cesarvega / my-alinamodel
- Public
- 67 runs
-
H100
Prediction
cesarvega/my-alinamodel:54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85afIDf0mgt5069srme0cmwsrrtfhebgStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a photo of alina in the beach of Miami
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "image": "https://replicate.delivery/pbxt/MSqRqKKjETReKFWgtcb68G09HGFjBeLK7qUSDslgHX6LmwCc/Screenshot%202025-02-08%20104902.png", "model": "dev", "prompt": "a photo of alina in the beach of Miami", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run cesarvega/my-alinamodel using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "cesarvega/my-alinamodel:54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85af", { input: { image: "https://replicate.delivery/pbxt/MSqRqKKjETReKFWgtcb68G09HGFjBeLK7qUSDslgHX6LmwCc/Screenshot%202025-02-08%20104902.png", model: "dev", prompt: "a photo of alina in the beach of Miami", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run cesarvega/my-alinamodel using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "cesarvega/my-alinamodel:54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85af", input={ "image": "https://replicate.delivery/pbxt/MSqRqKKjETReKFWgtcb68G09HGFjBeLK7qUSDslgHX6LmwCc/Screenshot%202025-02-08%20104902.png", "model": "dev", "prompt": "a photo of alina in the beach of Miami", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run cesarvega/my-alinamodel using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "cesarvega/my-alinamodel:54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85af", "input": { "image": "https://replicate.delivery/pbxt/MSqRqKKjETReKFWgtcb68G09HGFjBeLK7qUSDslgHX6LmwCc/Screenshot%202025-02-08%20104902.png", "model": "dev", "prompt": "a photo of alina in the beach of Miami", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-02-08T16:42:43.509615Z", "created_at": "2025-02-08T16:42:34.446000Z", "data_removed": false, "error": null, "id": "f0mgt5069srme0cmwsrrtfhebg", "input": { "image": "https://replicate.delivery/pbxt/MSqRqKKjETReKFWgtcb68G09HGFjBeLK7qUSDslgHX6LmwCc/Screenshot%202025-02-08%20104902.png", "model": "dev", "prompt": "a photo of alina in the beach of Miami", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "free=29256104157184\nDownloading weights\n2025-02-08T16:42:34Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp22mkhgvr/weights url=https://replicate.delivery/xezq/NDkfE21qfzlV4kQGGq6siQqzERgXl54cEkh7gLERIH9wpTNUA/trained_model.tar\n2025-02-08T16:42:37Z | INFO | [ Complete ] dest=/tmp/tmp22mkhgvr/weights size=\"172 MB\" total_elapsed=2.395s url=https://replicate.delivery/xezq/NDkfE21qfzlV4kQGGq6siQqzERgXl54cEkh7gLERIH9wpTNUA/trained_model.tar\nDownloaded weights in 2.42s\nLoaded LoRAs in 2.96s\nUsing seed: 31295\nPrompt: a photo of alina in the beach of Miami\n[!] Resizing input image from 863x847 to 864x848\n[!] img2img mode\n 0%| | 0/23 [00:00<?, ?it/s]\n 4%|▍ | 1/23 [00:00<00:18, 1.19it/s]\n 9%|▊ | 2/23 [00:01<00:09, 2.20it/s]\n 13%|█▎ | 3/23 [00:01<00:06, 3.02it/s]\n 17%|█▋ | 4/23 [00:01<00:05, 3.65it/s]\n 22%|██▏ | 5/23 [00:01<00:04, 4.13it/s]\n 26%|██▌ | 6/23 [00:01<00:03, 4.49it/s]\n 30%|███ | 7/23 [00:01<00:03, 4.75it/s]\n 35%|███▍ | 8/23 [00:02<00:03, 4.94it/s]\n 39%|███▉ | 9/23 [00:02<00:02, 5.07it/s]\n 43%|████▎ | 10/23 [00:02<00:02, 5.16it/s]\n 48%|████▊ | 11/23 [00:02<00:02, 5.23it/s]\n 52%|█████▏ | 12/23 [00:02<00:02, 5.28it/s]\n 57%|█████▋ | 13/23 [00:03<00:01, 5.31it/s]\n 61%|██████ | 14/23 [00:03<00:01, 5.34it/s]\n 65%|██████▌ | 15/23 [00:03<00:01, 5.35it/s]\n 70%|██████▉ | 16/23 [00:03<00:01, 5.36it/s]\n 74%|███████▍ | 17/23 [00:03<00:01, 5.37it/s]\n 78%|███████▊ | 18/23 [00:03<00:00, 5.38it/s]\n 83%|████████▎ | 19/23 [00:04<00:00, 5.38it/s]\n 87%|████████▋ | 20/23 [00:04<00:00, 5.39it/s]\n 91%|█████████▏| 21/23 [00:04<00:00, 5.39it/s]\n 96%|█████████▌| 22/23 [00:04<00:00, 5.39it/s]\n100%|██████████| 23/23 [00:04<00:00, 5.39it/s]\n100%|██████████| 23/23 [00:04<00:00, 4.68it/s]\nTotal safe images: 1 out of 1", "metrics": { "predict_time": 8.880737427, "total_time": 9.063615 }, "output": [ "https://replicate.delivery/xezq/Qwwf2R2jbfuSlkMWJVVhnqfiSKufWhXBEvOE8SK6ZyAN4O1QB/out-0.webp" ], "started_at": "2025-02-08T16:42:34.628878Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-x75f5vhuduuutvyy3lsmcynzgjspxqeylbsuycjkye57hzgxwiga", "get": "https://api.replicate.com/v1/predictions/f0mgt5069srme0cmwsrrtfhebg", "cancel": "https://api.replicate.com/v1/predictions/f0mgt5069srme0cmwsrrtfhebg/cancel" }, "version": "54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85af" }
Generated infree=29256104157184 Downloading weights 2025-02-08T16:42:34Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp22mkhgvr/weights url=https://replicate.delivery/xezq/NDkfE21qfzlV4kQGGq6siQqzERgXl54cEkh7gLERIH9wpTNUA/trained_model.tar 2025-02-08T16:42:37Z | INFO | [ Complete ] dest=/tmp/tmp22mkhgvr/weights size="172 MB" total_elapsed=2.395s url=https://replicate.delivery/xezq/NDkfE21qfzlV4kQGGq6siQqzERgXl54cEkh7gLERIH9wpTNUA/trained_model.tar Downloaded weights in 2.42s Loaded LoRAs in 2.96s Using seed: 31295 Prompt: a photo of alina in the beach of Miami [!] Resizing input image from 863x847 to 864x848 [!] img2img mode 0%| | 0/23 [00:00<?, ?it/s] 4%|▍ | 1/23 [00:00<00:18, 1.19it/s] 9%|▊ | 2/23 [00:01<00:09, 2.20it/s] 13%|█▎ | 3/23 [00:01<00:06, 3.02it/s] 17%|█▋ | 4/23 [00:01<00:05, 3.65it/s] 22%|██▏ | 5/23 [00:01<00:04, 4.13it/s] 26%|██▌ | 6/23 [00:01<00:03, 4.49it/s] 30%|███ | 7/23 [00:01<00:03, 4.75it/s] 35%|███▍ | 8/23 [00:02<00:03, 4.94it/s] 39%|███▉ | 9/23 [00:02<00:02, 5.07it/s] 43%|████▎ | 10/23 [00:02<00:02, 5.16it/s] 48%|████▊ | 11/23 [00:02<00:02, 5.23it/s] 52%|█████▏ | 12/23 [00:02<00:02, 5.28it/s] 57%|█████▋ | 13/23 [00:03<00:01, 5.31it/s] 61%|██████ | 14/23 [00:03<00:01, 5.34it/s] 65%|██████▌ | 15/23 [00:03<00:01, 5.35it/s] 70%|██████▉ | 16/23 [00:03<00:01, 5.36it/s] 74%|███████▍ | 17/23 [00:03<00:01, 5.37it/s] 78%|███████▊ | 18/23 [00:03<00:00, 5.38it/s] 83%|████████▎ | 19/23 [00:04<00:00, 5.38it/s] 87%|████████▋ | 20/23 [00:04<00:00, 5.39it/s] 91%|█████████▏| 21/23 [00:04<00:00, 5.39it/s] 96%|█████████▌| 22/23 [00:04<00:00, 5.39it/s] 100%|██████████| 23/23 [00:04<00:00, 5.39it/s] 100%|██████████| 23/23 [00:04<00:00, 4.68it/s] Total safe images: 1 out of 1
Prediction
cesarvega/my-alinamodel:54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85afIDcz134hgbthrm80cmwsxbq1gvv8StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a photo of alina in an short green construction worker vest and bathing suit and helmet
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a photo of alina in an short green construction worker vest and bathing suit and helmet", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run cesarvega/my-alinamodel using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "cesarvega/my-alinamodel:54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85af", { input: { model: "dev", prompt: "a photo of alina in an short green construction worker vest and bathing suit and helmet", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run cesarvega/my-alinamodel using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "cesarvega/my-alinamodel:54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85af", input={ "model": "dev", "prompt": "a photo of alina in an short green construction worker vest and bathing suit and helmet", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run cesarvega/my-alinamodel using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "cesarvega/my-alinamodel:54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85af", "input": { "model": "dev", "prompt": "a photo of alina in an short green construction worker vest and bathing suit and helmet", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-02-08T16:52:32.939479Z", "created_at": "2025-02-08T16:52:25.684000Z", "data_removed": false, "error": null, "id": "cz134hgbthrm80cmwsxbq1gvv8", "input": { "model": "dev", "prompt": "a photo of alina in an short green construction worker vest and bathing suit and helmet", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Weights already loaded\nLoaded LoRAs in 0.02s\nUsing seed: 53106\nPrompt: a photo of alina in an short green construction worker vest and bathing suit and helmet\n[!] txt2img mode\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:06, 4.01it/s]\n 7%|▋ | 2/28 [00:00<00:05, 4.53it/s]\n 11%|█ | 3/28 [00:00<00:05, 4.27it/s]\n 14%|█▍ | 4/28 [00:00<00:05, 4.16it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 4.09it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 4.06it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 4.04it/s]\n 29%|██▊ | 8/28 [00:01<00:04, 4.03it/s]\n 32%|███▏ | 9/28 [00:02<00:04, 4.02it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 4.01it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 4.01it/s]\n 43%|████▎ | 12/28 [00:02<00:03, 4.00it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 4.00it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.99it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 4.00it/s]\n 57%|█████▋ | 16/28 [00:03<00:03, 4.00it/s]\n 61%|██████ | 17/28 [00:04<00:02, 4.00it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.99it/s]\n 68%|██████▊ | 19/28 [00:04<00:02, 3.99it/s]\n 71%|███████▏ | 20/28 [00:04<00:02, 3.99it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.99it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 4.00it/s]\n 82%|████████▏ | 23/28 [00:05<00:01, 4.00it/s]\n 86%|████████▌ | 24/28 [00:05<00:01, 3.99it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.99it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.99it/s]\n 96%|█████████▋| 27/28 [00:06<00:00, 3.99it/s]\n100%|██████████| 28/28 [00:06<00:00, 3.99it/s]\n100%|██████████| 28/28 [00:06<00:00, 4.02it/s]\nTotal safe images: 1 out of 1", "metrics": { "predict_time": 7.249102004, "total_time": 7.255479 }, "output": [ "https://replicate.delivery/xezq/8YqNWom5D9ZZLxmYa0SRLwo5m1lZVfZmEa28RVvd1vTo7pGKA/out-0.webp" ], "started_at": "2025-02-08T16:52:25.690377Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-mh2x6chm44obbrd5vuzxf5nmxg6ep24wjsr2ezrlxlmkmrdgabxa", "get": "https://api.replicate.com/v1/predictions/cz134hgbthrm80cmwsxbq1gvv8", "cancel": "https://api.replicate.com/v1/predictions/cz134hgbthrm80cmwsxbq1gvv8/cancel" }, "version": "54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85af" }
Generated inWeights already loaded Loaded LoRAs in 0.02s Using seed: 53106 Prompt: a photo of alina in an short green construction worker vest and bathing suit and helmet [!] txt2img mode 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:06, 4.01it/s] 7%|▋ | 2/28 [00:00<00:05, 4.53it/s] 11%|█ | 3/28 [00:00<00:05, 4.27it/s] 14%|█▍ | 4/28 [00:00<00:05, 4.16it/s] 18%|█▊ | 5/28 [00:01<00:05, 4.09it/s] 21%|██▏ | 6/28 [00:01<00:05, 4.06it/s] 25%|██▌ | 7/28 [00:01<00:05, 4.04it/s] 29%|██▊ | 8/28 [00:01<00:04, 4.03it/s] 32%|███▏ | 9/28 [00:02<00:04, 4.02it/s] 36%|███▌ | 10/28 [00:02<00:04, 4.01it/s] 39%|███▉ | 11/28 [00:02<00:04, 4.01it/s] 43%|████▎ | 12/28 [00:02<00:03, 4.00it/s] 46%|████▋ | 13/28 [00:03<00:03, 4.00it/s] 50%|█████ | 14/28 [00:03<00:03, 3.99it/s] 54%|█████▎ | 15/28 [00:03<00:03, 4.00it/s] 57%|█████▋ | 16/28 [00:03<00:03, 4.00it/s] 61%|██████ | 17/28 [00:04<00:02, 4.00it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.99it/s] 68%|██████▊ | 19/28 [00:04<00:02, 3.99it/s] 71%|███████▏ | 20/28 [00:04<00:02, 3.99it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.99it/s] 79%|███████▊ | 22/28 [00:05<00:01, 4.00it/s] 82%|████████▏ | 23/28 [00:05<00:01, 4.00it/s] 86%|████████▌ | 24/28 [00:05<00:01, 3.99it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.99it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.99it/s] 96%|█████████▋| 27/28 [00:06<00:00, 3.99it/s] 100%|██████████| 28/28 [00:06<00:00, 3.99it/s] 100%|██████████| 28/28 [00:06<00:00, 4.02it/s] Total safe images: 1 out of 1
Prediction
cesarvega/my-alinamodel:54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85afIDbajrcytm11rma0cmwssvjmjt4mStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a photo of alina in the beach of Dubai in bathing suit, wide shot
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a photo of alina in the beach of Dubai in bathing suit, wide shot", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run cesarvega/my-alinamodel using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "cesarvega/my-alinamodel:54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85af", { input: { model: "dev", prompt: "a photo of alina in the beach of Dubai in bathing suit, wide shot", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run cesarvega/my-alinamodel using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "cesarvega/my-alinamodel:54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85af", input={ "model": "dev", "prompt": "a photo of alina in the beach of Dubai in bathing suit, wide shot", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run cesarvega/my-alinamodel using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "cesarvega/my-alinamodel:54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85af", "input": { "model": "dev", "prompt": "a photo of alina in the beach of Dubai in bathing suit, wide shot", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-02-08T16:45:15.505119Z", "created_at": "2025-02-08T16:45:05.416000Z", "data_removed": false, "error": null, "id": "bajrcytm11rma0cmwssvjmjt4m", "input": { "model": "dev", "prompt": "a photo of alina in the beach of Dubai in bathing suit, wide shot", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "free=28748105641984\nDownloading weights\n2025-02-08T16:45:05Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp1ee4m889/weights url=https://replicate.delivery/xezq/NDkfE21qfzlV4kQGGq6siQqzERgXl54cEkh7gLERIH9wpTNUA/trained_model.tar\n2025-02-08T16:45:07Z | INFO | [ Complete ] dest=/tmp/tmp1ee4m889/weights size=\"172 MB\" total_elapsed=2.253s url=https://replicate.delivery/xezq/NDkfE21qfzlV4kQGGq6siQqzERgXl54cEkh7gLERIH9wpTNUA/trained_model.tar\nDownloaded weights in 2.28s\nLoaded LoRAs in 2.83s\nUsing seed: 33623\nPrompt: a photo of alina in the beach of Dubai in bathing suit, wide shot\n[!] txt2img mode\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:06, 4.06it/s]\n 7%|▋ | 2/28 [00:00<00:05, 4.59it/s]\n 11%|█ | 3/28 [00:00<00:05, 4.32it/s]\n 14%|█▍ | 4/28 [00:00<00:05, 4.20it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 4.14it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 4.11it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 4.08it/s]\n 29%|██▊ | 8/28 [00:01<00:04, 4.06it/s]\n 32%|███▏ | 9/28 [00:02<00:04, 4.05it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 4.04it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 4.04it/s]\n 43%|████▎ | 12/28 [00:02<00:03, 4.03it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 4.03it/s]\n 50%|█████ | 14/28 [00:03<00:03, 4.04it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 4.03it/s]\n 57%|█████▋ | 16/28 [00:03<00:02, 4.03it/s]\n 61%|██████ | 17/28 [00:04<00:02, 4.03it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 4.03it/s]\n 68%|██████▊ | 19/28 [00:04<00:02, 4.03it/s]\n 71%|███████▏ | 20/28 [00:04<00:01, 4.03it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 4.03it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 4.03it/s]\n 82%|████████▏ | 23/28 [00:05<00:01, 4.03it/s]\n 86%|████████▌ | 24/28 [00:05<00:00, 4.03it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 4.03it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 4.03it/s]\n 96%|█████████▋| 27/28 [00:06<00:00, 4.03it/s]\n100%|██████████| 28/28 [00:06<00:00, 4.03it/s]\n100%|██████████| 28/28 [00:06<00:00, 4.06it/s]\nTotal safe images: 1 out of 1", "metrics": { "predict_time": 10.05671047, "total_time": 10.089119 }, "output": [ "https://replicate.delivery/xezq/XSTXQYqeBiz8MykBms8wxEpv3tfMlizM9WV7UmV3wEObwTNUA/out-0.webp" ], "started_at": "2025-02-08T16:45:05.448408Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-dwegtu2ognvq6ql5lm4q7jxqpul55t2gubuplyhvc45ofhlfwooa", "get": "https://api.replicate.com/v1/predictions/bajrcytm11rma0cmwssvjmjt4m", "cancel": "https://api.replicate.com/v1/predictions/bajrcytm11rma0cmwssvjmjt4m/cancel" }, "version": "54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85af" }
Generated infree=28748105641984 Downloading weights 2025-02-08T16:45:05Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp1ee4m889/weights url=https://replicate.delivery/xezq/NDkfE21qfzlV4kQGGq6siQqzERgXl54cEkh7gLERIH9wpTNUA/trained_model.tar 2025-02-08T16:45:07Z | INFO | [ Complete ] dest=/tmp/tmp1ee4m889/weights size="172 MB" total_elapsed=2.253s url=https://replicate.delivery/xezq/NDkfE21qfzlV4kQGGq6siQqzERgXl54cEkh7gLERIH9wpTNUA/trained_model.tar Downloaded weights in 2.28s Loaded LoRAs in 2.83s Using seed: 33623 Prompt: a photo of alina in the beach of Dubai in bathing suit, wide shot [!] txt2img mode 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:06, 4.06it/s] 7%|▋ | 2/28 [00:00<00:05, 4.59it/s] 11%|█ | 3/28 [00:00<00:05, 4.32it/s] 14%|█▍ | 4/28 [00:00<00:05, 4.20it/s] 18%|█▊ | 5/28 [00:01<00:05, 4.14it/s] 21%|██▏ | 6/28 [00:01<00:05, 4.11it/s] 25%|██▌ | 7/28 [00:01<00:05, 4.08it/s] 29%|██▊ | 8/28 [00:01<00:04, 4.06it/s] 32%|███▏ | 9/28 [00:02<00:04, 4.05it/s] 36%|███▌ | 10/28 [00:02<00:04, 4.04it/s] 39%|███▉ | 11/28 [00:02<00:04, 4.04it/s] 43%|████▎ | 12/28 [00:02<00:03, 4.03it/s] 46%|████▋ | 13/28 [00:03<00:03, 4.03it/s] 50%|█████ | 14/28 [00:03<00:03, 4.04it/s] 54%|█████▎ | 15/28 [00:03<00:03, 4.03it/s] 57%|█████▋ | 16/28 [00:03<00:02, 4.03it/s] 61%|██████ | 17/28 [00:04<00:02, 4.03it/s] 64%|██████▍ | 18/28 [00:04<00:02, 4.03it/s] 68%|██████▊ | 19/28 [00:04<00:02, 4.03it/s] 71%|███████▏ | 20/28 [00:04<00:01, 4.03it/s] 75%|███████▌ | 21/28 [00:05<00:01, 4.03it/s] 79%|███████▊ | 22/28 [00:05<00:01, 4.03it/s] 82%|████████▏ | 23/28 [00:05<00:01, 4.03it/s] 86%|████████▌ | 24/28 [00:05<00:00, 4.03it/s] 89%|████████▉ | 25/28 [00:06<00:00, 4.03it/s] 93%|█████████▎| 26/28 [00:06<00:00, 4.03it/s] 96%|█████████▋| 27/28 [00:06<00:00, 4.03it/s] 100%|██████████| 28/28 [00:06<00:00, 4.03it/s] 100%|██████████| 28/28 [00:06<00:00, 4.06it/s] Total safe images: 1 out of 1
Prediction
cesarvega/my-alinamodel:54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85afIDmh2ze95nsdrm80cmwv3r5f9fc4StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a photo of alina dancing
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a photo of alina dancing", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run cesarvega/my-alinamodel using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "cesarvega/my-alinamodel:54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85af", { input: { model: "dev", prompt: "a photo of alina dancing", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run cesarvega/my-alinamodel using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "cesarvega/my-alinamodel:54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85af", input={ "model": "dev", "prompt": "a photo of alina dancing", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run cesarvega/my-alinamodel using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "cesarvega/my-alinamodel:54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85af", "input": { "model": "dev", "prompt": "a photo of alina dancing", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-02-08T18:17:23.254753Z", "created_at": "2025-02-08T18:17:15.467000Z", "data_removed": false, "error": null, "id": "mh2ze95nsdrm80cmwv3r5f9fc4", "input": { "model": "dev", "prompt": "a photo of alina dancing", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Loaded LoRAs in 0.56s\nUsing seed: 24661\nPrompt: a photo of alina dancing\n[!] txt2img mode\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:06, 4.01it/s]\n 7%|▋ | 2/28 [00:00<00:05, 4.53it/s]\n 11%|█ | 3/28 [00:00<00:05, 4.28it/s]\n 14%|█▍ | 4/28 [00:00<00:05, 4.17it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 4.11it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 4.07it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 4.04it/s]\n 29%|██▊ | 8/28 [00:01<00:04, 4.03it/s]\n 32%|███▏ | 9/28 [00:02<00:04, 4.02it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 4.02it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 4.01it/s]\n 43%|████▎ | 12/28 [00:02<00:03, 4.01it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 4.00it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.99it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.99it/s]\n 57%|█████▋ | 16/28 [00:03<00:03, 3.98it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.99it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.99it/s]\n 68%|██████▊ | 19/28 [00:04<00:02, 4.00it/s]\n 71%|███████▏ | 20/28 [00:04<00:01, 4.00it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 4.00it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 4.00it/s]\n 82%|████████▏ | 23/28 [00:05<00:01, 3.99it/s]\n 86%|████████▌ | 24/28 [00:05<00:01, 4.00it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 4.00it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.99it/s]\n 96%|█████████▋| 27/28 [00:06<00:00, 3.99it/s]\n100%|██████████| 28/28 [00:06<00:00, 3.99it/s]\n100%|██████████| 28/28 [00:06<00:00, 4.02it/s]\nTotal safe images: 1 out of 1", "metrics": { "predict_time": 7.781390335, "total_time": 7.787753 }, "output": [ "https://replicate.delivery/xezq/9WYvxslIOmp6MJ17uidRUqMq1TYzKufTpNe2Ko14VkMzGVNUA/out-0.webp" ], "started_at": "2025-02-08T18:17:15.473363Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-vkxhfng4gspitqnzylfffdwhmfbuof5hq7xxwowbu26nabgmbpua", "get": "https://api.replicate.com/v1/predictions/mh2ze95nsdrm80cmwv3r5f9fc4", "cancel": "https://api.replicate.com/v1/predictions/mh2ze95nsdrm80cmwv3r5f9fc4/cancel" }, "version": "54cc655616e24a8f59010c48d351ce1192c0581885ffcb839be388309f0a85af" }
Generated inLoaded LoRAs in 0.56s Using seed: 24661 Prompt: a photo of alina dancing [!] txt2img mode 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:06, 4.01it/s] 7%|▋ | 2/28 [00:00<00:05, 4.53it/s] 11%|█ | 3/28 [00:00<00:05, 4.28it/s] 14%|█▍ | 4/28 [00:00<00:05, 4.17it/s] 18%|█▊ | 5/28 [00:01<00:05, 4.11it/s] 21%|██▏ | 6/28 [00:01<00:05, 4.07it/s] 25%|██▌ | 7/28 [00:01<00:05, 4.04it/s] 29%|██▊ | 8/28 [00:01<00:04, 4.03it/s] 32%|███▏ | 9/28 [00:02<00:04, 4.02it/s] 36%|███▌ | 10/28 [00:02<00:04, 4.02it/s] 39%|███▉ | 11/28 [00:02<00:04, 4.01it/s] 43%|████▎ | 12/28 [00:02<00:03, 4.01it/s] 46%|████▋ | 13/28 [00:03<00:03, 4.00it/s] 50%|█████ | 14/28 [00:03<00:03, 3.99it/s] 54%|█████▎ | 15/28 [00:03<00:03, 3.99it/s] 57%|█████▋ | 16/28 [00:03<00:03, 3.98it/s] 61%|██████ | 17/28 [00:04<00:02, 3.99it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.99it/s] 68%|██████▊ | 19/28 [00:04<00:02, 4.00it/s] 71%|███████▏ | 20/28 [00:04<00:01, 4.00it/s] 75%|███████▌ | 21/28 [00:05<00:01, 4.00it/s] 79%|███████▊ | 22/28 [00:05<00:01, 4.00it/s] 82%|████████▏ | 23/28 [00:05<00:01, 3.99it/s] 86%|████████▌ | 24/28 [00:05<00:01, 4.00it/s] 89%|████████▉ | 25/28 [00:06<00:00, 4.00it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.99it/s] 96%|█████████▋| 27/28 [00:06<00:00, 3.99it/s] 100%|██████████| 28/28 [00:06<00:00, 3.99it/s] 100%|██████████| 28/28 [00:06<00:00, 4.02it/s] Total safe images: 1 out of 1
Want to make some of these yourself?
Run this model