chenxwh/ominicontrol-subject

Minimal and Universal Control for Diffusion Transformer - demo for Subject-driven generation

Audio-based Lip Synchronization for Talking Head Video

Updated to OpenVoice v2: Versatile Instant Voice Cloning

A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding

Fast sdxl with higher quality

Convert LLM's coding to image generation

Depth estimation with faster inference speed, fewer parameters, and higher depth accuracy.

Extended video synthesis model that generates 128 frames

CogVLM2: Visual Language Models for Image and Video Understanding

CogVLM2: Visual Language Models for Image and Video Understanding

Generating Consistent Long Depth Sequences for Open-world Videos

Finer and Faster Text-to-Image Generation via Relay Diffusion

Diffusion-based Visual Foundation Model for High-quality Dense Prediction

Sharp Monocular Metric Depth in Less Than a Second

Efficient Visual Generation with Hybrid Autoregressive Transformer

Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis

Depth Any Video with Scalable Synthetic Data

DiT-based video generation model for generating high-quality videos in real-time

High-Fidelity Single-Step Diffusion through Dynamic Adversarial Training

Autoregressive Video Generation without Vector Quantization

Autoregressive Image Generation without Vector Quantization

Minimal and Universal Control for Diffusion Transformer - demo for Subject-driven generation
Prediction
chenxwh/ominicontrol-subject:65f9489081d0f94bb3085b5a5df2758501c8620d6cb5e0b5874e8f48ba5e9cdbIDr4xzj98g9drm80cm3vq91ztmk0StatusSucceededSourceWebHardwareL40STotal durationCreatedInput
- model
- subject
- prompt
- On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat.
- guidance_scale
- 7.5
- num_inference_steps
- 50
{ "image": "https://replicate.delivery/pbxt/MF5rBXkFkj5E0LhAU7kT6ADRBtTwQYouMqPenUpTZocf8BuB/penguin.jpg", "model": "subject", "prompt": "On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat.", "guidance_scale": 7.5, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run chenxwh/ominicontrol-subject using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "chenxwh/ominicontrol-subject:65f9489081d0f94bb3085b5a5df2758501c8620d6cb5e0b5874e8f48ba5e9cdb", { input: { image: "https://replicate.delivery/pbxt/MF5rBXkFkj5E0LhAU7kT6ADRBtTwQYouMqPenUpTZocf8BuB/penguin.jpg", model: "subject", prompt: "On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat.", guidance_scale: 7.5, num_inference_steps: 50 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run chenxwh/ominicontrol-subject using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "chenxwh/ominicontrol-subject:65f9489081d0f94bb3085b5a5df2758501c8620d6cb5e0b5874e8f48ba5e9cdb", input={ "image": "https://replicate.delivery/pbxt/MF5rBXkFkj5E0LhAU7kT6ADRBtTwQYouMqPenUpTZocf8BuB/penguin.jpg", "model": "subject", "prompt": "On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat.", "guidance_scale": 7.5, "num_inference_steps": 50 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run chenxwh/ominicontrol-subject using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "chenxwh/ominicontrol-subject:65f9489081d0f94bb3085b5a5df2758501c8620d6cb5e0b5874e8f48ba5e9cdb", "input": { "image": "https://replicate.delivery/pbxt/MF5rBXkFkj5E0LhAU7kT6ADRBtTwQYouMqPenUpTZocf8BuB/penguin.jpg", "model": "subject", "prompt": "On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat.", "guidance_scale": 7.5, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-12-31T22:57:10.260392Z", "created_at": "2024-12-31T22:55:05.803000Z", "data_removed": false, "error": null, "id": "r4xzj98g9drm80cm3vq91ztmk0", "input": { "image": "https://replicate.delivery/pbxt/MF5rBXkFkj5E0LhAU7kT6ADRBtTwQYouMqPenUpTZocf8BuB/penguin.jpg", "model": "subject", "prompt": "On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat.", "guidance_scale": 7.5, "num_inference_steps": 50 }, "logs": "Using seed: 43522\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:15, 3.06it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.51it/s]\n 6%|▌ | 3/50 [00:00<00:13, 3.45it/s]\n 8%|▊ | 4/50 [00:01<00:13, 3.42it/s]\n 10%|█ | 5/50 [00:01<00:13, 3.41it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.40it/s]\n 14%|█▍ | 7/50 [00:02<00:12, 3.39it/s]\n 16%|█▌ | 8/50 [00:02<00:12, 3.39it/s]\n 18%|█▊ | 9/50 [00:02<00:12, 3.39it/s]\n 20%|██ | 10/50 [00:02<00:11, 3.39it/s]\n 22%|██▏ | 11/50 [00:03<00:11, 3.39it/s]\n 24%|██▍ | 12/50 [00:03<00:11, 3.38it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.38it/s]\n 28%|██▊ | 14/50 [00:04<00:10, 3.38it/s]\n 30%|███ | 15/50 [00:04<00:10, 3.38it/s]\n 32%|███▏ | 16/50 [00:04<00:10, 3.38it/s]\n 34%|███▍ | 17/50 [00:05<00:09, 3.38it/s]\n 36%|███▌ | 18/50 [00:05<00:09, 3.38it/s]\n 38%|███▊ | 19/50 [00:05<00:09, 3.38it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.38it/s]\n 42%|████▏ | 21/50 [00:06<00:08, 3.38it/s]\n 44%|████▍ | 22/50 [00:06<00:08, 3.38it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.38it/s]\n 48%|████▊ | 24/50 [00:07<00:07, 3.38it/s]\n 50%|█████ | 25/50 [00:07<00:07, 3.38it/s]\n 52%|█████▏ | 26/50 [00:07<00:07, 3.38it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.37it/s]\n 56%|█████▌ | 28/50 [00:08<00:06, 3.37it/s]\n 58%|█████▊ | 29/50 [00:08<00:06, 3.38it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.38it/s]\n 62%|██████▏ | 31/50 [00:09<00:05, 3.37it/s]\n 64%|██████▍ | 32/50 [00:09<00:05, 3.37it/s]\n 66%|██████▌ | 33/50 [00:09<00:05, 3.38it/s]\n 68%|██████▊ | 34/50 [00:10<00:04, 3.38it/s]\n 70%|███████ | 35/50 [00:10<00:04, 3.37it/s]\n 72%|███████▏ | 36/50 [00:10<00:04, 3.37it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.37it/s]\n 76%|███████▌ | 38/50 [00:11<00:03, 3.37it/s]\n 78%|███████▊ | 39/50 [00:11<00:03, 3.37it/s]\n 80%|████████ | 40/50 [00:11<00:02, 3.37it/s]\n 82%|████████▏ | 41/50 [00:12<00:02, 3.37it/s]\n 84%|████████▍ | 42/50 [00:12<00:02, 3.37it/s]\n 86%|████████▌ | 43/50 [00:12<00:02, 3.37it/s]\n 88%|████████▊ | 44/50 [00:13<00:01, 3.37it/s]\n 90%|█████████ | 45/50 [00:13<00:01, 3.37it/s]\n 92%|█████████▏| 46/50 [00:13<00:01, 3.37it/s]\n 94%|█████████▍| 47/50 [00:13<00:00, 3.37it/s]\n 96%|█████████▌| 48/50 [00:14<00:00, 3.37it/s]\n 98%|█████████▊| 49/50 [00:14<00:00, 3.37it/s]\n100%|██████████| 50/50 [00:14<00:00, 3.37it/s]\n100%|██████████| 50/50 [00:14<00:00, 3.38it/s]", "metrics": { "predict_time": 15.584385529, "total_time": 124.457392 }, "output": "https://replicate.delivery/xezq/m8UefzxNznpvP0aqvZccfwpoJETfz2IefGSZwljMx2vvxoIAF/out.png", "started_at": "2024-12-31T22:56:54.676007Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-px7b2xvyzsxeakxkjaeijhs5foxiwzue5uxugyb5su4fbenfrjhq", "get": "https://api.replicate.com/v1/predictions/r4xzj98g9drm80cm3vq91ztmk0", "cancel": "https://api.replicate.com/v1/predictions/r4xzj98g9drm80cm3vq91ztmk0/cancel" }, "version": "65f9489081d0f94bb3085b5a5df2758501c8620d6cb5e0b5874e8f48ba5e9cdb" }
Generated inUsing seed: 43522 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:15, 3.06it/s] 4%|▍ | 2/50 [00:00<00:13, 3.51it/s] 6%|▌ | 3/50 [00:00<00:13, 3.45it/s] 8%|▊ | 4/50 [00:01<00:13, 3.42it/s] 10%|█ | 5/50 [00:01<00:13, 3.41it/s] 12%|█▏ | 6/50 [00:01<00:12, 3.40it/s] 14%|█▍ | 7/50 [00:02<00:12, 3.39it/s] 16%|█▌ | 8/50 [00:02<00:12, 3.39it/s] 18%|█▊ | 9/50 [00:02<00:12, 3.39it/s] 20%|██ | 10/50 [00:02<00:11, 3.39it/s] 22%|██▏ | 11/50 [00:03<00:11, 3.39it/s] 24%|██▍ | 12/50 [00:03<00:11, 3.38it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.38it/s] 28%|██▊ | 14/50 [00:04<00:10, 3.38it/s] 30%|███ | 15/50 [00:04<00:10, 3.38it/s] 32%|███▏ | 16/50 [00:04<00:10, 3.38it/s] 34%|███▍ | 17/50 [00:05<00:09, 3.38it/s] 36%|███▌ | 18/50 [00:05<00:09, 3.38it/s] 38%|███▊ | 19/50 [00:05<00:09, 3.38it/s] 40%|████ | 20/50 [00:05<00:08, 3.38it/s] 42%|████▏ | 21/50 [00:06<00:08, 3.38it/s] 44%|████▍ | 22/50 [00:06<00:08, 3.38it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.38it/s] 48%|████▊ | 24/50 [00:07<00:07, 3.38it/s] 50%|█████ | 25/50 [00:07<00:07, 3.38it/s] 52%|█████▏ | 26/50 [00:07<00:07, 3.38it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.37it/s] 56%|█████▌ | 28/50 [00:08<00:06, 3.37it/s] 58%|█████▊ | 29/50 [00:08<00:06, 3.38it/s] 60%|██████ | 30/50 [00:08<00:05, 3.38it/s] 62%|██████▏ | 31/50 [00:09<00:05, 3.37it/s] 64%|██████▍ | 32/50 [00:09<00:05, 3.37it/s] 66%|██████▌ | 33/50 [00:09<00:05, 3.38it/s] 68%|██████▊ | 34/50 [00:10<00:04, 3.38it/s] 70%|███████ | 35/50 [00:10<00:04, 3.37it/s] 72%|███████▏ | 36/50 [00:10<00:04, 3.37it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.37it/s] 76%|███████▌ | 38/50 [00:11<00:03, 3.37it/s] 78%|███████▊ | 39/50 [00:11<00:03, 3.37it/s] 80%|████████ | 40/50 [00:11<00:02, 3.37it/s] 82%|████████▏ | 41/50 [00:12<00:02, 3.37it/s] 84%|████████▍ | 42/50 [00:12<00:02, 3.37it/s] 86%|████████▌ | 43/50 [00:12<00:02, 3.37it/s] 88%|████████▊ | 44/50 [00:13<00:01, 3.37it/s] 90%|█████████ | 45/50 [00:13<00:01, 3.37it/s] 92%|█████████▏| 46/50 [00:13<00:01, 3.37it/s] 94%|█████████▍| 47/50 [00:13<00:00, 3.37it/s] 96%|█████████▌| 48/50 [00:14<00:00, 3.37it/s] 98%|█████████▊| 49/50 [00:14<00:00, 3.37it/s] 100%|██████████| 50/50 [00:14<00:00, 3.37it/s] 100%|██████████| 50/50 [00:14<00:00, 3.38it/s]
Prediction
chenxwh/ominicontrol-subject:65f9489081d0f94bb3085b5a5df2758501c8620d6cb5e0b5874e8f48ba5e9cdbIDsp96c39vghrmc0cm3vtv396qnwStatusSucceededSourceWebHardwareL40STotal durationCreatedInput
- model
- subject_1024
- prompt
- A film style shot. On the moon, this item drives across the moon surface. The background is that Earth looms large in the foreground.
- guidance_scale
- 7.5
- num_inference_steps
- 50
{ "image": "https://raw.githubusercontent.com/Yuanshi9815/OminiControl/refs/heads/main/assets/rc_car.jpg", "model": "subject_1024", "prompt": "A film style shot. On the moon, this item drives across the moon surface. The background is that Earth looms large in the foreground.", "guidance_scale": 7.5, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run chenxwh/ominicontrol-subject using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "chenxwh/ominicontrol-subject:65f9489081d0f94bb3085b5a5df2758501c8620d6cb5e0b5874e8f48ba5e9cdb", { input: { image: "https://raw.githubusercontent.com/Yuanshi9815/OminiControl/refs/heads/main/assets/rc_car.jpg", model: "subject_1024", prompt: "A film style shot. On the moon, this item drives across the moon surface. The background is that Earth looms large in the foreground.", guidance_scale: 7.5, num_inference_steps: 50 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run chenxwh/ominicontrol-subject using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "chenxwh/ominicontrol-subject:65f9489081d0f94bb3085b5a5df2758501c8620d6cb5e0b5874e8f48ba5e9cdb", input={ "image": "https://raw.githubusercontent.com/Yuanshi9815/OminiControl/refs/heads/main/assets/rc_car.jpg", "model": "subject_1024", "prompt": "A film style shot. On the moon, this item drives across the moon surface. The background is that Earth looms large in the foreground.", "guidance_scale": 7.5, "num_inference_steps": 50 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run chenxwh/ominicontrol-subject using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "chenxwh/ominicontrol-subject:65f9489081d0f94bb3085b5a5df2758501c8620d6cb5e0b5874e8f48ba5e9cdb", "input": { "image": "https://raw.githubusercontent.com/Yuanshi9815/OminiControl/refs/heads/main/assets/rc_car.jpg", "model": "subject_1024", "prompt": "A film style shot. On the moon, this item drives across the moon surface. The background is that Earth looms large in the foreground.", "guidance_scale": 7.5, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-12-31T23:05:10.578645Z", "created_at": "2024-12-31T23:02:55.620000Z", "data_removed": false, "error": null, "id": "sp96c39vghrmc0cm3vtv396qnw", "input": { "image": "https://raw.githubusercontent.com/Yuanshi9815/OminiControl/refs/heads/main/assets/rc_car.jpg", "model": "subject_1024", "prompt": "A film style shot. On the moon, this item drives across the moon surface. The background is that Earth looms large in the foreground.", "guidance_scale": 7.5, "num_inference_steps": 50 }, "logs": "Using seed: 39800\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<01:00, 1.23s/it]\n 4%|▍ | 2/50 [00:02<00:53, 1.12s/it]\n 6%|▌ | 3/50 [00:03<00:54, 1.16s/it]\n 8%|▊ | 4/50 [00:04<00:54, 1.18s/it]\n 10%|█ | 5/50 [00:05<00:53, 1.19s/it]\n 12%|█▏ | 6/50 [00:07<00:52, 1.20s/it]\n 14%|█▍ | 7/50 [00:08<00:51, 1.20s/it]\n 16%|█▌ | 8/50 [00:09<00:50, 1.20s/it]\n 18%|█▊ | 9/50 [00:10<00:49, 1.21s/it]\n 20%|██ | 10/50 [00:11<00:48, 1.21s/it]\n 22%|██▏ | 11/50 [00:13<00:47, 1.21s/it]\n 24%|██▍ | 12/50 [00:14<00:45, 1.21s/it]\n 26%|██▌ | 13/50 [00:15<00:44, 1.21s/it]\n 28%|██▊ | 14/50 [00:16<00:43, 1.21s/it]\n 30%|███ | 15/50 [00:18<00:42, 1.21s/it]\n 32%|███▏ | 16/50 [00:19<00:41, 1.21s/it]\n 34%|███▍ | 17/50 [00:20<00:40, 1.22s/it]\n 36%|███▌ | 18/50 [00:21<00:38, 1.22s/it]\n 38%|███▊ | 19/50 [00:22<00:37, 1.22s/it]\n 40%|████ | 20/50 [00:24<00:36, 1.22s/it]\n 42%|████▏ | 21/50 [00:25<00:35, 1.22s/it]\n 44%|████▍ | 22/50 [00:26<00:34, 1.22s/it]\n 46%|████▌ | 23/50 [00:27<00:32, 1.22s/it]\n 48%|████▊ | 24/50 [00:28<00:31, 1.22s/it]\n 50%|█████ | 25/50 [00:30<00:30, 1.22s/it]\n 52%|█████▏ | 26/50 [00:31<00:29, 1.22s/it]\n 54%|█████▍ | 27/50 [00:32<00:28, 1.22s/it]\n 56%|█████▌ | 28/50 [00:33<00:26, 1.22s/it]\n 58%|█████▊ | 29/50 [00:35<00:25, 1.22s/it]\n 60%|██████ | 30/50 [00:36<00:24, 1.23s/it]\n 62%|██████▏ | 31/50 [00:37<00:23, 1.23s/it]\n 64%|██████▍ | 32/50 [00:38<00:22, 1.23s/it]\n 66%|██████▌ | 33/50 [00:40<00:20, 1.23s/it]\n 68%|██████▊ | 34/50 [00:41<00:19, 1.23s/it]\n 70%|███████ | 35/50 [00:42<00:18, 1.23s/it]\n 72%|███████▏ | 36/50 [00:43<00:17, 1.23s/it]\n 74%|███████▍ | 37/50 [00:44<00:15, 1.23s/it]\n 76%|███████▌ | 38/50 [00:46<00:14, 1.23s/it]\n 78%|███████▊ | 39/50 [00:47<00:13, 1.23s/it]\n 80%|████████ | 40/50 [00:48<00:12, 1.23s/it]\n 82%|████████▏ | 41/50 [00:49<00:11, 1.23s/it]\n 84%|████████▍ | 42/50 [00:51<00:09, 1.23s/it]\n 86%|████████▌ | 43/50 [00:52<00:08, 1.23s/it]\n 88%|████████▊ | 44/50 [00:53<00:07, 1.23s/it]\n 90%|█████████ | 45/50 [00:54<00:06, 1.23s/it]\n 92%|█████████▏| 46/50 [00:56<00:04, 1.23s/it]\n 94%|█████████▍| 47/50 [00:57<00:03, 1.23s/it]\n 96%|█████████▌| 48/50 [00:58<00:02, 1.23s/it]\n 98%|█████████▊| 49/50 [00:59<00:01, 1.23s/it]\n100%|██████████| 50/50 [01:00<00:00, 1.23s/it]\n100%|██████████| 50/50 [01:00<00:00, 1.22s/it]", "metrics": { "predict_time": 62.402736252, "total_time": 134.958645 }, "output": "https://replicate.delivery/xezq/7f5elACmA2mju0ZmqTn5ovXwavL4jkO632wHaMSymHRmqiAUA/out.png", "started_at": "2024-12-31T23:04:08.175908Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-ogr7hottiq3m7s357gty5m3tvyd4u42v7f5tvz2whkyafdodszja", "get": "https://api.replicate.com/v1/predictions/sp96c39vghrmc0cm3vtv396qnw", "cancel": "https://api.replicate.com/v1/predictions/sp96c39vghrmc0cm3vtv396qnw/cancel" }, "version": "65f9489081d0f94bb3085b5a5df2758501c8620d6cb5e0b5874e8f48ba5e9cdb" }
Generated inUsing seed: 39800 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:01<01:00, 1.23s/it] 4%|▍ | 2/50 [00:02<00:53, 1.12s/it] 6%|▌ | 3/50 [00:03<00:54, 1.16s/it] 8%|▊ | 4/50 [00:04<00:54, 1.18s/it] 10%|█ | 5/50 [00:05<00:53, 1.19s/it] 12%|█▏ | 6/50 [00:07<00:52, 1.20s/it] 14%|█▍ | 7/50 [00:08<00:51, 1.20s/it] 16%|█▌ | 8/50 [00:09<00:50, 1.20s/it] 18%|█▊ | 9/50 [00:10<00:49, 1.21s/it] 20%|██ | 10/50 [00:11<00:48, 1.21s/it] 22%|██▏ | 11/50 [00:13<00:47, 1.21s/it] 24%|██▍ | 12/50 [00:14<00:45, 1.21s/it] 26%|██▌ | 13/50 [00:15<00:44, 1.21s/it] 28%|██▊ | 14/50 [00:16<00:43, 1.21s/it] 30%|███ | 15/50 [00:18<00:42, 1.21s/it] 32%|███▏ | 16/50 [00:19<00:41, 1.21s/it] 34%|███▍ | 17/50 [00:20<00:40, 1.22s/it] 36%|███▌ | 18/50 [00:21<00:38, 1.22s/it] 38%|███▊ | 19/50 [00:22<00:37, 1.22s/it] 40%|████ | 20/50 [00:24<00:36, 1.22s/it] 42%|████▏ | 21/50 [00:25<00:35, 1.22s/it] 44%|████▍ | 22/50 [00:26<00:34, 1.22s/it] 46%|████▌ | 23/50 [00:27<00:32, 1.22s/it] 48%|████▊ | 24/50 [00:28<00:31, 1.22s/it] 50%|█████ | 25/50 [00:30<00:30, 1.22s/it] 52%|█████▏ | 26/50 [00:31<00:29, 1.22s/it] 54%|█████▍ | 27/50 [00:32<00:28, 1.22s/it] 56%|█████▌ | 28/50 [00:33<00:26, 1.22s/it] 58%|█████▊ | 29/50 [00:35<00:25, 1.22s/it] 60%|██████ | 30/50 [00:36<00:24, 1.23s/it] 62%|██████▏ | 31/50 [00:37<00:23, 1.23s/it] 64%|██████▍ | 32/50 [00:38<00:22, 1.23s/it] 66%|██████▌ | 33/50 [00:40<00:20, 1.23s/it] 68%|██████▊ | 34/50 [00:41<00:19, 1.23s/it] 70%|███████ | 35/50 [00:42<00:18, 1.23s/it] 72%|███████▏ | 36/50 [00:43<00:17, 1.23s/it] 74%|███████▍ | 37/50 [00:44<00:15, 1.23s/it] 76%|███████▌ | 38/50 [00:46<00:14, 1.23s/it] 78%|███████▊ | 39/50 [00:47<00:13, 1.23s/it] 80%|████████ | 40/50 [00:48<00:12, 1.23s/it] 82%|████████▏ | 41/50 [00:49<00:11, 1.23s/it] 84%|████████▍ | 42/50 [00:51<00:09, 1.23s/it] 86%|████████▌ | 43/50 [00:52<00:08, 1.23s/it] 88%|████████▊ | 44/50 [00:53<00:07, 1.23s/it] 90%|█████████ | 45/50 [00:54<00:06, 1.23s/it] 92%|█████████▏| 46/50 [00:56<00:04, 1.23s/it] 94%|█████████▍| 47/50 [00:57<00:03, 1.23s/it] 96%|█████████▌| 48/50 [00:58<00:02, 1.23s/it] 98%|█████████▊| 49/50 [00:59<00:01, 1.23s/it] 100%|██████████| 50/50 [01:00<00:00, 1.23s/it] 100%|██████████| 50/50 [01:00<00:00, 1.22s/it]
Want to make some of these yourself?
Run this model