ccrvnn / crvn
- Public
- 32 runs
-
H100
Prediction
ccrvnn/crvn:d5ba5150f145b78b1660c81ca15ccd804e4e22fda3ec8a6afaa8228a4170fb8cModelID72mvtwtn2hrm00chyvx9btc3xwStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- CRVN id photo alone white t shite at night
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "CRVN id photo alone white t shite at night", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ccrvnn/crvn using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ccrvnn/crvn:d5ba5150f145b78b1660c81ca15ccd804e4e22fda3ec8a6afaa8228a4170fb8c", { input: { model: "dev", prompt: "CRVN id photo alone white t shite at night", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ccrvnn/crvn using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ccrvnn/crvn:d5ba5150f145b78b1660c81ca15ccd804e4e22fda3ec8a6afaa8228a4170fb8c", input={ "model": "dev", "prompt": "CRVN id photo alone white t shite at night", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run ccrvnn/crvn using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ccrvnn/crvn:d5ba5150f145b78b1660c81ca15ccd804e4e22fda3ec8a6afaa8228a4170fb8c", "input": { "model": "dev", "prompt": "CRVN id photo alone white t shite at night", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-15T18:38:25.652042Z", "created_at": "2024-09-15T18:38:06.612000Z", "data_removed": false, "error": null, "id": "72mvtwtn2hrm00chyvx9btc3xw", "input": { "model": "dev", "prompt": "CRVN id photo alone white t shite at night", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 4053\nPrompt: CRVN id photo alone white t shite at night\n[!] txt2img mode\nUsing dev model\nfree=6679975235584\nDownloading weights\n2024-09-15T18:38:06Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpw9by5i8l/weights url=https://replicate.delivery/yhqm/NgXM2fVSA9zBfErBwpJjSriBLbg6duKSqRUMgWIUX0vmfZ6mA/trained_model.tar\n2024-09-15T18:38:08Z | INFO | [ Complete ] dest=/tmp/tmpw9by5i8l/weights size=\"172 MB\" total_elapsed=1.362s url=https://replicate.delivery/yhqm/NgXM2fVSA9zBfErBwpJjSriBLbg6duKSqRUMgWIUX0vmfZ6mA/trained_model.tar\nDownloaded weights in 1.39s\nLoaded LoRAs in 10.49s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.52it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.99it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.75it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.66it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.60it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.57it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.55it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.54it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.53it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.52it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.52it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.51it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.51it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.51it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.51it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.51it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.50it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.51it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.51it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.51it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.51it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.51it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.51it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.51it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.51it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.51it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.51it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.51it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.53it/s]", "metrics": { "predict_time": 19.03136206, "total_time": 19.040042 }, "output": [ "https://replicate.delivery/yhqm/T66bDNMbBhqRJpcQN8OiqeoVMxhfrgpNc4xAk9JnYVMhuNdTA/out-0.webp" ], "started_at": "2024-09-15T18:38:06.620680Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/72mvtwtn2hrm00chyvx9btc3xw", "cancel": "https://api.replicate.com/v1/predictions/72mvtwtn2hrm00chyvx9btc3xw/cancel" }, "version": "d5ba5150f145b78b1660c81ca15ccd804e4e22fda3ec8a6afaa8228a4170fb8c" }
Generated inUsing seed: 4053 Prompt: CRVN id photo alone white t shite at night [!] txt2img mode Using dev model free=6679975235584 Downloading weights 2024-09-15T18:38:06Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpw9by5i8l/weights url=https://replicate.delivery/yhqm/NgXM2fVSA9zBfErBwpJjSriBLbg6duKSqRUMgWIUX0vmfZ6mA/trained_model.tar 2024-09-15T18:38:08Z | INFO | [ Complete ] dest=/tmp/tmpw9by5i8l/weights size="172 MB" total_elapsed=1.362s url=https://replicate.delivery/yhqm/NgXM2fVSA9zBfErBwpJjSriBLbg6duKSqRUMgWIUX0vmfZ6mA/trained_model.tar Downloaded weights in 1.39s Loaded LoRAs in 10.49s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.52it/s] 7%|▋ | 2/28 [00:00<00:06, 3.99it/s] 11%|█ | 3/28 [00:00<00:06, 3.75it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.66it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.60it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.57it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.55it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.54it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.53it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.52it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.52it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.51it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.51it/s] 50%|█████ | 14/28 [00:03<00:03, 3.51it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.51it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.51it/s] 61%|██████ | 17/28 [00:04<00:03, 3.50it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.51it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.51it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.51it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.51it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.51it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.51it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.51it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.51it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.51it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.51it/s] 100%|██████████| 28/28 [00:07<00:00, 3.51it/s] 100%|██████████| 28/28 [00:07<00:00, 3.53it/s]
Prediction
ccrvnn/crvn:d5ba5150f145b78b1660c81ca15ccd804e4e22fda3ec8a6afaa8228a4170fb8cModelIDmvcc8ptmrsrm40chyvys8wd3fcStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- CRVN id photo alone white t shirt at night distance shoot half body
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "CRVN id photo alone white t shirt at night distance shoot half body", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ccrvnn/crvn using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ccrvnn/crvn:d5ba5150f145b78b1660c81ca15ccd804e4e22fda3ec8a6afaa8228a4170fb8c", { input: { model: "dev", prompt: "CRVN id photo alone white t shirt at night distance shoot half body", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ccrvnn/crvn using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ccrvnn/crvn:d5ba5150f145b78b1660c81ca15ccd804e4e22fda3ec8a6afaa8228a4170fb8c", input={ "model": "dev", "prompt": "CRVN id photo alone white t shirt at night distance shoot half body", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run ccrvnn/crvn using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ccrvnn/crvn:d5ba5150f145b78b1660c81ca15ccd804e4e22fda3ec8a6afaa8228a4170fb8c", "input": { "model": "dev", "prompt": "CRVN id photo alone white t shirt at night distance shoot half body", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-15T18:41:41.429734Z", "created_at": "2024-09-15T18:41:23.142000Z", "data_removed": false, "error": null, "id": "mvcc8ptmrsrm40chyvys8wd3fc", "input": { "model": "dev", "prompt": "CRVN id photo alone white t shirt at night distance shoot half body", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 26750\nPrompt: CRVN id photo alone white t shirt at night distance shoot half body\n[!] txt2img mode\nUsing dev model\nfree=7087972503552\nDownloading weights\n2024-09-15T18:41:23Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpsk2nb7zv/weights url=https://replicate.delivery/yhqm/NgXM2fVSA9zBfErBwpJjSriBLbg6duKSqRUMgWIUX0vmfZ6mA/trained_model.tar\n2024-09-15T18:41:24Z | INFO | [ Complete ] dest=/tmp/tmpsk2nb7zv/weights size=\"172 MB\" total_elapsed=1.292s url=https://replicate.delivery/yhqm/NgXM2fVSA9zBfErBwpJjSriBLbg6duKSqRUMgWIUX0vmfZ6mA/trained_model.tar\nDownloaded weights in 1.32s\nLoaded LoRAs in 9.93s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.47it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.93it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.70it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.60it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.55it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.52it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.51it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.49it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.49it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.48it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.48it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.47it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.47it/s]\n 50%|█████ | 14/28 [00:03<00:04, 3.46it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.46it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.46it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.46it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.46it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.46it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.46it/s]\n 75%|███████▌ | 21/28 [00:06<00:02, 3.46it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.46it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.46it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.46it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.46it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.46it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.46it/s]\n100%|██████████| 28/28 [00:08<00:00, 3.46it/s]\n100%|██████████| 28/28 [00:08<00:00, 3.49it/s]", "metrics": { "predict_time": 18.280649782, "total_time": 18.287734 }, "output": [ "https://replicate.delivery/yhqm/tmueJZEbyNQqBaMH99RZmrMGWfCgRWxSQ4oqLsV3zD8lxNdTA/out-0.webp" ], "started_at": "2024-09-15T18:41:23.149085Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/mvcc8ptmrsrm40chyvys8wd3fc", "cancel": "https://api.replicate.com/v1/predictions/mvcc8ptmrsrm40chyvys8wd3fc/cancel" }, "version": "d5ba5150f145b78b1660c81ca15ccd804e4e22fda3ec8a6afaa8228a4170fb8c" }
Generated inUsing seed: 26750 Prompt: CRVN id photo alone white t shirt at night distance shoot half body [!] txt2img mode Using dev model free=7087972503552 Downloading weights 2024-09-15T18:41:23Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpsk2nb7zv/weights url=https://replicate.delivery/yhqm/NgXM2fVSA9zBfErBwpJjSriBLbg6duKSqRUMgWIUX0vmfZ6mA/trained_model.tar 2024-09-15T18:41:24Z | INFO | [ Complete ] dest=/tmp/tmpsk2nb7zv/weights size="172 MB" total_elapsed=1.292s url=https://replicate.delivery/yhqm/NgXM2fVSA9zBfErBwpJjSriBLbg6duKSqRUMgWIUX0vmfZ6mA/trained_model.tar Downloaded weights in 1.32s Loaded LoRAs in 9.93s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.47it/s] 7%|▋ | 2/28 [00:00<00:06, 3.93it/s] 11%|█ | 3/28 [00:00<00:06, 3.70it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.60it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.55it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.52it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.51it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.49it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.49it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.48it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.48it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.47it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.47it/s] 50%|█████ | 14/28 [00:03<00:04, 3.46it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.46it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.46it/s] 61%|██████ | 17/28 [00:04<00:03, 3.46it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.46it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.46it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.46it/s] 75%|███████▌ | 21/28 [00:06<00:02, 3.46it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.46it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.46it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.46it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.46it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.46it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.46it/s] 100%|██████████| 28/28 [00:08<00:00, 3.46it/s] 100%|██████████| 28/28 [00:08<00:00, 3.49it/s]
Want to make some of these yourself?
Run this model