asiryan/flux-schnell

FLUX Schnell Model (Text2Img and Img2Img)

Realistic Vision V4.0 Model (Text2Img, Img2Img and Inpainting)

Kandinsky 2.2 Model (Text2Img, Img2Img and Inpainting)

SDXL Model (Text2Img, Img2Img and Inpainting)

AbsoluteReality V1.8.1 Model (Text2Img, Img2Img and Inpainting)

DreamShaper V8 Model (Text2Img, Img2Img and Inpainting)

Anything V4.5 Model (Text2Img, Img2Img and Inpainting)

Deliberate V3 Model (Text2Img, Img2Img and Inpainting)

URPM V1.3 Model (Text2Img, Img2Img and Inpainting)

Dark Sushi Mix 2.25D Model with vae-ft-mse-840000-ema (Text2Img, Img2Img and Inpainting)

Deliberate V4 Model (Text2Img, Img2Img and Inpainting)

Juggernaut Aftermath Model with original TRCVAE (Text2Img, Img2Img and Inpainting)

Juggernaut XL v7 Model (Text2Img, Img2Img and Inpainting)

Counterfeit XL v2 Model (Text2Img, Img2Img and Inpainting)

Deliberate V5 Model (Text2Img, Img2Img and Inpainting)

Kandinsky 3.0 Model (Text2Img and Img2Img)

Meina Mix V11 Model (Text2Img, Img2Img and Inpainting)

Realistic Vision V6.0 B1 Model (Text2Img, Img2Img and Inpainting)

Reliberate v3 Model (Text2Img, Img2Img and Inpainting)

Blue Pencil XL v2 Model (Text2Img, Img2Img and Inpainting)

Proteus v0.2 Model (Text2Img, Img2Img and Inpainting)
Prediction
asiryan/flux-schnell:21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033IDkmyqb67529rj20cj18s9f51mx4StatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- a tiny astronaut hatching from an egg on the moon
- num_outputs
- 1
- output_format
- png
- output_quality
- 100
- prompt_strength
- 0.8
- num_inference_steps
- 4
{ "width": 1024, "height": 1024, "prompt": "a tiny astronaut hatching from an egg on the moon", "num_outputs": 1, "output_format": "png", "output_quality": 100, "prompt_strength": 0.8, "num_inference_steps": 4 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run asiryan/flux-schnell using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "asiryan/flux-schnell:21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033", { input: { width: 1024, height: 1024, prompt: "a tiny astronaut hatching from an egg on the moon", num_outputs: 1, output_format: "png", output_quality: 100, prompt_strength: 0.8, num_inference_steps: 4 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run asiryan/flux-schnell using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "asiryan/flux-schnell:21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033", input={ "width": 1024, "height": 1024, "prompt": "a tiny astronaut hatching from an egg on the moon", "num_outputs": 1, "output_format": "png", "output_quality": 100, "prompt_strength": 0.8, "num_inference_steps": 4 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run asiryan/flux-schnell using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "asiryan/flux-schnell:21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033", "input": { "width": 1024, "height": 1024, "prompt": "a tiny astronaut hatching from an egg on the moon", "num_outputs": 1, "output_format": "png", "output_quality": 100, "prompt_strength": 0.8, "num_inference_steps": 4 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/asiryan/flux-schnell@sha256:21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033 \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="a tiny astronaut hatching from an egg on the moon"' \ -i 'num_outputs=1' \ -i 'output_format="png"' \ -i 'output_quality=100' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=4'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/asiryan/flux-schnell@sha256:21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "a tiny astronaut hatching from an egg on the moon", "num_outputs": 1, "output_format": "png", "output_quality": 100, "prompt_strength": 0.8, "num_inference_steps": 4 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-09-19T12:14:00.740716Z", "created_at": "2024-09-19T12:12:40.594000Z", "data_removed": false, "error": null, "id": "kmyqb67529rj20cj18s9f51mx4", "input": { "width": 1024, "height": 1024, "prompt": "a tiny astronaut hatching from an egg on the moon", "num_outputs": 1, "output_format": "png", "output_quality": 100, "prompt_strength": 0.8, "num_inference_steps": 4 }, "logs": "Using seed: 17167\nPrompt: a tiny astronaut hatching from an egg on the moon\ntxt2img mode\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:00<00:01, 1.97it/s]\n 50%|█████ | 2/4 [00:00<00:00, 2.59it/s]\n 75%|███████▌ | 3/4 [00:01<00:00, 2.39it/s]\n100%|██████████| 4/4 [00:01<00:00, 2.30it/s]\n100%|██████████| 4/4 [00:01<00:00, 2.32it/s]", "metrics": { "predict_time": 3.360384219, "total_time": 80.146716 }, "output": [ "https://replicate.delivery/yhqm/K1iJlwSK7fTnOiplt2DvRGN9BtihYmprroppmTPECyLEPOvJA/out-0.png" ], "started_at": "2024-09-19T12:13:57.380332Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/kmyqb67529rj20cj18s9f51mx4", "cancel": "https://api.replicate.com/v1/predictions/kmyqb67529rj20cj18s9f51mx4/cancel" }, "version": "21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033" }
Generated inUsing seed: 17167 Prompt: a tiny astronaut hatching from an egg on the moon txt2img mode 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:00<00:01, 1.97it/s] 50%|█████ | 2/4 [00:00<00:00, 2.59it/s] 75%|███████▌ | 3/4 [00:01<00:00, 2.39it/s] 100%|██████████| 4/4 [00:01<00:00, 2.30it/s] 100%|██████████| 4/4 [00:01<00:00, 2.32it/s]
Prediction
asiryan/flux-schnell:21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033IDpthsgkvs9xrj00cj18yb5ywen4StatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- beautiful blonde girl on the beach
- num_outputs
- 1
- output_format
- png
- output_quality
- 100
- prompt_strength
- 0.8
- num_inference_steps
- 4
{ "width": 1024, "height": 1024, "prompt": "beautiful blonde girl on the beach", "num_outputs": 1, "output_format": "png", "output_quality": 100, "prompt_strength": 0.8, "num_inference_steps": 4 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run asiryan/flux-schnell using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "asiryan/flux-schnell:21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033", { input: { width: 1024, height: 1024, prompt: "beautiful blonde girl on the beach", num_outputs: 1, output_format: "png", output_quality: 100, prompt_strength: 0.8, num_inference_steps: 4 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run asiryan/flux-schnell using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "asiryan/flux-schnell:21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033", input={ "width": 1024, "height": 1024, "prompt": "beautiful blonde girl on the beach", "num_outputs": 1, "output_format": "png", "output_quality": 100, "prompt_strength": 0.8, "num_inference_steps": 4 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run asiryan/flux-schnell using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "asiryan/flux-schnell:21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033", "input": { "width": 1024, "height": 1024, "prompt": "beautiful blonde girl on the beach", "num_outputs": 1, "output_format": "png", "output_quality": 100, "prompt_strength": 0.8, "num_inference_steps": 4 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/asiryan/flux-schnell@sha256:21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033 \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="beautiful blonde girl on the beach"' \ -i 'num_outputs=1' \ -i 'output_format="png"' \ -i 'output_quality=100' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=4'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/asiryan/flux-schnell@sha256:21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "beautiful blonde girl on the beach", "num_outputs": 1, "output_format": "png", "output_quality": 100, "prompt_strength": 0.8, "num_inference_steps": 4 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-09-19T12:23:11.136998Z", "created_at": "2024-09-19T12:23:08.367000Z", "data_removed": false, "error": null, "id": "pthsgkvs9xrj00cj18yb5ywen4", "input": { "width": 1024, "height": 1024, "prompt": "beautiful blonde girl on the beach", "num_outputs": 1, "output_format": "png", "output_quality": 100, "prompt_strength": 0.8, "num_inference_steps": 4 }, "logs": "Using seed: 58745\nPrompt: beautiful blonde girl on the beach\ntxt2img mode\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:00<00:01, 2.17it/s]\n 50%|█████ | 2/4 [00:00<00:00, 2.73it/s]\n 75%|███████▌ | 3/4 [00:01<00:00, 2.45it/s]\n100%|██████████| 4/4 [00:01<00:00, 2.33it/s]\n100%|██████████| 4/4 [00:01<00:00, 2.38it/s]", "metrics": { "predict_time": 2.759152905, "total_time": 2.769998 }, "output": [ "https://replicate.delivery/yhqm/wjMnGnfAr6S2UibiLlvuNaBxHoUhJDkMSl3yj2TBfSIumcemA/out-0.png" ], "started_at": "2024-09-19T12:23:08.377845Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/pthsgkvs9xrj00cj18yb5ywen4", "cancel": "https://api.replicate.com/v1/predictions/pthsgkvs9xrj00cj18yb5ywen4/cancel" }, "version": "21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033" }
Generated inUsing seed: 58745 Prompt: beautiful blonde girl on the beach txt2img mode 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:00<00:01, 2.17it/s] 50%|█████ | 2/4 [00:00<00:00, 2.73it/s] 75%|███████▌ | 3/4 [00:01<00:00, 2.45it/s] 100%|██████████| 4/4 [00:01<00:00, 2.33it/s] 100%|██████████| 4/4 [00:01<00:00, 2.38it/s]
Prediction
asiryan/flux-schnell:21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033IDs1xepw80q9rj20cj18zaefg420StatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- black forest gateau cake spelling out the words "FLUX SCHNELL", tasty, food photography, dynamic shot
- num_outputs
- 1
- output_format
- png
- output_quality
- 100
- prompt_strength
- 0.8
- num_inference_steps
- 4
{ "width": 1024, "height": 1024, "prompt": "black forest gateau cake spelling out the words \"FLUX SCHNELL\", tasty, food photography, dynamic shot", "num_outputs": 1, "output_format": "png", "output_quality": 100, "prompt_strength": 0.8, "num_inference_steps": 4 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run asiryan/flux-schnell using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "asiryan/flux-schnell:21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033", { input: { width: 1024, height: 1024, prompt: "black forest gateau cake spelling out the words \"FLUX SCHNELL\", tasty, food photography, dynamic shot", num_outputs: 1, output_format: "png", output_quality: 100, prompt_strength: 0.8, num_inference_steps: 4 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run asiryan/flux-schnell using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "asiryan/flux-schnell:21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033", input={ "width": 1024, "height": 1024, "prompt": "black forest gateau cake spelling out the words \"FLUX SCHNELL\", tasty, food photography, dynamic shot", "num_outputs": 1, "output_format": "png", "output_quality": 100, "prompt_strength": 0.8, "num_inference_steps": 4 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run asiryan/flux-schnell using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "asiryan/flux-schnell:21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033", "input": { "width": 1024, "height": 1024, "prompt": "black forest gateau cake spelling out the words \\"FLUX SCHNELL\\", tasty, food photography, dynamic shot", "num_outputs": 1, "output_format": "png", "output_quality": 100, "prompt_strength": 0.8, "num_inference_steps": 4 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/asiryan/flux-schnell@sha256:21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033 \ -i 'width=1024' \ -i 'height=1024' \ -i $'prompt="black forest gateau cake spelling out the words \\"FLUX SCHNELL\\", tasty, food photography, dynamic shot"' \ -i 'num_outputs=1' \ -i 'output_format="png"' \ -i 'output_quality=100' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=4'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/asiryan/flux-schnell@sha256:21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "black forest gateau cake spelling out the words \\"FLUX SCHNELL\\", tasty, food photography, dynamic shot", "num_outputs": 1, "output_format": "png", "output_quality": 100, "prompt_strength": 0.8, "num_inference_steps": 4 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-09-19T12:24:51.281405Z", "created_at": "2024-09-19T12:24:48.570000Z", "data_removed": false, "error": null, "id": "s1xepw80q9rj20cj18zaefg420", "input": { "width": 1024, "height": 1024, "prompt": "black forest gateau cake spelling out the words \"FLUX SCHNELL\", tasty, food photography, dynamic shot", "num_outputs": 1, "output_format": "png", "output_quality": 100, "prompt_strength": 0.8, "num_inference_steps": 4 }, "logs": "Using seed: 11426\nPrompt: black forest gateau cake spelling out the words \"FLUX SCHNELL\", tasty, food photography, dynamic shot\ntxt2img mode\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:00<00:01, 2.18it/s]\n 50%|█████ | 2/4 [00:00<00:00, 2.73it/s]\n 75%|███████▌ | 3/4 [00:01<00:00, 2.45it/s]\n100%|██████████| 4/4 [00:01<00:00, 2.34it/s]\n100%|██████████| 4/4 [00:01<00:00, 2.38it/s]", "metrics": { "predict_time": 2.7019763919999997, "total_time": 2.711405 }, "output": [ "https://replicate.delivery/yhqm/QFPWaGVu3VoHFV0wbZteZglY9xCqyizZKcCZ0X8V20WJUOvJA/out-0.png" ], "started_at": "2024-09-19T12:24:48.579429Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/s1xepw80q9rj20cj18zaefg420", "cancel": "https://api.replicate.com/v1/predictions/s1xepw80q9rj20cj18zaefg420/cancel" }, "version": "21b2d1458c4afe4ba7ad2ab56cc45b862736955bacaf993acfa173e3be1b8033" }
Generated inUsing seed: 11426 Prompt: black forest gateau cake spelling out the words "FLUX SCHNELL", tasty, food photography, dynamic shot txt2img mode 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:00<00:01, 2.18it/s] 50%|█████ | 2/4 [00:00<00:00, 2.73it/s] 75%|███████▌ | 3/4 [00:01<00:00, 2.45it/s] 100%|██████████| 4/4 [00:01<00:00, 2.34it/s] 100%|██████████| 4/4 [00:01<00:00, 2.38it/s]
Want to make some of these yourself?
Run this model