Readme
This model doesn't have a readme.
(Updated 5 months, 1 week ago)
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run biggpt1/l-carnitine-500 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"biggpt1/l-carnitine-500:33757f3adb7320ffae4f069eac50cf7f37ea35d1c93bbc1b12d9275326b7dab2",
{
input: {
model: "dev",
prompt: "Close-up of the white LCAR bottle with 'Biopharm L-CARNITINE 5000' glowing prominently on the label. The bottle is covered in soft condensation, with a faint golden glow around its edges. In the blurred background, an astronaut in a reflective helmet floats weightlessly, holding the bottle in gloved hands. Earth and distant stars shimmer faintly, creating a surreal cosmic backdrop.",
go_fast: false,
lora_scale: 0.94,
megapixels: "1",
num_outputs: 4,
aspect_ratio: "9:16",
output_format: "png",
guidance_scale: 3.3,
output_quality: 80,
prompt_strength: 0.86,
extra_lora_scale: 1,
num_inference_steps: 32
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run biggpt1/l-carnitine-500 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"biggpt1/l-carnitine-500:33757f3adb7320ffae4f069eac50cf7f37ea35d1c93bbc1b12d9275326b7dab2",
input={
"model": "dev",
"prompt": "Close-up of the white LCAR bottle with 'Biopharm L-CARNITINE 5000' glowing prominently on the label. The bottle is covered in soft condensation, with a faint golden glow around its edges. In the blurred background, an astronaut in a reflective helmet floats weightlessly, holding the bottle in gloved hands. Earth and distant stars shimmer faintly, creating a surreal cosmic backdrop.",
"go_fast": False,
"lora_scale": 0.94,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "9:16",
"output_format": "png",
"guidance_scale": 3.3,
"output_quality": 80,
"prompt_strength": 0.86,
"extra_lora_scale": 1,
"num_inference_steps": 32
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run biggpt1/l-carnitine-500 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "biggpt1/l-carnitine-500:33757f3adb7320ffae4f069eac50cf7f37ea35d1c93bbc1b12d9275326b7dab2",
"input": {
"model": "dev",
"prompt": "Close-up of the white LCAR bottle with \'Biopharm L-CARNITINE 5000\' glowing prominently on the label. The bottle is covered in soft condensation, with a faint golden glow around its edges. In the blurred background, an astronaut in a reflective helmet floats weightlessly, holding the bottle in gloved hands. Earth and distant stars shimmer faintly, creating a surreal cosmic backdrop.",
"go_fast": false,
"lora_scale": 0.94,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "9:16",
"output_format": "png",
"guidance_scale": 3.3,
"output_quality": 80,
"prompt_strength": 0.86,
"extra_lora_scale": 1,
"num_inference_steps": 32
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/biggpt1/l-carnitine-500@sha256:33757f3adb7320ffae4f069eac50cf7f37ea35d1c93bbc1b12d9275326b7dab2 \
-i 'model="dev"' \
-i $'prompt="Close-up of the white LCAR bottle with \'Biopharm L-CARNITINE 5000\' glowing prominently on the label. The bottle is covered in soft condensation, with a faint golden glow around its edges. In the blurred background, an astronaut in a reflective helmet floats weightlessly, holding the bottle in gloved hands. Earth and distant stars shimmer faintly, creating a surreal cosmic backdrop."' \
-i 'go_fast=false' \
-i 'lora_scale=0.94' \
-i 'megapixels="1"' \
-i 'num_outputs=4' \
-i 'aspect_ratio="9:16"' \
-i 'output_format="png"' \
-i 'guidance_scale=3.3' \
-i 'output_quality=80' \
-i 'prompt_strength=0.86' \
-i 'extra_lora_scale=1' \
-i 'num_inference_steps=32'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/biggpt1/l-carnitine-500@sha256:33757f3adb7320ffae4f069eac50cf7f37ea35d1c93bbc1b12d9275326b7dab2
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "Close-up of the white LCAR bottle with \'Biopharm L-CARNITINE 5000\' glowing prominently on the label. The bottle is covered in soft condensation, with a faint golden glow around its edges. In the blurred background, an astronaut in a reflective helmet floats weightlessly, holding the bottle in gloved hands. Earth and distant stars shimmer faintly, creating a surreal cosmic backdrop.", "go_fast": false, "lora_scale": 0.94, "megapixels": "1", "num_outputs": 4, "aspect_ratio": "9:16", "output_format": "png", "guidance_scale": 3.3, "output_quality": 80, "prompt_strength": 0.86, "extra_lora_scale": 1, "num_inference_steps": 32 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2025-01-09T14:14:33.581555Z",
"created_at": "2025-01-09T14:14:04.755000Z",
"data_removed": false,
"error": null,
"id": "z0tv06jatdrm80cm9dnbh2s6q8",
"input": {
"model": "dev",
"prompt": "Close-up of the white LCAR bottle with 'Biopharm L-CARNITINE 5000' glowing prominently on the label. The bottle is covered in soft condensation, with a faint golden glow around its edges. In the blurred background, an astronaut in a reflective helmet floats weightlessly, holding the bottle in gloved hands. Earth and distant stars shimmer faintly, creating a surreal cosmic backdrop.",
"go_fast": false,
"lora_scale": 0.94,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "9:16",
"output_format": "png",
"guidance_scale": 3.3,
"output_quality": 80,
"prompt_strength": 0.86,
"extra_lora_scale": 1,
"num_inference_steps": 32
},
"logs": "2025-01-09 14:14:04.870 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-01-09 14:14:04.870 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 95%|█████████▍| 288/304 [00:00<00:00, 2858.35it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2675.84it/s]\n2025-01-09 14:14:04.984 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s\n2025-01-09 14:14:04.986 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/6d6056fc8b2c6829\n2025-01-09 14:14:05.125 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded\n2025-01-09 14:14:05.125 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-01-09 14:14:05.125 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 97%|█████████▋| 296/304 [00:00<00:00, 2927.97it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2856.72it/s]\n2025-01-09 14:14:05.232 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.25s\nUsing seed: 13250\n0it [00:00, ?it/s]\n1it [00:00, 8.38it/s]\n2it [00:00, 5.87it/s]\n3it [00:00, 5.35it/s]\n4it [00:00, 5.14it/s]\n5it [00:00, 5.02it/s]\n6it [00:01, 4.94it/s]\n7it [00:01, 4.90it/s]\n8it [00:01, 4.89it/s]\n9it [00:01, 4.87it/s]\n10it [00:01, 4.85it/s]\n11it [00:02, 4.83it/s]\n12it [00:02, 4.82it/s]\n13it [00:02, 4.82it/s]\n14it [00:02, 4.83it/s]\n15it [00:03, 4.84it/s]\n16it [00:03, 4.83it/s]\n17it [00:03, 4.82it/s]\n18it [00:03, 4.82it/s]\n19it [00:03, 4.82it/s]\n20it [00:04, 4.82it/s]\n21it [00:04, 4.82it/s]\n22it [00:04, 4.81it/s]\n23it [00:04, 4.81it/s]\n24it [00:04, 4.81it/s]\n25it [00:05, 4.82it/s]\n26it [00:05, 4.82it/s]\n27it [00:05, 4.83it/s]\n28it [00:05, 4.83it/s]\n29it [00:05, 4.82it/s]\n30it [00:06, 4.82it/s]\n31it [00:06, 4.81it/s]\n32it [00:06, 4.81it/s]\n32it [00:06, 4.89it/s]\n0it [00:00, ?it/s]\n1it [00:00, 4.88it/s]\n2it [00:00, 4.85it/s]\n3it [00:00, 4.83it/s]\n4it [00:00, 4.83it/s]\n5it [00:01, 4.82it/s]\n6it [00:01, 4.81it/s]\n7it [00:01, 4.81it/s]\n8it [00:01, 4.82it/s]\n9it [00:01, 4.82it/s]\n10it [00:02, 4.82it/s]\n11it [00:02, 4.82it/s]\n12it [00:02, 4.81it/s]\n13it [00:02, 4.81it/s]\n14it [00:02, 4.82it/s]\n15it [00:03, 4.82it/s]\n16it [00:03, 4.81it/s]\n17it [00:03, 4.82it/s]\n18it [00:03, 4.81it/s]\n19it [00:03, 4.81it/s]\n20it [00:04, 4.81it/s]\n21it [00:04, 4.81it/s]\n22it [00:04, 4.81it/s]\n23it [00:04, 4.81it/s]\n24it [00:04, 4.81it/s]\n25it [00:05, 4.81it/s]\n26it [00:05, 4.81it/s]\n27it [00:05, 4.82it/s]\n28it [00:05, 4.82it/s]\n29it [00:06, 4.81it/s]\n30it [00:06, 4.81it/s]\n31it [00:06, 4.81it/s]\n32it [00:06, 4.81it/s]\n32it [00:06, 4.81it/s]\n0it [00:00, ?it/s]\n1it [00:00, 4.84it/s]\n2it [00:00, 4.82it/s]\n3it [00:00, 4.81it/s]\n4it [00:00, 4.82it/s]\n5it [00:01, 4.81it/s]\n6it [00:01, 4.81it/s]\n7it [00:01, 4.81it/s]\n8it [00:01, 4.81it/s]\n9it [00:01, 4.81it/s]\n10it [00:02, 4.80it/s]\n11it [00:02, 4.81it/s]\n12it [00:02, 4.81it/s]\n13it [00:02, 4.81it/s]\n14it [00:02, 4.82it/s]\n15it [00:03, 4.81it/s]\n16it [00:03, 4.82it/s]\n17it [00:03, 4.82it/s]\n18it [00:03, 4.82it/s]\n19it [00:03, 4.82it/s]\n20it [00:04, 4.81it/s]\n21it [00:04, 4.81it/s]\n22it [00:04, 4.81it/s]\n23it [00:04, 4.81it/s]\n24it [00:04, 4.82it/s]\n25it [00:05, 4.82it/s]\n26it [00:05, 4.81it/s]\n27it [00:05, 4.81it/s]\n28it [00:05, 4.80it/s]\n29it [00:06, 4.81it/s]\n30it [00:06, 4.81it/s]\n31it [00:06, 4.81it/s]\n32it [00:06, 4.81it/s]\n32it [00:06, 4.81it/s]\n0it [00:00, ?it/s]\n1it [00:00, 4.85it/s]\n2it [00:00, 4.81it/s]\n3it [00:00, 4.81it/s]\n4it [00:00, 4.81it/s]\n5it [00:01, 4.81it/s]\n6it [00:01, 4.81it/s]\n7it [00:01, 4.82it/s]\n8it [00:01, 4.82it/s]\n9it [00:01, 4.82it/s]\n10it [00:02, 4.81it/s]\n11it [00:02, 4.80it/s]\n12it [00:02, 4.80it/s]\n13it [00:02, 4.80it/s]\n14it [00:02, 4.80it/s]\n15it [00:03, 4.80it/s]\n16it [00:03, 4.82it/s]\n17it [00:03, 4.82it/s]\n18it [00:03, 4.81it/s]\n19it [00:03, 4.82it/s]\n20it [00:04, 4.81it/s]\n21it [00:04, 4.82it/s]\n22it [00:04, 4.82it/s]\n23it [00:04, 4.82it/s]\n24it [00:04, 4.82it/s]\n25it [00:05, 4.82it/s]\n26it [00:05, 4.81it/s]\n27it [00:05, 4.81it/s]\n28it [00:05, 4.81it/s]\n29it [00:06, 4.82it/s]\n30it [00:06, 4.82it/s]\n31it [00:06, 4.82it/s]\n32it [00:06, 4.82it/s]\n32it [00:06, 4.81it/s]\nTotal safe images: 4 out of 4",
"metrics": {
"predict_time": 28.710738437,
"total_time": 28.826555
},
"output": [
"https://replicate.delivery/xezq/7eymVMQNVrVqUiH1yHPfQcWYehpJufdV4V619tE4TjBm8iNQB/out-0.png",
"https://replicate.delivery/xezq/MPs8IfO6kLw9Pqsdw9AjVEBs5RpJtY3XFgYBd7nqv7hkXsBKA/out-1.png",
"https://replicate.delivery/xezq/xTt3YrOFeIXHDSvc0sge5kk3aCACgoW03TXdG97b73BJvYDUA/out-2.png",
"https://replicate.delivery/xezq/XfJROLUnEOTkYq3YaNVIedFojAIPhqhhxxpiClB1KskJvYDUA/out-3.png"
],
"started_at": "2025-01-09T14:14:04.870817Z",
"status": "succeeded",
"urls": {
"stream": "https://stream.replicate.com/v1/files/bcwr-n6mhth27dwizhcsfmc4s3n6a4csw2g6ivna4y6olilxugro7xtra",
"get": "https://api.replicate.com/v1/predictions/z0tv06jatdrm80cm9dnbh2s6q8",
"cancel": "https://api.replicate.com/v1/predictions/z0tv06jatdrm80cm9dnbh2s6q8/cancel"
},
"version": "33757f3adb7320ffae4f069eac50cf7f37ea35d1c93bbc1b12d9275326b7dab2"
}
2025-01-09 14:14:04.870 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-09 14:14:04.870 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 95%|█████████▍| 288/304 [00:00<00:00, 2858.35it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2675.84it/s]
2025-01-09 14:14:04.984 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s
2025-01-09 14:14:04.986 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/6d6056fc8b2c6829
2025-01-09 14:14:05.125 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded
2025-01-09 14:14:05.125 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-09 14:14:05.125 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 97%|█████████▋| 296/304 [00:00<00:00, 2927.97it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2856.72it/s]
2025-01-09 14:14:05.232 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.25s
Using seed: 13250
0it [00:00, ?it/s]
1it [00:00, 8.38it/s]
2it [00:00, 5.87it/s]
3it [00:00, 5.35it/s]
4it [00:00, 5.14it/s]
5it [00:00, 5.02it/s]
6it [00:01, 4.94it/s]
7it [00:01, 4.90it/s]
8it [00:01, 4.89it/s]
9it [00:01, 4.87it/s]
10it [00:01, 4.85it/s]
11it [00:02, 4.83it/s]
12it [00:02, 4.82it/s]
13it [00:02, 4.82it/s]
14it [00:02, 4.83it/s]
15it [00:03, 4.84it/s]
16it [00:03, 4.83it/s]
17it [00:03, 4.82it/s]
18it [00:03, 4.82it/s]
19it [00:03, 4.82it/s]
20it [00:04, 4.82it/s]
21it [00:04, 4.82it/s]
22it [00:04, 4.81it/s]
23it [00:04, 4.81it/s]
24it [00:04, 4.81it/s]
25it [00:05, 4.82it/s]
26it [00:05, 4.82it/s]
27it [00:05, 4.83it/s]
28it [00:05, 4.83it/s]
29it [00:05, 4.82it/s]
30it [00:06, 4.82it/s]
31it [00:06, 4.81it/s]
32it [00:06, 4.81it/s]
32it [00:06, 4.89it/s]
0it [00:00, ?it/s]
1it [00:00, 4.88it/s]
2it [00:00, 4.85it/s]
3it [00:00, 4.83it/s]
4it [00:00, 4.83it/s]
5it [00:01, 4.82it/s]
6it [00:01, 4.81it/s]
7it [00:01, 4.81it/s]
8it [00:01, 4.82it/s]
9it [00:01, 4.82it/s]
10it [00:02, 4.82it/s]
11it [00:02, 4.82it/s]
12it [00:02, 4.81it/s]
13it [00:02, 4.81it/s]
14it [00:02, 4.82it/s]
15it [00:03, 4.82it/s]
16it [00:03, 4.81it/s]
17it [00:03, 4.82it/s]
18it [00:03, 4.81it/s]
19it [00:03, 4.81it/s]
20it [00:04, 4.81it/s]
21it [00:04, 4.81it/s]
22it [00:04, 4.81it/s]
23it [00:04, 4.81it/s]
24it [00:04, 4.81it/s]
25it [00:05, 4.81it/s]
26it [00:05, 4.81it/s]
27it [00:05, 4.82it/s]
28it [00:05, 4.82it/s]
29it [00:06, 4.81it/s]
30it [00:06, 4.81it/s]
31it [00:06, 4.81it/s]
32it [00:06, 4.81it/s]
32it [00:06, 4.81it/s]
0it [00:00, ?it/s]
1it [00:00, 4.84it/s]
2it [00:00, 4.82it/s]
3it [00:00, 4.81it/s]
4it [00:00, 4.82it/s]
5it [00:01, 4.81it/s]
6it [00:01, 4.81it/s]
7it [00:01, 4.81it/s]
8it [00:01, 4.81it/s]
9it [00:01, 4.81it/s]
10it [00:02, 4.80it/s]
11it [00:02, 4.81it/s]
12it [00:02, 4.81it/s]
13it [00:02, 4.81it/s]
14it [00:02, 4.82it/s]
15it [00:03, 4.81it/s]
16it [00:03, 4.82it/s]
17it [00:03, 4.82it/s]
18it [00:03, 4.82it/s]
19it [00:03, 4.82it/s]
20it [00:04, 4.81it/s]
21it [00:04, 4.81it/s]
22it [00:04, 4.81it/s]
23it [00:04, 4.81it/s]
24it [00:04, 4.82it/s]
25it [00:05, 4.82it/s]
26it [00:05, 4.81it/s]
27it [00:05, 4.81it/s]
28it [00:05, 4.80it/s]
29it [00:06, 4.81it/s]
30it [00:06, 4.81it/s]
31it [00:06, 4.81it/s]
32it [00:06, 4.81it/s]
32it [00:06, 4.81it/s]
0it [00:00, ?it/s]
1it [00:00, 4.85it/s]
2it [00:00, 4.81it/s]
3it [00:00, 4.81it/s]
4it [00:00, 4.81it/s]
5it [00:01, 4.81it/s]
6it [00:01, 4.81it/s]
7it [00:01, 4.82it/s]
8it [00:01, 4.82it/s]
9it [00:01, 4.82it/s]
10it [00:02, 4.81it/s]
11it [00:02, 4.80it/s]
12it [00:02, 4.80it/s]
13it [00:02, 4.80it/s]
14it [00:02, 4.80it/s]
15it [00:03, 4.80it/s]
16it [00:03, 4.82it/s]
17it [00:03, 4.82it/s]
18it [00:03, 4.81it/s]
19it [00:03, 4.82it/s]
20it [00:04, 4.81it/s]
21it [00:04, 4.82it/s]
22it [00:04, 4.82it/s]
23it [00:04, 4.82it/s]
24it [00:04, 4.82it/s]
25it [00:05, 4.82it/s]
26it [00:05, 4.81it/s]
27it [00:05, 4.81it/s]
28it [00:05, 4.81it/s]
29it [00:06, 4.82it/s]
30it [00:06, 4.82it/s]
31it [00:06, 4.82it/s]
32it [00:06, 4.82it/s]
32it [00:06, 4.81it/s]
Total safe images: 4 out of 4
This model runs on Nvidia H100 GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
2025-01-09 14:14:04.870 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-09 14:14:04.870 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 95%|█████████▍| 288/304 [00:00<00:00, 2858.35it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2675.84it/s]
2025-01-09 14:14:04.984 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s
2025-01-09 14:14:04.986 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/6d6056fc8b2c6829
2025-01-09 14:14:05.125 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded
2025-01-09 14:14:05.125 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-09 14:14:05.125 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 97%|█████████▋| 296/304 [00:00<00:00, 2927.97it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2856.72it/s]
2025-01-09 14:14:05.232 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.25s
Using seed: 13250
0it [00:00, ?it/s]
1it [00:00, 8.38it/s]
2it [00:00, 5.87it/s]
3it [00:00, 5.35it/s]
4it [00:00, 5.14it/s]
5it [00:00, 5.02it/s]
6it [00:01, 4.94it/s]
7it [00:01, 4.90it/s]
8it [00:01, 4.89it/s]
9it [00:01, 4.87it/s]
10it [00:01, 4.85it/s]
11it [00:02, 4.83it/s]
12it [00:02, 4.82it/s]
13it [00:02, 4.82it/s]
14it [00:02, 4.83it/s]
15it [00:03, 4.84it/s]
16it [00:03, 4.83it/s]
17it [00:03, 4.82it/s]
18it [00:03, 4.82it/s]
19it [00:03, 4.82it/s]
20it [00:04, 4.82it/s]
21it [00:04, 4.82it/s]
22it [00:04, 4.81it/s]
23it [00:04, 4.81it/s]
24it [00:04, 4.81it/s]
25it [00:05, 4.82it/s]
26it [00:05, 4.82it/s]
27it [00:05, 4.83it/s]
28it [00:05, 4.83it/s]
29it [00:05, 4.82it/s]
30it [00:06, 4.82it/s]
31it [00:06, 4.81it/s]
32it [00:06, 4.81it/s]
32it [00:06, 4.89it/s]
0it [00:00, ?it/s]
1it [00:00, 4.88it/s]
2it [00:00, 4.85it/s]
3it [00:00, 4.83it/s]
4it [00:00, 4.83it/s]
5it [00:01, 4.82it/s]
6it [00:01, 4.81it/s]
7it [00:01, 4.81it/s]
8it [00:01, 4.82it/s]
9it [00:01, 4.82it/s]
10it [00:02, 4.82it/s]
11it [00:02, 4.82it/s]
12it [00:02, 4.81it/s]
13it [00:02, 4.81it/s]
14it [00:02, 4.82it/s]
15it [00:03, 4.82it/s]
16it [00:03, 4.81it/s]
17it [00:03, 4.82it/s]
18it [00:03, 4.81it/s]
19it [00:03, 4.81it/s]
20it [00:04, 4.81it/s]
21it [00:04, 4.81it/s]
22it [00:04, 4.81it/s]
23it [00:04, 4.81it/s]
24it [00:04, 4.81it/s]
25it [00:05, 4.81it/s]
26it [00:05, 4.81it/s]
27it [00:05, 4.82it/s]
28it [00:05, 4.82it/s]
29it [00:06, 4.81it/s]
30it [00:06, 4.81it/s]
31it [00:06, 4.81it/s]
32it [00:06, 4.81it/s]
32it [00:06, 4.81it/s]
0it [00:00, ?it/s]
1it [00:00, 4.84it/s]
2it [00:00, 4.82it/s]
3it [00:00, 4.81it/s]
4it [00:00, 4.82it/s]
5it [00:01, 4.81it/s]
6it [00:01, 4.81it/s]
7it [00:01, 4.81it/s]
8it [00:01, 4.81it/s]
9it [00:01, 4.81it/s]
10it [00:02, 4.80it/s]
11it [00:02, 4.81it/s]
12it [00:02, 4.81it/s]
13it [00:02, 4.81it/s]
14it [00:02, 4.82it/s]
15it [00:03, 4.81it/s]
16it [00:03, 4.82it/s]
17it [00:03, 4.82it/s]
18it [00:03, 4.82it/s]
19it [00:03, 4.82it/s]
20it [00:04, 4.81it/s]
21it [00:04, 4.81it/s]
22it [00:04, 4.81it/s]
23it [00:04, 4.81it/s]
24it [00:04, 4.82it/s]
25it [00:05, 4.82it/s]
26it [00:05, 4.81it/s]
27it [00:05, 4.81it/s]
28it [00:05, 4.80it/s]
29it [00:06, 4.81it/s]
30it [00:06, 4.81it/s]
31it [00:06, 4.81it/s]
32it [00:06, 4.81it/s]
32it [00:06, 4.81it/s]
0it [00:00, ?it/s]
1it [00:00, 4.85it/s]
2it [00:00, 4.81it/s]
3it [00:00, 4.81it/s]
4it [00:00, 4.81it/s]
5it [00:01, 4.81it/s]
6it [00:01, 4.81it/s]
7it [00:01, 4.82it/s]
8it [00:01, 4.82it/s]
9it [00:01, 4.82it/s]
10it [00:02, 4.81it/s]
11it [00:02, 4.80it/s]
12it [00:02, 4.80it/s]
13it [00:02, 4.80it/s]
14it [00:02, 4.80it/s]
15it [00:03, 4.80it/s]
16it [00:03, 4.82it/s]
17it [00:03, 4.82it/s]
18it [00:03, 4.81it/s]
19it [00:03, 4.82it/s]
20it [00:04, 4.81it/s]
21it [00:04, 4.82it/s]
22it [00:04, 4.82it/s]
23it [00:04, 4.82it/s]
24it [00:04, 4.82it/s]
25it [00:05, 4.82it/s]
26it [00:05, 4.81it/s]
27it [00:05, 4.81it/s]
28it [00:05, 4.81it/s]
29it [00:06, 4.82it/s]
30it [00:06, 4.82it/s]
31it [00:06, 4.82it/s]
32it [00:06, 4.82it/s]
32it [00:06, 4.81it/s]
Total safe images: 4 out of 4