Readme
This model doesn't have a readme.
AnimateDiff text to video from your imagination!
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run chamuditha4/anime_diff-oolong using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"chamuditha4/anime_diff-oolong:b0e1db6aa779f13a9bee80dff0cd0186eeba0ae48d8438f4f649caa15d04abb6",
{
input: {
model: "disney",
width: 512,
height: 512,
prompt: "masterpiece, best quality, 1girl, solo, cherry blossoms, hanami, pink flower, white flower, spring season, wisteria, petals, flower, plum blossoms, outdoors, falling petals, white hair, black eyes",
is_video: true,
num_frames: 24,
guidance_scale: 7.5,
negative_prompt: "badhandv4, easynegative, ng_deepnegative_v1_75t, verybadimagenegative_v1.3, bad-artist, bad_prompt_version2-neg, teeth",
num_inference_steps: 25
}
}
);
// To access the file URL:
console.log(output.url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run chamuditha4/anime_diff-oolong using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"chamuditha4/anime_diff-oolong:b0e1db6aa779f13a9bee80dff0cd0186eeba0ae48d8438f4f649caa15d04abb6",
input={
"model": "disney",
"width": 512,
"height": 512,
"prompt": "masterpiece, best quality, 1girl, solo, cherry blossoms, hanami, pink flower, white flower, spring season, wisteria, petals, flower, plum blossoms, outdoors, falling petals, white hair, black eyes",
"is_video": True,
"num_frames": 24,
"guidance_scale": 7.5,
"negative_prompt": "badhandv4, easynegative, ng_deepnegative_v1_75t, verybadimagenegative_v1.3, bad-artist, bad_prompt_version2-neg, teeth",
"num_inference_steps": 25
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run chamuditha4/anime_diff-oolong using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "chamuditha4/anime_diff-oolong:b0e1db6aa779f13a9bee80dff0cd0186eeba0ae48d8438f4f649caa15d04abb6",
"input": {
"model": "disney",
"width": 512,
"height": 512,
"prompt": "masterpiece, best quality, 1girl, solo, cherry blossoms, hanami, pink flower, white flower, spring season, wisteria, petals, flower, plum blossoms, outdoors, falling petals, white hair, black eyes",
"is_video": true,
"num_frames": 24,
"guidance_scale": 7.5,
"negative_prompt": "badhandv4, easynegative, ng_deepnegative_v1_75t, verybadimagenegative_v1.3, bad-artist, bad_prompt_version2-neg, teeth",
"num_inference_steps": 25
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/chamuditha4/anime_diff-oolong@sha256:b0e1db6aa779f13a9bee80dff0cd0186eeba0ae48d8438f4f649caa15d04abb6 \
-i 'model="disney"' \
-i 'width=512' \
-i 'height=512' \
-i 'prompt="masterpiece, best quality, 1girl, solo, cherry blossoms, hanami, pink flower, white flower, spring season, wisteria, petals, flower, plum blossoms, outdoors, falling petals, white hair, black eyes"' \
-i 'is_video=true' \
-i 'num_frames=24' \
-i 'guidance_scale=7.5' \
-i 'negative_prompt="badhandv4, easynegative, ng_deepnegative_v1_75t, verybadimagenegative_v1.3, bad-artist, bad_prompt_version2-neg, teeth"' \
-i 'num_inference_steps=25'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/chamuditha4/anime_diff-oolong@sha256:b0e1db6aa779f13a9bee80dff0cd0186eeba0ae48d8438f4f649caa15d04abb6
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "disney", "width": 512, "height": 512, "prompt": "masterpiece, best quality, 1girl, solo, cherry blossoms, hanami, pink flower, white flower, spring season, wisteria, petals, flower, plum blossoms, outdoors, falling petals, white hair, black eyes", "is_video": true, "num_frames": 24, "guidance_scale": 7.5, "negative_prompt": "badhandv4, easynegative, ng_deepnegative_v1_75t, verybadimagenegative_v1.3, bad-artist, bad_prompt_version2-neg, teeth", "num_inference_steps": 25 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.39. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-08-14T11:09:24.710217Z",
"created_at": "2024-08-14T11:05:03.735000Z",
"data_removed": false,
"error": null,
"id": "1pw39brdyxrgp0cha2889vvwg0",
"input": {
"prompt": "masterpiece, best quality, 1girl, solo, cherry blossoms, hanami, pink flower, white flower, spring season, wisteria, petals, flower, plum blossoms, outdoors, falling petals, white hair, black eyes",
"num_frames": 24,
"guidance_scale": 7.5,
"negative_prompt": "badhandv4, easynegative, ng_deepnegative_v1_75t, verybadimagenegative_v1.3, bad-artist, bad_prompt_version2-neg, teeth",
"num_inference_steps": 25
},
"logs": "Using seed: 3885112135\n 0%| | 0/8 [00:00<?, ?it/s]\n 12%|█▎ | 1/8 [00:01<00:10, 1.56s/it]\n 25%|██▌ | 2/8 [00:02<00:07, 1.22s/it]\n 38%|███▊ | 3/8 [00:03<00:05, 1.11s/it]\n 50%|█████ | 4/8 [00:04<00:04, 1.06s/it]\n 62%|██████▎ | 5/8 [00:05<00:03, 1.03s/it]\n 75%|███████▌ | 6/8 [00:06<00:02, 1.02s/it]\n 88%|████████▊ | 7/8 [00:07<00:01, 1.01s/it]\n100%|██████████| 8/8 [00:08<00:00, 1.00s/it]\n100%|██████████| 8/8 [00:08<00:00, 1.06s/it]\n 0%| | 0/16 [00:00<?, ?it/s]\n 6%|▋ | 1/16 [00:00<00:14, 1.01it/s]\n 12%|█▎ | 2/16 [00:01<00:13, 1.01it/s]\n 19%|█▉ | 3/16 [00:02<00:12, 1.01it/s]\n 25%|██▌ | 4/16 [00:03<00:11, 1.01it/s]\n 31%|███▏ | 5/16 [00:04<00:10, 1.01it/s]\n 38%|███▊ | 6/16 [00:05<00:09, 1.01it/s]\n 44%|████▍ | 7/16 [00:06<00:08, 1.01it/s]\n 50%|█████ | 8/16 [00:07<00:07, 1.01it/s]\n 56%|█████▋ | 9/16 [00:08<00:06, 1.01it/s]\n 62%|██████▎ | 10/16 [00:09<00:05, 1.01it/s]\n 69%|██████▉ | 11/16 [00:10<00:04, 1.01it/s]\n 75%|███████▌ | 12/16 [00:11<00:03, 1.01it/s]\n 81%|████████▏ | 13/16 [00:12<00:02, 1.01it/s]\n 88%|████████▊ | 14/16 [00:13<00:01, 1.01it/s]\n 94%|█████████▍| 15/16 [00:14<00:00, 1.01it/s]\n100%|██████████| 16/16 [00:15<00:00, 1.01it/s]\n100%|██████████| 16/16 [00:15<00:00, 1.01it/s]\n 0%| | 0/25 [00:00<?, ?it/s]\n 4%|▍ | 1/25 [00:00<00:23, 1.01it/s]\n 8%|▊ | 2/25 [00:01<00:22, 1.01it/s]\n 12%|█▏ | 3/25 [00:02<00:21, 1.01it/s]\n 16%|█▌ | 4/25 [00:03<00:20, 1.01it/s]\n 20%|██ | 5/25 [00:04<00:19, 1.01it/s]\n 24%|██▍ | 6/25 [00:05<00:18, 1.01it/s]\n 28%|██▊ | 7/25 [00:06<00:17, 1.01it/s]\n 32%|███▏ | 8/25 [00:07<00:16, 1.01it/s]\n 36%|███▌ | 9/25 [00:08<00:15, 1.01it/s]\n 40%|████ | 10/25 [00:09<00:14, 1.01it/s]\n 44%|████▍ | 11/25 [00:10<00:13, 1.01it/s]\n 48%|████▊ | 12/25 [00:11<00:12, 1.01it/s]\n 52%|█████▏ | 13/25 [00:12<00:11, 1.01it/s]\n 56%|█████▌ | 14/25 [00:13<00:10, 1.01it/s]\n 60%|██████ | 15/25 [00:14<00:09, 1.01it/s]\n 64%|██████▍ | 16/25 [00:15<00:08, 1.01it/s]\n 68%|██████▊ | 17/25 [00:16<00:07, 1.01it/s]\n 72%|███████▏ | 18/25 [00:17<00:06, 1.01it/s]\n 76%|███████▌ | 19/25 [00:18<00:05, 1.00it/s]\n 80%|████████ | 20/25 [00:19<00:04, 1.00it/s]\n 84%|████████▍ | 21/25 [00:20<00:03, 1.00it/s]\n 88%|████████▊ | 22/25 [00:21<00:02, 1.00it/s]\n 92%|█████████▏| 23/25 [00:22<00:01, 1.00it/s]\n 96%|█████████▌| 24/25 [00:23<00:00, 1.00it/s]\n100%|██████████| 25/25 [00:24<00:00, 1.00it/s]\n100%|██████████| 25/25 [00:24<00:00, 1.01it/s]",
"metrics": {
"predict_time": 58.562372966,
"total_time": 260.975217
},
"output": "https://replicate.delivery/pbxt/XlcmteAav9R8QaskFAm3TqB7e2ZMUQzqeree3kYxytDdMhUaC/output.gif",
"started_at": "2024-08-14T11:08:26.147844Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/1pw39brdyxrgp0cha2889vvwg0",
"cancel": "https://api.replicate.com/v1/predictions/1pw39brdyxrgp0cha2889vvwg0/cancel"
},
"version": "a4be06ddb54c1fed336bb1bd22d317d0f2ee3b8f712dbb150aad4c7053b2493e"
}
Using seed: 3885112135
0%| | 0/8 [00:00<?, ?it/s]
12%|█▎ | 1/8 [00:01<00:10, 1.56s/it]
25%|██▌ | 2/8 [00:02<00:07, 1.22s/it]
38%|███▊ | 3/8 [00:03<00:05, 1.11s/it]
50%|█████ | 4/8 [00:04<00:04, 1.06s/it]
62%|██████▎ | 5/8 [00:05<00:03, 1.03s/it]
75%|███████▌ | 6/8 [00:06<00:02, 1.02s/it]
88%|████████▊ | 7/8 [00:07<00:01, 1.01s/it]
100%|██████████| 8/8 [00:08<00:00, 1.00s/it]
100%|██████████| 8/8 [00:08<00:00, 1.06s/it]
0%| | 0/16 [00:00<?, ?it/s]
6%|▋ | 1/16 [00:00<00:14, 1.01it/s]
12%|█▎ | 2/16 [00:01<00:13, 1.01it/s]
19%|█▉ | 3/16 [00:02<00:12, 1.01it/s]
25%|██▌ | 4/16 [00:03<00:11, 1.01it/s]
31%|███▏ | 5/16 [00:04<00:10, 1.01it/s]
38%|███▊ | 6/16 [00:05<00:09, 1.01it/s]
44%|████▍ | 7/16 [00:06<00:08, 1.01it/s]
50%|█████ | 8/16 [00:07<00:07, 1.01it/s]
56%|█████▋ | 9/16 [00:08<00:06, 1.01it/s]
62%|██████▎ | 10/16 [00:09<00:05, 1.01it/s]
69%|██████▉ | 11/16 [00:10<00:04, 1.01it/s]
75%|███████▌ | 12/16 [00:11<00:03, 1.01it/s]
81%|████████▏ | 13/16 [00:12<00:02, 1.01it/s]
88%|████████▊ | 14/16 [00:13<00:01, 1.01it/s]
94%|█████████▍| 15/16 [00:14<00:00, 1.01it/s]
100%|██████████| 16/16 [00:15<00:00, 1.01it/s]
100%|██████████| 16/16 [00:15<00:00, 1.01it/s]
0%| | 0/25 [00:00<?, ?it/s]
4%|▍ | 1/25 [00:00<00:23, 1.01it/s]
8%|▊ | 2/25 [00:01<00:22, 1.01it/s]
12%|█▏ | 3/25 [00:02<00:21, 1.01it/s]
16%|█▌ | 4/25 [00:03<00:20, 1.01it/s]
20%|██ | 5/25 [00:04<00:19, 1.01it/s]
24%|██▍ | 6/25 [00:05<00:18, 1.01it/s]
28%|██▊ | 7/25 [00:06<00:17, 1.01it/s]
32%|███▏ | 8/25 [00:07<00:16, 1.01it/s]
36%|███▌ | 9/25 [00:08<00:15, 1.01it/s]
40%|████ | 10/25 [00:09<00:14, 1.01it/s]
44%|████▍ | 11/25 [00:10<00:13, 1.01it/s]
48%|████▊ | 12/25 [00:11<00:12, 1.01it/s]
52%|█████▏ | 13/25 [00:12<00:11, 1.01it/s]
56%|█████▌ | 14/25 [00:13<00:10, 1.01it/s]
60%|██████ | 15/25 [00:14<00:09, 1.01it/s]
64%|██████▍ | 16/25 [00:15<00:08, 1.01it/s]
68%|██████▊ | 17/25 [00:16<00:07, 1.01it/s]
72%|███████▏ | 18/25 [00:17<00:06, 1.01it/s]
76%|███████▌ | 19/25 [00:18<00:05, 1.00it/s]
80%|████████ | 20/25 [00:19<00:04, 1.00it/s]
84%|████████▍ | 21/25 [00:20<00:03, 1.00it/s]
88%|████████▊ | 22/25 [00:21<00:02, 1.00it/s]
92%|█████████▏| 23/25 [00:22<00:01, 1.00it/s]
96%|█████████▌| 24/25 [00:23<00:00, 1.00it/s]
100%|██████████| 25/25 [00:24<00:00, 1.00it/s]
100%|██████████| 25/25 [00:24<00:00, 1.01it/s]
This output was created using a different version of the model, chamuditha4/anime_diff-oolong:a4be06dd.
This model costs approximately $0.39 to run on Replicate, or 2 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 7 minutes.
This model doesn't have a readme.
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
This model costs approximately $0.39 to run on Replicate, but this varies depending on your inputs. View more.
Using seed: 3885112135
0%| | 0/8 [00:00<?, ?it/s]
12%|█▎ | 1/8 [00:01<00:10, 1.56s/it]
25%|██▌ | 2/8 [00:02<00:07, 1.22s/it]
38%|███▊ | 3/8 [00:03<00:05, 1.11s/it]
50%|█████ | 4/8 [00:04<00:04, 1.06s/it]
62%|██████▎ | 5/8 [00:05<00:03, 1.03s/it]
75%|███████▌ | 6/8 [00:06<00:02, 1.02s/it]
88%|████████▊ | 7/8 [00:07<00:01, 1.01s/it]
100%|██████████| 8/8 [00:08<00:00, 1.00s/it]
100%|██████████| 8/8 [00:08<00:00, 1.06s/it]
0%| | 0/16 [00:00<?, ?it/s]
6%|▋ | 1/16 [00:00<00:14, 1.01it/s]
12%|█▎ | 2/16 [00:01<00:13, 1.01it/s]
19%|█▉ | 3/16 [00:02<00:12, 1.01it/s]
25%|██▌ | 4/16 [00:03<00:11, 1.01it/s]
31%|███▏ | 5/16 [00:04<00:10, 1.01it/s]
38%|███▊ | 6/16 [00:05<00:09, 1.01it/s]
44%|████▍ | 7/16 [00:06<00:08, 1.01it/s]
50%|█████ | 8/16 [00:07<00:07, 1.01it/s]
56%|█████▋ | 9/16 [00:08<00:06, 1.01it/s]
62%|██████▎ | 10/16 [00:09<00:05, 1.01it/s]
69%|██████▉ | 11/16 [00:10<00:04, 1.01it/s]
75%|███████▌ | 12/16 [00:11<00:03, 1.01it/s]
81%|████████▏ | 13/16 [00:12<00:02, 1.01it/s]
88%|████████▊ | 14/16 [00:13<00:01, 1.01it/s]
94%|█████████▍| 15/16 [00:14<00:00, 1.01it/s]
100%|██████████| 16/16 [00:15<00:00, 1.01it/s]
100%|██████████| 16/16 [00:15<00:00, 1.01it/s]
0%| | 0/25 [00:00<?, ?it/s]
4%|▍ | 1/25 [00:00<00:23, 1.01it/s]
8%|▊ | 2/25 [00:01<00:22, 1.01it/s]
12%|█▏ | 3/25 [00:02<00:21, 1.01it/s]
16%|█▌ | 4/25 [00:03<00:20, 1.01it/s]
20%|██ | 5/25 [00:04<00:19, 1.01it/s]
24%|██▍ | 6/25 [00:05<00:18, 1.01it/s]
28%|██▊ | 7/25 [00:06<00:17, 1.01it/s]
32%|███▏ | 8/25 [00:07<00:16, 1.01it/s]
36%|███▌ | 9/25 [00:08<00:15, 1.01it/s]
40%|████ | 10/25 [00:09<00:14, 1.01it/s]
44%|████▍ | 11/25 [00:10<00:13, 1.01it/s]
48%|████▊ | 12/25 [00:11<00:12, 1.01it/s]
52%|█████▏ | 13/25 [00:12<00:11, 1.01it/s]
56%|█████▌ | 14/25 [00:13<00:10, 1.01it/s]
60%|██████ | 15/25 [00:14<00:09, 1.01it/s]
64%|██████▍ | 16/25 [00:15<00:08, 1.01it/s]
68%|██████▊ | 17/25 [00:16<00:07, 1.01it/s]
72%|███████▏ | 18/25 [00:17<00:06, 1.01it/s]
76%|███████▌ | 19/25 [00:18<00:05, 1.00it/s]
80%|████████ | 20/25 [00:19<00:04, 1.00it/s]
84%|████████▍ | 21/25 [00:20<00:03, 1.00it/s]
88%|████████▊ | 22/25 [00:21<00:02, 1.00it/s]
92%|█████████▏| 23/25 [00:22<00:01, 1.00it/s]
96%|█████████▌| 24/25 [00:23<00:00, 1.00it/s]
100%|██████████| 25/25 [00:24<00:00, 1.00it/s]
100%|██████████| 25/25 [00:24<00:00, 1.01it/s]