cjwbw / anything-v3.0
high-quality, highly detailed anime style stable-diffusion
- Public
- 353.8K runs
-
T4
- GitHub
Prediction
cjwbw/anything-v3.0:b0039f8a6de0be7fe62807c229f4918dd6ea2986126c05ac401cc62c00e667d2Input
- width
- 512
- height
- 512
- prompt
- 1girl, brown hair, green eyes, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden
- num_outputs
- 1
- guidance_scale
- 12
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "1girl, brown hair, green eyes, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden", "num_outputs": 1, "guidance_scale": 12, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run cjwbw/anything-v3.0 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "cjwbw/anything-v3.0:b0039f8a6de0be7fe62807c229f4918dd6ea2986126c05ac401cc62c00e667d2", { input: { width: 512, height: 512, prompt: "1girl, brown hair, green eyes, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden", num_outputs: 1, guidance_scale: 12, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run cjwbw/anything-v3.0 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "cjwbw/anything-v3.0:b0039f8a6de0be7fe62807c229f4918dd6ea2986126c05ac401cc62c00e667d2", input={ "width": 512, "height": 512, "prompt": "1girl, brown hair, green eyes, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden", "num_outputs": 1, "guidance_scale": 12, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run cjwbw/anything-v3.0 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "cjwbw/anything-v3.0:b0039f8a6de0be7fe62807c229f4918dd6ea2986126c05ac401cc62c00e667d2", "input": { "width": 512, "height": 512, "prompt": "1girl, brown hair, green eyes, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden", "num_outputs": 1, "guidance_scale": 12, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-12-20T02:43:17.230297Z", "created_at": "2022-12-20T02:43:07.070952Z", "data_removed": false, "error": null, "id": "meao2xhp35hl3ogj2ynqc4b3wm", "input": { "width": 512, "height": 512, "prompt": "1girl, brown hair, green eyes, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden", "num_outputs": 1, "guidance_scale": 12, "num_inference_steps": 50 }, "logs": "Using seed: 62998\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:21, 2.28it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.49it/s]\n 6%|▌ | 3/50 [00:00<00:11, 4.21it/s]\n 8%|▊ | 4/50 [00:00<00:09, 4.66it/s]\n 10%|█ | 5/50 [00:01<00:09, 4.98it/s]\n 12%|█▏ | 6/50 [00:01<00:08, 5.17it/s]\n 14%|█▍ | 7/50 [00:01<00:08, 5.29it/s]\n 16%|█▌ | 8/50 [00:01<00:07, 5.36it/s]\n 18%|█▊ | 9/50 [00:01<00:07, 5.42it/s]\n 20%|██ | 10/50 [00:02<00:07, 5.45it/s]\n 22%|██▏ | 11/50 [00:02<00:07, 5.48it/s]\n 24%|██▍ | 12/50 [00:02<00:06, 5.50it/s]\n 26%|██▌ | 13/50 [00:02<00:06, 5.55it/s]\n 28%|██▊ | 14/50 [00:02<00:06, 5.58it/s]\n 30%|███ | 15/50 [00:02<00:06, 5.57it/s]\n 32%|███▏ | 16/50 [00:03<00:06, 5.55it/s]\n 34%|███▍ | 17/50 [00:03<00:05, 5.53it/s]\n 36%|███▌ | 18/50 [00:03<00:05, 5.53it/s]\n 38%|███▊ | 19/50 [00:03<00:05, 5.53it/s]\n 40%|████ | 20/50 [00:03<00:05, 5.54it/s]\n 42%|████▏ | 21/50 [00:04<00:05, 5.55it/s]\n 44%|████▍ | 22/50 [00:04<00:05, 5.56it/s]\n 46%|████▌ | 23/50 [00:04<00:04, 5.58it/s]\n 48%|████▊ | 24/50 [00:04<00:04, 5.57it/s]\n 50%|█████ | 25/50 [00:04<00:04, 5.56it/s]\n 52%|█████▏ | 26/50 [00:04<00:04, 5.56it/s]\n 54%|█████▍ | 27/50 [00:05<00:04, 5.54it/s]\n 56%|█████▌ | 28/50 [00:05<00:03, 5.52it/s]\n 58%|█████▊ | 29/50 [00:05<00:03, 5.52it/s]\n 60%|██████ | 30/50 [00:05<00:03, 5.53it/s]\n 62%|██████▏ | 31/50 [00:05<00:03, 5.55it/s]\n 64%|██████▍ | 32/50 [00:06<00:03, 5.57it/s]\n 66%|██████▌ | 33/50 [00:06<00:03, 5.57it/s]\n 68%|██████▊ | 34/50 [00:06<00:02, 5.55it/s]\n 70%|███████ | 35/50 [00:06<00:02, 5.54it/s]\n 72%|███████▏ | 36/50 [00:06<00:02, 5.53it/s]\n 74%|███████▍ | 37/50 [00:06<00:02, 5.52it/s]\n 76%|███████▌ | 38/50 [00:07<00:02, 5.53it/s]\n 78%|███████▊ | 39/50 [00:07<00:01, 5.53it/s]\n 80%|████████ | 40/50 [00:07<00:01, 5.54it/s]\n 82%|████████▏ | 41/50 [00:07<00:01, 5.55it/s]\n 84%|████████▍ | 42/50 [00:07<00:01, 5.56it/s]\n 86%|████████▌ | 43/50 [00:07<00:01, 5.57it/s]\n 88%|████████▊ | 44/50 [00:08<00:01, 5.57it/s]\n 90%|█████████ | 45/50 [00:08<00:00, 5.56it/s]\n 92%|█████████▏| 46/50 [00:08<00:00, 5.54it/s]\n 94%|█████████▍| 47/50 [00:08<00:00, 5.53it/s]\n 96%|█████████▌| 48/50 [00:08<00:00, 5.51it/s]\n 98%|█████████▊| 49/50 [00:09<00:00, 5.49it/s]\n100%|██████████| 50/50 [00:09<00:00, 5.50it/s]\n100%|██████████| 50/50 [00:09<00:00, 5.39it/s]", "metrics": { "predict_time": 10.114795, "total_time": 10.159345 }, "output": [ "https://replicate.delivery/pbxt/QoTPURYKznofNysqYberIhfxZiCEcpRTuLBau9cRgnAIaaXgA/out-0.png" ], "started_at": "2022-12-20T02:43:07.115502Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/meao2xhp35hl3ogj2ynqc4b3wm", "cancel": "https://api.replicate.com/v1/predictions/meao2xhp35hl3ogj2ynqc4b3wm/cancel" }, "version": "b0039f8a6de0be7fe62807c229f4918dd6ea2986126c05ac401cc62c00e667d2" }
Generated inUsing seed: 62998 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:21, 2.28it/s] 4%|▍ | 2/50 [00:00<00:13, 3.49it/s] 6%|▌ | 3/50 [00:00<00:11, 4.21it/s] 8%|▊ | 4/50 [00:00<00:09, 4.66it/s] 10%|█ | 5/50 [00:01<00:09, 4.98it/s] 12%|█▏ | 6/50 [00:01<00:08, 5.17it/s] 14%|█▍ | 7/50 [00:01<00:08, 5.29it/s] 16%|█▌ | 8/50 [00:01<00:07, 5.36it/s] 18%|█▊ | 9/50 [00:01<00:07, 5.42it/s] 20%|██ | 10/50 [00:02<00:07, 5.45it/s] 22%|██▏ | 11/50 [00:02<00:07, 5.48it/s] 24%|██▍ | 12/50 [00:02<00:06, 5.50it/s] 26%|██▌ | 13/50 [00:02<00:06, 5.55it/s] 28%|██▊ | 14/50 [00:02<00:06, 5.58it/s] 30%|███ | 15/50 [00:02<00:06, 5.57it/s] 32%|███▏ | 16/50 [00:03<00:06, 5.55it/s] 34%|███▍ | 17/50 [00:03<00:05, 5.53it/s] 36%|███▌ | 18/50 [00:03<00:05, 5.53it/s] 38%|███▊ | 19/50 [00:03<00:05, 5.53it/s] 40%|████ | 20/50 [00:03<00:05, 5.54it/s] 42%|████▏ | 21/50 [00:04<00:05, 5.55it/s] 44%|████▍ | 22/50 [00:04<00:05, 5.56it/s] 46%|████▌ | 23/50 [00:04<00:04, 5.58it/s] 48%|████▊ | 24/50 [00:04<00:04, 5.57it/s] 50%|█████ | 25/50 [00:04<00:04, 5.56it/s] 52%|█████▏ | 26/50 [00:04<00:04, 5.56it/s] 54%|█████▍ | 27/50 [00:05<00:04, 5.54it/s] 56%|█████▌ | 28/50 [00:05<00:03, 5.52it/s] 58%|█████▊ | 29/50 [00:05<00:03, 5.52it/s] 60%|██████ | 30/50 [00:05<00:03, 5.53it/s] 62%|██████▏ | 31/50 [00:05<00:03, 5.55it/s] 64%|██████▍ | 32/50 [00:06<00:03, 5.57it/s] 66%|██████▌ | 33/50 [00:06<00:03, 5.57it/s] 68%|██████▊ | 34/50 [00:06<00:02, 5.55it/s] 70%|███████ | 35/50 [00:06<00:02, 5.54it/s] 72%|███████▏ | 36/50 [00:06<00:02, 5.53it/s] 74%|███████▍ | 37/50 [00:06<00:02, 5.52it/s] 76%|███████▌ | 38/50 [00:07<00:02, 5.53it/s] 78%|███████▊ | 39/50 [00:07<00:01, 5.53it/s] 80%|████████ | 40/50 [00:07<00:01, 5.54it/s] 82%|████████▏ | 41/50 [00:07<00:01, 5.55it/s] 84%|████████▍ | 42/50 [00:07<00:01, 5.56it/s] 86%|████████▌ | 43/50 [00:07<00:01, 5.57it/s] 88%|████████▊ | 44/50 [00:08<00:01, 5.57it/s] 90%|█████████ | 45/50 [00:08<00:00, 5.56it/s] 92%|█████████▏| 46/50 [00:08<00:00, 5.54it/s] 94%|█████████▍| 47/50 [00:08<00:00, 5.53it/s] 96%|█████████▌| 48/50 [00:08<00:00, 5.51it/s] 98%|█████████▊| 49/50 [00:09<00:00, 5.49it/s] 100%|██████████| 50/50 [00:09<00:00, 5.50it/s] 100%|██████████| 50/50 [00:09<00:00, 5.39it/s]
Prediction
cjwbw/anything-v3.0:b0039f8a6de0be7fe62807c229f4918dd6ea2986126c05ac401cc62c00e667d2Input
- width
- 512
- height
- 512
- prompt
- 1boy, medium hair, blonde hair, blue eyes, bishounen, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden
- num_outputs
- "1"
- guidance_scale
- 12
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "1boy, medium hair, blonde hair, blue eyes, bishounen, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden", "num_outputs": "1", "guidance_scale": 12, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run cjwbw/anything-v3.0 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "cjwbw/anything-v3.0:b0039f8a6de0be7fe62807c229f4918dd6ea2986126c05ac401cc62c00e667d2", { input: { width: 512, height: 512, prompt: "1boy, medium hair, blonde hair, blue eyes, bishounen, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden", num_outputs: "1", guidance_scale: 12, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run cjwbw/anything-v3.0 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "cjwbw/anything-v3.0:b0039f8a6de0be7fe62807c229f4918dd6ea2986126c05ac401cc62c00e667d2", input={ "width": 512, "height": 512, "prompt": "1boy, medium hair, blonde hair, blue eyes, bishounen, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden", "num_outputs": "1", "guidance_scale": 12, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run cjwbw/anything-v3.0 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "cjwbw/anything-v3.0:b0039f8a6de0be7fe62807c229f4918dd6ea2986126c05ac401cc62c00e667d2", "input": { "width": 512, "height": 512, "prompt": "1boy, medium hair, blonde hair, blue eyes, bishounen, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden", "num_outputs": "1", "guidance_scale": 12, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2022-12-20T02:49:26.225679Z", "created_at": "2022-12-20T02:48:49.518002Z", "data_removed": false, "error": null, "id": "qstcfjkdojhvrdxudlgh65imfe", "input": { "width": 512, "height": 512, "prompt": "1boy, medium hair, blonde hair, blue eyes, bishounen, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden", "num_outputs": "1", "guidance_scale": 12, "num_inference_steps": 50 }, "logs": "Using seed: 13433\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:18, 2.65it/s]\n 4%|▍ | 2/50 [00:00<00:12, 3.72it/s]\n 6%|▌ | 3/50 [00:00<00:11, 4.27it/s]\n 8%|▊ | 4/50 [00:00<00:10, 4.45it/s]\n 10%|█ | 5/50 [00:01<00:09, 4.65it/s]\n 12%|█▏ | 6/50 [00:01<00:09, 4.78it/s]\n 14%|█▍ | 7/50 [00:01<00:08, 4.89it/s]\n 16%|█▌ | 8/50 [00:01<00:08, 4.98it/s]\n 18%|█▊ | 9/50 [00:01<00:08, 4.93it/s]\n 20%|██ | 10/50 [00:02<00:08, 4.94it/s]\n 22%|██▏ | 11/50 [00:02<00:07, 4.98it/s]\n 24%|██▍ | 12/50 [00:02<00:07, 4.99it/s]\n 26%|██▌ | 13/50 [00:02<00:07, 5.03it/s]\n 28%|██▊ | 14/50 [00:02<00:07, 5.01it/s]\n 30%|███ | 15/50 [00:03<00:06, 5.01it/s]\n 32%|███▏ | 16/50 [00:03<00:06, 5.02it/s]\n 34%|███▍ | 17/50 [00:03<00:06, 5.02it/s]\n 36%|███▌ | 18/50 [00:03<00:06, 5.03it/s]\n 38%|███▊ | 19/50 [00:03<00:06, 5.04it/s]\n 40%|████ | 20/50 [00:04<00:05, 5.03it/s]\n 42%|████▏ | 21/50 [00:04<00:05, 5.04it/s]\n 44%|████▍ | 22/50 [00:04<00:05, 5.03it/s]\n 46%|████▌ | 23/50 [00:04<00:05, 5.01it/s]\n 48%|████▊ | 24/50 [00:04<00:05, 4.98it/s]\n 50%|█████ | 25/50 [00:05<00:05, 4.97it/s]\n 52%|█████▏ | 26/50 [00:05<00:04, 4.96it/s]\n 54%|█████▍ | 27/50 [00:05<00:04, 4.99it/s]\n 56%|█████▌ | 28/50 [00:05<00:04, 5.03it/s]\n 58%|█████▊ | 29/50 [00:05<00:04, 5.03it/s]\n 60%|██████ | 30/50 [00:06<00:03, 5.01it/s]\n 62%|██████▏ | 31/50 [00:06<00:03, 5.00it/s]\n 64%|██████▍ | 32/50 [00:06<00:03, 5.01it/s]\n 66%|██████▌ | 33/50 [00:06<00:03, 4.99it/s]\n 68%|██████▊ | 34/50 [00:06<00:03, 5.02it/s]\n 70%|███████ | 35/50 [00:07<00:02, 5.03it/s]\n 72%|███████▏ | 36/50 [00:07<00:02, 5.05it/s]\n 74%|███████▍ | 37/50 [00:07<00:02, 5.04it/s]\n 76%|███████▌ | 38/50 [00:07<00:02, 5.03it/s]\n 78%|███████▊ | 39/50 [00:07<00:02, 5.04it/s]\n 80%|████████ | 40/50 [00:08<00:01, 5.05it/s]\n 82%|████████▏ | 41/50 [00:08<00:01, 5.05it/s]\n 84%|████████▍ | 42/50 [00:08<00:01, 5.04it/s]\n 86%|████████▌ | 43/50 [00:08<00:01, 5.03it/s]\n 88%|████████▊ | 44/50 [00:08<00:01, 5.05it/s]\n 90%|█████████ | 45/50 [00:09<00:00, 5.05it/s]\n 92%|█████████▏| 46/50 [00:09<00:00, 5.05it/s]\n 94%|█████████▍| 47/50 [00:09<00:00, 5.05it/s]\n 96%|█████████▌| 48/50 [00:09<00:00, 5.06it/s]\n 98%|█████████▊| 49/50 [00:09<00:00, 5.08it/s]\n100%|██████████| 50/50 [00:10<00:00, 5.06it/s]\n100%|██████████| 50/50 [00:10<00:00, 4.94it/s]", "metrics": { "predict_time": 10.772566, "total_time": 36.707677 }, "output": [ "https://replicate.delivery/pbxt/xfDNV2nTy0RcO6IeLidLN6Nq4zSeIZMIa6Y8Db52RqislaXgA/out-0.png" ], "started_at": "2022-12-20T02:49:15.453113Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/qstcfjkdojhvrdxudlgh65imfe", "cancel": "https://api.replicate.com/v1/predictions/qstcfjkdojhvrdxudlgh65imfe/cancel" }, "version": "b0039f8a6de0be7fe62807c229f4918dd6ea2986126c05ac401cc62c00e667d2" }
Generated inUsing seed: 13433 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:18, 2.65it/s] 4%|▍ | 2/50 [00:00<00:12, 3.72it/s] 6%|▌ | 3/50 [00:00<00:11, 4.27it/s] 8%|▊ | 4/50 [00:00<00:10, 4.45it/s] 10%|█ | 5/50 [00:01<00:09, 4.65it/s] 12%|█▏ | 6/50 [00:01<00:09, 4.78it/s] 14%|█▍ | 7/50 [00:01<00:08, 4.89it/s] 16%|█▌ | 8/50 [00:01<00:08, 4.98it/s] 18%|█▊ | 9/50 [00:01<00:08, 4.93it/s] 20%|██ | 10/50 [00:02<00:08, 4.94it/s] 22%|██▏ | 11/50 [00:02<00:07, 4.98it/s] 24%|██▍ | 12/50 [00:02<00:07, 4.99it/s] 26%|██▌ | 13/50 [00:02<00:07, 5.03it/s] 28%|██▊ | 14/50 [00:02<00:07, 5.01it/s] 30%|███ | 15/50 [00:03<00:06, 5.01it/s] 32%|███▏ | 16/50 [00:03<00:06, 5.02it/s] 34%|███▍ | 17/50 [00:03<00:06, 5.02it/s] 36%|███▌ | 18/50 [00:03<00:06, 5.03it/s] 38%|███▊ | 19/50 [00:03<00:06, 5.04it/s] 40%|████ | 20/50 [00:04<00:05, 5.03it/s] 42%|████▏ | 21/50 [00:04<00:05, 5.04it/s] 44%|████▍ | 22/50 [00:04<00:05, 5.03it/s] 46%|████▌ | 23/50 [00:04<00:05, 5.01it/s] 48%|████▊ | 24/50 [00:04<00:05, 4.98it/s] 50%|█████ | 25/50 [00:05<00:05, 4.97it/s] 52%|█████▏ | 26/50 [00:05<00:04, 4.96it/s] 54%|█████▍ | 27/50 [00:05<00:04, 4.99it/s] 56%|█████▌ | 28/50 [00:05<00:04, 5.03it/s] 58%|█████▊ | 29/50 [00:05<00:04, 5.03it/s] 60%|██████ | 30/50 [00:06<00:03, 5.01it/s] 62%|██████▏ | 31/50 [00:06<00:03, 5.00it/s] 64%|██████▍ | 32/50 [00:06<00:03, 5.01it/s] 66%|██████▌ | 33/50 [00:06<00:03, 4.99it/s] 68%|██████▊ | 34/50 [00:06<00:03, 5.02it/s] 70%|███████ | 35/50 [00:07<00:02, 5.03it/s] 72%|███████▏ | 36/50 [00:07<00:02, 5.05it/s] 74%|███████▍ | 37/50 [00:07<00:02, 5.04it/s] 76%|███████▌ | 38/50 [00:07<00:02, 5.03it/s] 78%|███████▊ | 39/50 [00:07<00:02, 5.04it/s] 80%|████████ | 40/50 [00:08<00:01, 5.05it/s] 82%|████████▏ | 41/50 [00:08<00:01, 5.05it/s] 84%|████████▍ | 42/50 [00:08<00:01, 5.04it/s] 86%|████████▌ | 43/50 [00:08<00:01, 5.03it/s] 88%|████████▊ | 44/50 [00:08<00:01, 5.05it/s] 90%|█████████ | 45/50 [00:09<00:00, 5.05it/s] 92%|█████████▏| 46/50 [00:09<00:00, 5.05it/s] 94%|█████████▍| 47/50 [00:09<00:00, 5.05it/s] 96%|█████████▌| 48/50 [00:09<00:00, 5.06it/s] 98%|█████████▊| 49/50 [00:09<00:00, 5.08it/s] 100%|██████████| 50/50 [00:10<00:00, 5.06it/s] 100%|██████████| 50/50 [00:10<00:00, 4.94it/s]
Want to make some of these yourself?
Run this model