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "a gray day with mt fuji in the distance, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:49:25.463309Z", "created_at": "2024-09-22T10:48:37.138000Z", "data_removed": false, "error": null, "id": "427z880429rm00cj35crrv5xz0", "input": { "model": "dev", "prompt": "a gray day with mt fuji in the distance, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 42227\nPrompt: a gray day with mt fuji in the distance, polaroid photo style\n[!] txt2img mode\nUsing dev model\nfree=7969735966720\nDownloading weights\n2024-09-22T10:48:37Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpx5q83vtf/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\n2024-09-22T10:48:38Z | INFO | [ Complete ] dest=/tmp/tmpx5q83vtf/weights size=\"462 MB\" total_elapsed=1.295s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\nDownloaded weights in 1.34s\nLoaded LoRAs in 15.04s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.13s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.01it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.05s/it]\n 14%|█▍ | 4/28 [00:04<00:26, 1.09s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.11s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.12s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.13s/it]\n 36%|███▌ | 10/28 [00:11<00:20, 1.13s/it]\n 39%|███▉ | 11/28 [00:12<00:19, 1.13s/it]\n 43%|████▎ | 12/28 [00:13<00:18, 1.13s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.13s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.13s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.13s/it]\n 61%|██████ | 17/28 [00:19<00:12, 1.13s/it]\n 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.14s/it]\n 71%|███████▏ | 20/28 [00:22<00:09, 1.14s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.14s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.14s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.14s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.14s/it]\n 89%|████████▉ | 25/28 [00:28<00:03, 1.14s/it]\n 93%|█████████▎| 26/28 [00:29<00:02, 1.14s/it]\n 96%|█████████▋| 27/28 [00:30<00:01, 1.14s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.14s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.13s/it]", "metrics": { "predict_time": 48.313624146, "total_time": 48.325309 }, "output": [ "https://replicate.delivery/yhqm/7qzR35ZmScJGH9vif68mP1rPjwI2wKmCJXhpIwT46ykaQtvJA/out-0.webp", "https://replicate.delivery/yhqm/ey3IyzbZHXzaE6BOOxmD2b7xEoSyejfi0g85dAAlsk7rB1eNB/out-1.webp", "https://replicate.delivery/yhqm/eYEbdXmmna0hfUrq0e3frEmWu2zXHQKrZdJ5ek7tszMuGU7bC/out-2.webp", "https://replicate.delivery/yhqm/OafFpsVKQwze3EGekyFLAdrfAS0Imje1uzfmGUOYc1emaQtvJA/out-3.webp" ], "started_at": "2024-09-22T10:48:37.149685Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/427z880429rm00cj35crrv5xz0", "cancel": "https://api.replicate.com/v1/predictions/427z880429rm00cj35crrv5xz0/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 42227 Prompt: a gray day with mt fuji in the distance, polaroid photo style [!] txt2img mode Using dev model free=7969735966720 Downloading weights 2024-09-22T10:48:37Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpx5q83vtf/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar 2024-09-22T10:48:38Z | INFO | [ Complete ] dest=/tmp/tmpx5q83vtf/weights size="462 MB" total_elapsed=1.295s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar Downloaded weights in 1.34s Loaded LoRAs in 15.04s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.13s/it] 7%|▋ | 2/28 [00:02<00:25, 1.01it/s] 11%|█ | 3/28 [00:03<00:26, 1.05s/it] 14%|█▍ | 4/28 [00:04<00:26, 1.09s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.11s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.12s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.13s/it] 36%|███▌ | 10/28 [00:11<00:20, 1.13s/it] 39%|███▉ | 11/28 [00:12<00:19, 1.13s/it] 43%|████▎ | 12/28 [00:13<00:18, 1.13s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.13s/it] 50%|█████ | 14/28 [00:15<00:15, 1.13s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.13s/it] 61%|██████ | 17/28 [00:19<00:12, 1.13s/it] 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.14s/it] 71%|███████▏ | 20/28 [00:22<00:09, 1.14s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.14s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.14s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.14s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.14s/it] 89%|████████▉ | 25/28 [00:28<00:03, 1.14s/it] 93%|█████████▎| 26/28 [00:29<00:02, 1.14s/it] 96%|█████████▋| 27/28 [00:30<00:01, 1.14s/it] 100%|██████████| 28/28 [00:31<00:00, 1.14s/it] 100%|██████████| 28/28 [00:31<00:00, 1.13s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badID7tr7xc3j81rm60cj35d8v1521cStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- A charismatic speaker is captured mid-speech. He has long, slightly wavy blonde hair tied back in a ponytail. His expressive face, adorned with a salt-and-pepper beard and mustache, is animated as he gestures with his left hand, displaying a large ring on his pinky finger. He is holding a black microphone in his right hand, speaking passionately. The man is wearing a dark, textured shirt with unique, slightly shimmering patterns, and a green lanyard with multiple badges and logos hanging around his neck. The lanyard features the "Autodesk" and "V-Ray" logos prominently. Behind him, there is a blurred background with a white banner containing logos and text, indicating a professional or conference setting. The overall scene is vibrant and dynamic, capturing the energy of a live presentation., polaroid photo style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "A charismatic speaker is captured mid-speech. He has long, slightly wavy blonde hair tied back in a ponytail. His expressive face, adorned with a salt-and-pepper beard and mustache, is animated as he gestures with his left hand, displaying a large ring on his pinky finger. He is holding a black microphone in his right hand, speaking passionately. The man is wearing a dark, textured shirt with unique, slightly shimmering patterns, and a green lanyard with multiple badges and logos hanging around his neck. The lanyard features the \"Autodesk\" and \"V-Ray\" logos prominently. Behind him, there is a blurred background with a white banner containing logos and text, indicating a professional or conference setting. The overall scene is vibrant and dynamic, capturing the energy of a live presentation., polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "A charismatic speaker is captured mid-speech. He has long, slightly wavy blonde hair tied back in a ponytail. His expressive face, adorned with a salt-and-pepper beard and mustache, is animated as he gestures with his left hand, displaying a large ring on his pinky finger. He is holding a black microphone in his right hand, speaking passionately. The man is wearing a dark, textured shirt with unique, slightly shimmering patterns, and a green lanyard with multiple badges and logos hanging around his neck. The lanyard features the \"Autodesk\" and \"V-Ray\" logos prominently. Behind him, there is a blurred background with a white banner containing logos and text, indicating a professional or conference setting. The overall scene is vibrant and dynamic, capturing the energy of a live presentation., polaroid photo style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "A charismatic speaker is captured mid-speech. He has long, slightly wavy blonde hair tied back in a ponytail. His expressive face, adorned with a salt-and-pepper beard and mustache, is animated as he gestures with his left hand, displaying a large ring on his pinky finger. He is holding a black microphone in his right hand, speaking passionately. The man is wearing a dark, textured shirt with unique, slightly shimmering patterns, and a green lanyard with multiple badges and logos hanging around his neck. The lanyard features the \"Autodesk\" and \"V-Ray\" logos prominently. Behind him, there is a blurred background with a white banner containing logos and text, indicating a professional or conference setting. The overall scene is vibrant and dynamic, capturing the energy of a live presentation., polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "A charismatic speaker is captured mid-speech. He has long, slightly wavy blonde hair tied back in a ponytail. His expressive face, adorned with a salt-and-pepper beard and mustache, is animated as he gestures with his left hand, displaying a large ring on his pinky finger. He is holding a black microphone in his right hand, speaking passionately. The man is wearing a dark, textured shirt with unique, slightly shimmering patterns, and a green lanyard with multiple badges and logos hanging around his neck. The lanyard features the \\"Autodesk\\" and \\"V-Ray\\" logos prominently. Behind him, there is a blurred background with a white banner containing logos and text, indicating a professional or conference setting. The overall scene is vibrant and dynamic, capturing the energy of a live presentation., polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:50:58.320442Z", "created_at": "2024-09-22T10:50:10.880000Z", "data_removed": false, "error": null, "id": "7tr7xc3j81rm60cj35d8v1521c", "input": { "model": "dev", "prompt": "A charismatic speaker is captured mid-speech. He has long, slightly wavy blonde hair tied back in a ponytail. His expressive face, adorned with a salt-and-pepper beard and mustache, is animated as he gestures with his left hand, displaying a large ring on his pinky finger. He is holding a black microphone in his right hand, speaking passionately. The man is wearing a dark, textured shirt with unique, slightly shimmering patterns, and a green lanyard with multiple badges and logos hanging around his neck. The lanyard features the \"Autodesk\" and \"V-Ray\" logos prominently. Behind him, there is a blurred background with a white banner containing logos and text, indicating a professional or conference setting. The overall scene is vibrant and dynamic, capturing the energy of a live presentation., polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 35946\nPrompt: A charismatic speaker is captured mid-speech. He has long, slightly wavy blonde hair tied back in a ponytail. His expressive face, adorned with a salt-and-pepper beard and mustache, is animated as he gestures with his left hand, displaying a large ring on his pinky finger. He is holding a black microphone in his right hand, speaking passionately. The man is wearing a dark, textured shirt with unique, slightly shimmering patterns, and a green lanyard with multiple badges and logos hanging around his neck. The lanyard features the \"Autodesk\" and \"V-Ray\" logos prominently. Behind him, there is a blurred background with a white banner containing logos and text, indicating a professional or conference setting. The overall scene is vibrant and dynamic, capturing the energy of a live presentation., polaroid photo style\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 14.68s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.11s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.02it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.04s/it]\n 14%|█▍ | 4/28 [00:04<00:25, 1.07s/it]\n 18%|█▊ | 5/28 [00:05<00:24, 1.09s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.10s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.11s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.11s/it]\n 36%|███▌ | 10/28 [00:10<00:19, 1.11s/it]\n 39%|███▉ | 11/28 [00:12<00:18, 1.11s/it]\n 43%|████▎ | 12/28 [00:13<00:17, 1.11s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.11s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.11s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.11s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.11s/it]\n 61%|██████ | 17/28 [00:18<00:12, 1.11s/it]\n 64%|██████▍ | 18/28 [00:19<00:11, 1.11s/it]\n 68%|██████▊ | 19/28 [00:20<00:10, 1.11s/it]\n 71%|███████▏ | 20/28 [00:22<00:08, 1.11s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.11s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.11s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.11s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.12s/it]\n 89%|████████▉ | 25/28 [00:27<00:03, 1.12s/it]\n 93%|█████████▎| 26/28 [00:28<00:02, 1.12s/it]\n 96%|█████████▋| 27/28 [00:29<00:01, 1.12s/it]\n100%|██████████| 28/28 [00:30<00:00, 1.12s/it]\n100%|██████████| 28/28 [00:30<00:00, 1.11s/it]", "metrics": { "predict_time": 47.429231339, "total_time": 47.440442 }, "output": [ "https://replicate.delivery/yhqm/bhjgbh3WF27aB5VmsbdzlCWbTxabLegqXlFGCOGRd6yIRtvJA/out-0.webp", "https://replicate.delivery/yhqm/ATnFkvC8ctqsL5xwk4YMeSTcbvINuLj7l4nIHFVMF8MJRtvJA/out-1.webp", "https://replicate.delivery/yhqm/8ggytaugURILAJNmdvCuxJjAukcZRyEM5Odp1uXpsffSiafmA/out-2.webp", "https://replicate.delivery/yhqm/evUfLXGGRDvoQUmVeUZ0tsWshrWxhib3N4ZYWkeF1zVIJq9NB/out-3.webp" ], "started_at": "2024-09-22T10:50:10.891210Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/7tr7xc3j81rm60cj35d8v1521c", "cancel": "https://api.replicate.com/v1/predictions/7tr7xc3j81rm60cj35d8v1521c/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 35946 Prompt: A charismatic speaker is captured mid-speech. He has long, slightly wavy blonde hair tied back in a ponytail. His expressive face, adorned with a salt-and-pepper beard and mustache, is animated as he gestures with his left hand, displaying a large ring on his pinky finger. He is holding a black microphone in his right hand, speaking passionately. The man is wearing a dark, textured shirt with unique, slightly shimmering patterns, and a green lanyard with multiple badges and logos hanging around his neck. The lanyard features the "Autodesk" and "V-Ray" logos prominently. Behind him, there is a blurred background with a white banner containing logos and text, indicating a professional or conference setting. The overall scene is vibrant and dynamic, capturing the energy of a live presentation., polaroid photo style [!] txt2img mode Using dev model Loaded LoRAs in 14.68s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.11s/it] 7%|▋ | 2/28 [00:02<00:25, 1.02it/s] 11%|█ | 3/28 [00:03<00:26, 1.04s/it] 14%|█▍ | 4/28 [00:04<00:25, 1.07s/it] 18%|█▊ | 5/28 [00:05<00:24, 1.09s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.10s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.11s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.11s/it] 36%|███▌ | 10/28 [00:10<00:19, 1.11s/it] 39%|███▉ | 11/28 [00:12<00:18, 1.11s/it] 43%|████▎ | 12/28 [00:13<00:17, 1.11s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.11s/it] 50%|█████ | 14/28 [00:15<00:15, 1.11s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.11s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.11s/it] 61%|██████ | 17/28 [00:18<00:12, 1.11s/it] 64%|██████▍ | 18/28 [00:19<00:11, 1.11s/it] 68%|██████▊ | 19/28 [00:20<00:10, 1.11s/it] 71%|███████▏ | 20/28 [00:22<00:08, 1.11s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.11s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.11s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.11s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.12s/it] 89%|████████▉ | 25/28 [00:27<00:03, 1.12s/it] 93%|█████████▎| 26/28 [00:28<00:02, 1.12s/it] 96%|█████████▋| 27/28 [00:29<00:01, 1.12s/it] 100%|██████████| 28/28 [00:30<00:00, 1.12s/it] 100%|██████████| 28/28 [00:30<00:00, 1.11s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badID5et44p0jf9rm40cj35ebdhvs0wStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- handsome girl in a suit covered with bold tattoos and holding a pistol, polaroid photo style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "handsome girl in a suit covered with bold tattoos and holding a pistol, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "handsome girl in a suit covered with bold tattoos and holding a pistol, polaroid photo style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "handsome girl in a suit covered with bold tattoos and holding a pistol, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "handsome girl in a suit covered with bold tattoos and holding a pistol, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:52:44.813331Z", "created_at": "2024-09-22T10:51:57.434000Z", "data_removed": false, "error": null, "id": "5et44p0jf9rm40cj35ebdhvs0w", "input": { "model": "dev", "prompt": "handsome girl in a suit covered with bold tattoos and holding a pistol, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 5826\nPrompt: handsome girl in a suit covered with bold tattoos and holding a pistol, polaroid photo style\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 14.14s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.13s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.01it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.06s/it]\n 14%|█▍ | 4/28 [00:04<00:26, 1.09s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.12s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.12s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.13s/it]\n 36%|███▌ | 10/28 [00:11<00:20, 1.13s/it]\n 39%|███▉ | 11/28 [00:12<00:19, 1.13s/it]\n 43%|████▎ | 12/28 [00:13<00:18, 1.13s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.13s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.13s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.14s/it]\n 61%|██████ | 17/28 [00:19<00:12, 1.14s/it]\n 64%|██████▍ | 18/28 [00:20<00:11, 1.14s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.14s/it]\n 71%|███████▏ | 20/28 [00:22<00:09, 1.14s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.14s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.14s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.14s/it]\n 86%|████████▌ | 24/28 [00:27<00:04, 1.14s/it]\n 89%|████████▉ | 25/28 [00:28<00:03, 1.14s/it]\n 93%|█████████▎| 26/28 [00:29<00:02, 1.14s/it]\n 96%|█████████▋| 27/28 [00:30<00:01, 1.14s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.14s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.13s/it]", "metrics": { "predict_time": 47.369633783, "total_time": 47.379331 }, "output": [ "https://replicate.delivery/yhqm/Q8eUCF9quW07GKDIrCIpLf4pTmjlZf0DFwfIaQTqwuqwPq9NB/out-0.webp", "https://replicate.delivery/yhqm/B6je6FS4MOVPe0iLkFelyVCBitL4E5iusbakKXIOZWfxPq9NB/out-1.webp", "https://replicate.delivery/yhqm/iJnybtLOm2Y3MxXo6h199ugKZeNIEdbPeBLsSAi3Bdr8jafmA/out-2.webp", "https://replicate.delivery/yhqm/i63UmKCCU9ZoDx3hpfQ1kCirZa5pKMEAz5oeg7j8PZr8jafmA/out-3.webp" ], "started_at": "2024-09-22T10:51:57.443698Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/5et44p0jf9rm40cj35ebdhvs0w", "cancel": "https://api.replicate.com/v1/predictions/5et44p0jf9rm40cj35ebdhvs0w/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 5826 Prompt: handsome girl in a suit covered with bold tattoos and holding a pistol, polaroid photo style [!] txt2img mode Using dev model Loaded LoRAs in 14.14s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.13s/it] 7%|▋ | 2/28 [00:02<00:25, 1.01it/s] 11%|█ | 3/28 [00:03<00:26, 1.06s/it] 14%|█▍ | 4/28 [00:04<00:26, 1.09s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.12s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.12s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.13s/it] 36%|███▌ | 10/28 [00:11<00:20, 1.13s/it] 39%|███▉ | 11/28 [00:12<00:19, 1.13s/it] 43%|████▎ | 12/28 [00:13<00:18, 1.13s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.13s/it] 50%|█████ | 14/28 [00:15<00:15, 1.13s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.14s/it] 61%|██████ | 17/28 [00:19<00:12, 1.14s/it] 64%|██████▍ | 18/28 [00:20<00:11, 1.14s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.14s/it] 71%|███████▏ | 20/28 [00:22<00:09, 1.14s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.14s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.14s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.14s/it] 86%|████████▌ | 24/28 [00:27<00:04, 1.14s/it] 89%|████████▉ | 25/28 [00:28<00:03, 1.14s/it] 93%|█████████▎| 26/28 [00:29<00:02, 1.14s/it] 96%|█████████▋| 27/28 [00:30<00:01, 1.14s/it] 100%|██████████| 28/28 [00:31<00:00, 1.14s/it] 100%|██████████| 28/28 [00:31<00:00, 1.13s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badIDskz2hp23dxrm60cj35esk8wh18StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a celestial being, polaroid photo style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a celestial being, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "a celestial being, polaroid photo style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "a celestial being, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "a celestial being, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:54:04.451941Z", "created_at": "2024-09-22T10:53:15.503000Z", "data_removed": false, "error": null, "id": "skz2hp23dxrm60cj35esk8wh18", "input": { "model": "dev", "prompt": "a celestial being, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 1637\nPrompt: a celestial being, polaroid photo style\n[!] txt2img mode\nUsing dev model\nfree=9174883975168\nDownloading weights\n2024-09-22T10:53:15Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpzzslcmws/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\n2024-09-22T10:53:17Z | INFO | [ Complete ] dest=/tmp/tmpzzslcmws/weights size=\"462 MB\" total_elapsed=1.658s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\nDownloaded weights in 1.70s\nLoaded LoRAs in 15.96s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.11s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.02it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.04s/it]\n 14%|█▍ | 4/28 [00:04<00:25, 1.07s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.09s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.10s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.11s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.11s/it]\n 36%|███▌ | 10/28 [00:10<00:20, 1.11s/it]\n 39%|███▉ | 11/28 [00:12<00:18, 1.11s/it]\n 43%|████▎ | 12/28 [00:13<00:17, 1.11s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.11s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.12s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.12s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it]\n 61%|██████ | 17/28 [00:18<00:12, 1.12s/it]\n 64%|██████▍ | 18/28 [00:19<00:11, 1.12s/it]\n 68%|██████▊ | 19/28 [00:20<00:10, 1.12s/it]\n 71%|███████▏ | 20/28 [00:22<00:08, 1.12s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.12s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.12s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.12s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.12s/it]\n 89%|████████▉ | 25/28 [00:27<00:03, 1.12s/it]\n 93%|█████████▎| 26/28 [00:28<00:02, 1.12s/it]\n 96%|█████████▋| 27/28 [00:29<00:01, 1.12s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.12s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.11s/it]", "metrics": { "predict_time": 48.682993905000004, "total_time": 48.948941 }, "output": [ "https://replicate.delivery/yhqm/5ENpdiGvWRYlJdFdGTsVYtNgKb30DEJRVIuSQ2HepPPmStvJA/out-0.webp", "https://replicate.delivery/yhqm/mkf0kglmg7RUfUFvyqgWizvVlT2CklqerCUAfsqOpyGzUq9NB/out-1.webp", "https://replicate.delivery/yhqm/7rqnB8BhbOqfGaDeXtNHPMqT6JUBY44eX4PVgUVCiOzYK1eNB/out-2.webp", "https://replicate.delivery/yhqm/TahHzrOBLGo9PVrGiJ2Lgm3od3vFsVxw6f4uZqF9zLdmStvJA/out-3.webp" ], "started_at": "2024-09-22T10:53:15.768947Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/skz2hp23dxrm60cj35esk8wh18", "cancel": "https://api.replicate.com/v1/predictions/skz2hp23dxrm60cj35esk8wh18/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 1637 Prompt: a celestial being, polaroid photo style [!] txt2img mode Using dev model free=9174883975168 Downloading weights 2024-09-22T10:53:15Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpzzslcmws/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar 2024-09-22T10:53:17Z | INFO | [ Complete ] dest=/tmp/tmpzzslcmws/weights size="462 MB" total_elapsed=1.658s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar Downloaded weights in 1.70s Loaded LoRAs in 15.96s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.11s/it] 7%|▋ | 2/28 [00:02<00:25, 1.02it/s] 11%|█ | 3/28 [00:03<00:26, 1.04s/it] 14%|█▍ | 4/28 [00:04<00:25, 1.07s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.09s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.10s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.10s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.11s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.11s/it] 36%|███▌ | 10/28 [00:10<00:20, 1.11s/it] 39%|███▉ | 11/28 [00:12<00:18, 1.11s/it] 43%|████▎ | 12/28 [00:13<00:17, 1.11s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.11s/it] 50%|█████ | 14/28 [00:15<00:15, 1.12s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.12s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.12s/it] 61%|██████ | 17/28 [00:18<00:12, 1.12s/it] 64%|██████▍ | 18/28 [00:19<00:11, 1.12s/it] 68%|██████▊ | 19/28 [00:20<00:10, 1.12s/it] 71%|███████▏ | 20/28 [00:22<00:08, 1.12s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.12s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.12s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.12s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.12s/it] 89%|████████▉ | 25/28 [00:27<00:03, 1.12s/it] 93%|█████████▎| 26/28 [00:28<00:02, 1.12s/it] 96%|█████████▋| 27/28 [00:29<00:01, 1.12s/it] 100%|██████████| 28/28 [00:31<00:00, 1.12s/it] 100%|██████████| 28/28 [00:31<00:00, 1.11s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badID525ecg9v8srm00cj35fr51a410StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a japanese woman with a bit smile, polaroid photo style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a japanese woman with a bit smile, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "a japanese woman with a bit smile, polaroid photo style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "a japanese woman with a bit smile, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "a japanese woman with a bit smile, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:57:01.862093Z", "created_at": "2024-09-22T10:55:24.486000Z", "data_removed": false, "error": null, "id": "525ecg9v8srm00cj35fr51a410", "input": { "model": "dev", "prompt": "a japanese woman with a bit smile, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 21603\nPrompt: a japanese woman with a bit smile, polaroid photo style\n[!] txt2img mode\nUsing dev model\nfree=6629757927424\nDownloading weights\n2024-09-22T10:56:12Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpxz037jzi/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\n2024-09-22T10:56:14Z | INFO | [ Complete ] dest=/tmp/tmpxz037jzi/weights size=\"462 MB\" total_elapsed=1.510s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\nDownloaded weights in 1.56s\nLoaded LoRAs in 15.74s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.14s/it]\n 7%|▋ | 2/28 [00:02<00:26, 1.00s/it]\n 11%|█ | 3/28 [00:03<00:26, 1.07s/it]\n 14%|█▍ | 4/28 [00:04<00:26, 1.10s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.11s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.12s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.13s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.13s/it]\n 32%|███▏ | 9/28 [00:10<00:21, 1.14s/it]\n 36%|███▌ | 10/28 [00:11<00:20, 1.14s/it]\n 39%|███▉ | 11/28 [00:12<00:19, 1.14s/it]\n 43%|████▎ | 12/28 [00:13<00:18, 1.14s/it]\n 46%|████▋ | 13/28 [00:14<00:17, 1.14s/it]\n 50%|█████ | 14/28 [00:15<00:16, 1.14s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.14s/it]\n 57%|█████▋ | 16/28 [00:18<00:13, 1.15s/it]\n 61%|██████ | 17/28 [00:19<00:12, 1.15s/it]\n 64%|██████▍ | 18/28 [00:20<00:11, 1.15s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.15s/it]\n 71%|███████▏ | 20/28 [00:22<00:09, 1.15s/it]\n 75%|███████▌ | 21/28 [00:23<00:08, 1.15s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.15s/it]\n 82%|████████▏ | 23/28 [00:26<00:05, 1.15s/it]\n 86%|████████▌ | 24/28 [00:27<00:04, 1.15s/it]\n 89%|████████▉ | 25/28 [00:28<00:03, 1.15s/it]\n 93%|█████████▎| 26/28 [00:29<00:02, 1.15s/it]\n 96%|█████████▋| 27/28 [00:30<00:01, 1.15s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.15s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.14s/it]", "metrics": { "predict_time": 49.197467289, "total_time": 97.376093 }, "output": [ "https://replicate.delivery/yhqm/I84TWVtmNhpSKJmLidjkTNhXSfuJzNoM4xL0HT6MfUy9nafmA/out-0.webp", "https://replicate.delivery/yhqm/2ZddT0LeGX2UByH1Im9JwjDBmtZht8tUoIMq1rOGGj2enafmA/out-1.webp", "https://replicate.delivery/yhqm/MAoUedU3kARrOSCVqoRzEHYaQXtg9oDAXmJus5fBoHI9nafmA/out-2.webp", "https://replicate.delivery/yhqm/IvldBrDLe3UaK65jXKfxlSxzfYuuA0LPzLxlvVf2cvftfp23E/out-3.webp" ], "started_at": "2024-09-22T10:56:12.664626Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/525ecg9v8srm00cj35fr51a410", "cancel": "https://api.replicate.com/v1/predictions/525ecg9v8srm00cj35fr51a410/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 21603 Prompt: a japanese woman with a bit smile, polaroid photo style [!] txt2img mode Using dev model free=6629757927424 Downloading weights 2024-09-22T10:56:12Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpxz037jzi/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar 2024-09-22T10:56:14Z | INFO | [ Complete ] dest=/tmp/tmpxz037jzi/weights size="462 MB" total_elapsed=1.510s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar Downloaded weights in 1.56s Loaded LoRAs in 15.74s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.14s/it] 7%|▋ | 2/28 [00:02<00:26, 1.00s/it] 11%|█ | 3/28 [00:03<00:26, 1.07s/it] 14%|█▍ | 4/28 [00:04<00:26, 1.10s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.11s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.12s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.13s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.13s/it] 32%|███▏ | 9/28 [00:10<00:21, 1.14s/it] 36%|███▌ | 10/28 [00:11<00:20, 1.14s/it] 39%|███▉ | 11/28 [00:12<00:19, 1.14s/it] 43%|████▎ | 12/28 [00:13<00:18, 1.14s/it] 46%|████▋ | 13/28 [00:14<00:17, 1.14s/it] 50%|█████ | 14/28 [00:15<00:16, 1.14s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.14s/it] 57%|█████▋ | 16/28 [00:18<00:13, 1.15s/it] 61%|██████ | 17/28 [00:19<00:12, 1.15s/it] 64%|██████▍ | 18/28 [00:20<00:11, 1.15s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.15s/it] 71%|███████▏ | 20/28 [00:22<00:09, 1.15s/it] 75%|███████▌ | 21/28 [00:23<00:08, 1.15s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.15s/it] 82%|████████▏ | 23/28 [00:26<00:05, 1.15s/it] 86%|████████▌ | 24/28 [00:27<00:04, 1.15s/it] 89%|████████▉ | 25/28 [00:28<00:03, 1.15s/it] 93%|█████████▎| 26/28 [00:29<00:02, 1.15s/it] 96%|█████████▋| 27/28 [00:30<00:01, 1.15s/it] 100%|██████████| 28/28 [00:31<00:00, 1.15s/it] 100%|██████████| 28/28 [00:31<00:00, 1.14s/it]
Prediction
aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51badIDebyhhhjfwhrm40cj35gv0ezr78StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a messy desk with an pile of old cassette tapes from different indie bands with scrawled labels on them, still life, polaroid photo style
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a messy desk with an pile of old cassette tapes from different indie bands with scrawled labels on them, still life, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", { input: { model: "dev", prompt: "a messy desk with an pile of old cassette tapes from different indie bands with scrawled labels on them, still life, polaroid photo style", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", input={ "model": "dev", "prompt": "a messy desk with an pile of old cassette tapes from different indie bands with scrawled labels on them, still life, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pola-style using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pola-style:67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad", "input": { "model": "dev", "prompt": "a messy desk with an pile of old cassette tapes from different indie bands with scrawled labels on them, still life, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-22T10:58:37.917732Z", "created_at": "2024-09-22T10:57:40.836000Z", "data_removed": false, "error": null, "id": "ebyhhhjfwhrm40cj35gv0ezr78", "input": { "model": "dev", "prompt": "a messy desk with an pile of old cassette tapes from different indie bands with scrawled labels on them, still life, polaroid photo style", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 27709\nPrompt: a messy desk with an pile of old cassette tapes from different indie bands with scrawled labels on them, still life, polaroid photo style\n[!] txt2img mode\nUsing dev model\nfree=7362761596928\nDownloading weights\n2024-09-22T10:57:50Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpqsw731tc/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\n2024-09-22T10:57:51Z | INFO | [ Complete ] dest=/tmp/tmpqsw731tc/weights size=\"462 MB\" total_elapsed=1.371s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar\nDownloaded weights in 1.42s\nLoaded LoRAs in 14.41s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.13s/it]\n 7%|▋ | 2/28 [00:02<00:25, 1.00it/s]\n 11%|█ | 3/28 [00:03<00:26, 1.06s/it]\n 14%|█▍ | 4/28 [00:04<00:26, 1.09s/it]\n 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it]\n 21%|██▏ | 6/28 [00:06<00:24, 1.12s/it]\n 25%|██▌ | 7/28 [00:07<00:23, 1.12s/it]\n 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it]\n 32%|███▏ | 9/28 [00:09<00:21, 1.13s/it]\n 36%|███▌ | 10/28 [00:11<00:20, 1.13s/it]\n 39%|███▉ | 11/28 [00:12<00:19, 1.13s/it]\n 43%|████▎ | 12/28 [00:13<00:18, 1.13s/it]\n 46%|████▋ | 13/28 [00:14<00:16, 1.13s/it]\n 50%|█████ | 14/28 [00:15<00:15, 1.13s/it]\n 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it]\n 57%|█████▋ | 16/28 [00:17<00:13, 1.13s/it]\n 61%|██████ | 17/28 [00:19<00:12, 1.13s/it]\n 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it]\n 68%|██████▊ | 19/28 [00:21<00:10, 1.13s/it]\n 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it]\n 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it]\n 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it]\n 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it]\n 86%|████████▌ | 24/28 [00:26<00:04, 1.14s/it]\n 89%|████████▉ | 25/28 [00:28<00:03, 1.14s/it]\n 93%|█████████▎| 26/28 [00:29<00:02, 1.14s/it]\n 96%|█████████▋| 27/28 [00:30<00:01, 1.14s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.14s/it]\n100%|██████████| 28/28 [00:31<00:00, 1.13s/it]", "metrics": { "predict_time": 47.711600641, "total_time": 57.081732 }, "output": [ "https://replicate.delivery/yhqm/Beyffmwf1RYqESIS8Pfa8MUNtqtgIwznXEwle2iqNwTZXq23E/out-0.webp", "https://replicate.delivery/yhqm/pTdSZrWZtKpPLVFMgBTurkwIOMhclxqZYsflmSvuQM1uUtvJA/out-1.webp", "https://replicate.delivery/yhqm/1ij5hyMTBGZ4DJLffiutqJeuZCfvCVyzBZguTPylMrg0lq9NB/out-2.webp", "https://replicate.delivery/yhqm/FGqmkjHQkSpxFpQcHUH1zsNfz3caGrSEb3XFXsDbHGhuUtvJA/out-3.webp" ], "started_at": "2024-09-22T10:57:50.206131Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ebyhhhjfwhrm40cj35gv0ezr78", "cancel": "https://api.replicate.com/v1/predictions/ebyhhhjfwhrm40cj35gv0ezr78/cancel" }, "version": "67c27855ad0334cbca0f35cd5192777d885d5351e1d3e7149fe208d88db51bad" }
Generated inUsing seed: 27709 Prompt: a messy desk with an pile of old cassette tapes from different indie bands with scrawled labels on them, still life, polaroid photo style [!] txt2img mode Using dev model free=7362761596928 Downloading weights 2024-09-22T10:57:50Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpqsw731tc/weights url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar 2024-09-22T10:57:51Z | INFO | [ Complete ] dest=/tmp/tmpqsw731tc/weights size="462 MB" total_elapsed=1.371s url=https://replicate.delivery/yhqm/dY5GE1khNN7pCh4DOAzarVjQmigSzx4Ql5yBOMwP7BlYE03E/trained_model.tar Downloaded weights in 1.42s Loaded LoRAs in 14.41s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.13s/it] 7%|▋ | 2/28 [00:02<00:25, 1.00it/s] 11%|█ | 3/28 [00:03<00:26, 1.06s/it] 14%|█▍ | 4/28 [00:04<00:26, 1.09s/it] 18%|█▊ | 5/28 [00:05<00:25, 1.10s/it] 21%|██▏ | 6/28 [00:06<00:24, 1.12s/it] 25%|██▌ | 7/28 [00:07<00:23, 1.12s/it] 29%|██▊ | 8/28 [00:08<00:22, 1.12s/it] 32%|███▏ | 9/28 [00:09<00:21, 1.13s/it] 36%|███▌ | 10/28 [00:11<00:20, 1.13s/it] 39%|███▉ | 11/28 [00:12<00:19, 1.13s/it] 43%|████▎ | 12/28 [00:13<00:18, 1.13s/it] 46%|████▋ | 13/28 [00:14<00:16, 1.13s/it] 50%|█████ | 14/28 [00:15<00:15, 1.13s/it] 54%|█████▎ | 15/28 [00:16<00:14, 1.13s/it] 57%|█████▋ | 16/28 [00:17<00:13, 1.13s/it] 61%|██████ | 17/28 [00:19<00:12, 1.13s/it] 64%|██████▍ | 18/28 [00:20<00:11, 1.13s/it] 68%|██████▊ | 19/28 [00:21<00:10, 1.13s/it] 71%|███████▏ | 20/28 [00:22<00:09, 1.13s/it] 75%|███████▌ | 21/28 [00:23<00:07, 1.13s/it] 79%|███████▊ | 22/28 [00:24<00:06, 1.13s/it] 82%|████████▏ | 23/28 [00:25<00:05, 1.13s/it] 86%|████████▌ | 24/28 [00:26<00:04, 1.14s/it] 89%|████████▉ | 25/28 [00:28<00:03, 1.14s/it] 93%|█████████▎| 26/28 [00:29<00:02, 1.14s/it] 96%|█████████▋| 27/28 [00:30<00:01, 1.14s/it] 100%|██████████| 28/28 [00:31<00:00, 1.14s/it] 100%|██████████| 28/28 [00:31<00:00, 1.13s/it]
Want to make some of these yourself?
Run this model