christophy
/
pixart-xl-2
- Public
- 1 run
Run christophy/pixart-xl-2 with an API
Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.
Input schema
The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
prompt |
string
|
A small cactus with a happy face in the Sahara desert
|
Input prompt
|
negative_prompt |
string
|
Negative prompt
|
|
style |
string
(enum)
|
None
Options: None, Cinematic, Photographic, Anime, Manga, Digital Art, Pixel Art, Fantasy Art, Neonpunk, 3D Model |
Image style
|
width |
integer
|
1024
|
Width of output image
|
height |
integer
|
1024
|
Height of output image
|
num_outputs |
integer
|
1
Min: 1 Max: 4 |
Number of images to output.
|
scheduler |
string
(enum)
|
DPMSolverMultistep
Options: DDIM, DPMSolverMultistep, HeunDiscrete, KarrasDPM, K_EULER_ANCESTRAL, K_EULER, PNDM |
scheduler
|
num_inference_steps |
integer
|
14
Min: 1 Max: 100 |
Number of denoising steps
|
guidance_scale |
number
|
4.5
Min: 1 Max: 50 |
Scale for classifier-free guidance
|
seed |
integer
|
Random seed. Leave blank to randomize the seed
|
{
"type": "object",
"title": "Input",
"properties": {
"seed": {
"type": "integer",
"title": "Seed",
"x-order": 9,
"description": "Random seed. Leave blank to randomize the seed"
},
"style": {
"enum": [
"None",
"Cinematic",
"Photographic",
"Anime",
"Manga",
"Digital Art",
"Pixel Art",
"Fantasy Art",
"Neonpunk",
"3D Model"
],
"type": "string",
"title": "style",
"description": "Image style",
"default": "None",
"x-order": 2
},
"width": {
"type": "integer",
"title": "Width",
"default": 1024,
"x-order": 3,
"description": "Width of output image"
},
"height": {
"type": "integer",
"title": "Height",
"default": 1024,
"x-order": 4,
"description": "Height of output image"
},
"prompt": {
"type": "string",
"title": "Prompt",
"default": "A small cactus with a happy face in the Sahara desert",
"x-order": 0,
"description": "Input prompt"
},
"scheduler": {
"enum": [
"DDIM",
"DPMSolverMultistep",
"HeunDiscrete",
"KarrasDPM",
"K_EULER_ANCESTRAL",
"K_EULER",
"PNDM"
],
"type": "string",
"title": "scheduler",
"description": "scheduler",
"default": "DPMSolverMultistep",
"x-order": 6
},
"num_outputs": {
"type": "integer",
"title": "Num Outputs",
"default": 1,
"maximum": 4,
"minimum": 1,
"x-order": 5,
"description": "Number of images to output."
},
"guidance_scale": {
"type": "number",
"title": "Guidance Scale",
"default": 4.5,
"maximum": 50,
"minimum": 1,
"x-order": 8,
"description": "Scale for classifier-free guidance"
},
"negative_prompt": {
"type": "string",
"title": "Negative Prompt",
"x-order": 1,
"description": "Negative prompt"
},
"num_inference_steps": {
"type": "integer",
"title": "Num Inference Steps",
"default": 14,
"maximum": 100,
"minimum": 1,
"x-order": 7,
"description": "Number of denoising steps"
}
}
}
Output schema
The shape of the response you’ll get when you run this model with an API.
{
"type": "array",
"items": {
"type": "string",
"format": "uri"
},
"title": "Output"
}