ckizer / ckizer-64
This model generates photo portraits of Court Kizer. Use the trigger word "ckizer" in your prompt. EX: "A professional portrait photo of ckizer, in a tech office in California"
- Public
- 387 runs
-
H100
Prediction
ckizer/ckizer-64:b48db8cd39b088807800d7e7235024d116b9b1bd1fc2b8e1689b32743aae7b6cIDw3ynmgr3e5rm20chqmw90sy4w0StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 0.8
- num_inference_steps
- 40
{ "model": "dev", "prompt": "a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 40 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ckizer/ckizer-64 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ckizer/ckizer-64:b48db8cd39b088807800d7e7235024d116b9b1bd1fc2b8e1689b32743aae7b6c", { input: { model: "dev", prompt: "a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 0.8, num_inference_steps: 40 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ckizer/ckizer-64 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ckizer/ckizer-64:b48db8cd39b088807800d7e7235024d116b9b1bd1fc2b8e1689b32743aae7b6c", input={ "model": "dev", "prompt": "a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 40 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run ckizer/ckizer-64 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ckizer/ckizer-64:b48db8cd39b088807800d7e7235024d116b9b1bd1fc2b8e1689b32743aae7b6c", "input": { "model": "dev", "prompt": "a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 40 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-04T13:28:48.849490Z", "created_at": "2024-09-04T13:27:30.417000Z", "data_removed": false, "error": null, "id": "w3ynmgr3e5rm20chqmw90sy4w0", "input": { "model": "dev", "prompt": "a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 40 }, "logs": "Using seed: 23147\nPrompt: a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting\ntxt2img mode\nUsing dev model\nfree=9422393511936\nDownloading weights\n2024-09-04T13:27:43Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpczni2c48/weights url=https://replicate.delivery/yhqm/Sb6AbPuwFbrGGlFxtCD965mrg7SeQXDDoPWfIrKQq5d26gZTA/trained_model.tar\n2024-09-04T13:27:47Z | INFO | [ Complete ] dest=/tmp/tmpczni2c48/weights size=\"172 MB\" total_elapsed=3.448s url=https://replicate.delivery/yhqm/Sb6AbPuwFbrGGlFxtCD965mrg7SeQXDDoPWfIrKQq5d26gZTA/trained_model.tar\nDownloaded weights in 3.48s\nLoaded LoRAs in 21.58s\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:01<00:40, 1.05s/it]\n 5%|▌ | 2/40 [00:01<00:35, 1.08it/s]\n 8%|▊ | 3/40 [00:02<00:36, 1.02it/s]\n 10%|█ | 4/40 [00:03<00:36, 1.01s/it]\n 12%|█▎ | 5/40 [00:05<00:35, 1.02s/it]\n 15%|█▌ | 6/40 [00:06<00:35, 1.03s/it]\n 18%|█▊ | 7/40 [00:07<00:34, 1.04s/it]\n 20%|██ | 8/40 [00:08<00:33, 1.05s/it]\n 22%|██▎ | 9/40 [00:09<00:32, 1.05s/it]\n 25%|██▌ | 10/40 [00:10<00:31, 1.05s/it]\n 28%|██▊ | 11/40 [00:11<00:30, 1.05s/it]\n 30%|███ | 12/40 [00:12<00:29, 1.05s/it]\n 32%|███▎ | 13/40 [00:13<00:28, 1.05s/it]\n 35%|███▌ | 14/40 [00:14<00:27, 1.05s/it]\n 38%|███▊ | 15/40 [00:15<00:26, 1.05s/it]\n 40%|████ | 16/40 [00:16<00:25, 1.06s/it]\n 42%|████▎ | 17/40 [00:17<00:24, 1.06s/it]\n 45%|████▌ | 18/40 [00:18<00:23, 1.06s/it]\n 48%|████▊ | 19/40 [00:19<00:22, 1.06s/it]\n 50%|█████ | 20/40 [00:20<00:21, 1.06s/it]\n 52%|█████▎ | 21/40 [00:21<00:20, 1.06s/it]\n 55%|█████▌ | 22/40 [00:22<00:19, 1.06s/it]\n 57%|█████▊ | 23/40 [00:24<00:17, 1.06s/it]\n 60%|██████ | 24/40 [00:25<00:16, 1.06s/it]\n 62%|██████▎ | 25/40 [00:26<00:15, 1.06s/it]\n 65%|██████▌ | 26/40 [00:27<00:14, 1.06s/it]\n 68%|██████▊ | 27/40 [00:28<00:13, 1.05s/it]\n 70%|███████ | 28/40 [00:29<00:12, 1.06s/it]\n 72%|███████▎ | 29/40 [00:30<00:11, 1.06s/it]\n 75%|███████▌ | 30/40 [00:31<00:10, 1.06s/it]\n 78%|███████▊ | 31/40 [00:32<00:09, 1.06s/it]\n 80%|████████ | 32/40 [00:33<00:08, 1.06s/it]\n 82%|████████▎ | 33/40 [00:34<00:07, 1.06s/it]\n 85%|████████▌ | 34/40 [00:35<00:06, 1.06s/it]\n 88%|████████▊ | 35/40 [00:36<00:05, 1.06s/it]\n 90%|█████████ | 36/40 [00:37<00:04, 1.05s/it]\n 92%|█████████▎| 37/40 [00:38<00:03, 1.05s/it]\n 95%|█████████▌| 38/40 [00:39<00:02, 1.06s/it]\n 98%|█████████▊| 39/40 [00:40<00:01, 1.06s/it]\n100%|██████████| 40/40 [00:42<00:00, 1.06s/it]\n100%|██████████| 40/40 [00:42<00:00, 1.05s/it]", "metrics": { "predict_time": 65.287233998, "total_time": 78.43249 }, "output": [ "https://replicate.delivery/yhqm/yL7DZEAzrR4APhwekfYSNf7JFZGuNY1qgRePzYwAtTdBpEmNB/out-0.webp", "https://replicate.delivery/yhqm/RGAwh9KkpN7HIBznC6zo2sJm6YZc58VB7KDiZGxbRXGkSY2E/out-1.webp", "https://replicate.delivery/yhqm/YAU6JhXoG5ZaBBoee6LerhiUsMrLSngtTq4wcPIemseGSJMbC/out-2.webp", "https://replicate.delivery/yhqm/vPzArv8C3ZbxG5602a0zUMIhgI2h3gngzYlszs0C2IPkSY2E/out-3.webp" ], "started_at": "2024-09-04T13:27:43.562256Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/w3ynmgr3e5rm20chqmw90sy4w0", "cancel": "https://api.replicate.com/v1/predictions/w3ynmgr3e5rm20chqmw90sy4w0/cancel" }, "version": "b48db8cd39b088807800d7e7235024d116b9b1bd1fc2b8e1689b32743aae7b6c" }
Generated inUsing seed: 23147 Prompt: a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting txt2img mode Using dev model free=9422393511936 Downloading weights 2024-09-04T13:27:43Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpczni2c48/weights url=https://replicate.delivery/yhqm/Sb6AbPuwFbrGGlFxtCD965mrg7SeQXDDoPWfIrKQq5d26gZTA/trained_model.tar 2024-09-04T13:27:47Z | INFO | [ Complete ] dest=/tmp/tmpczni2c48/weights size="172 MB" total_elapsed=3.448s url=https://replicate.delivery/yhqm/Sb6AbPuwFbrGGlFxtCD965mrg7SeQXDDoPWfIrKQq5d26gZTA/trained_model.tar Downloaded weights in 3.48s Loaded LoRAs in 21.58s 0%| | 0/40 [00:00<?, ?it/s] 2%|▎ | 1/40 [00:01<00:40, 1.05s/it] 5%|▌ | 2/40 [00:01<00:35, 1.08it/s] 8%|▊ | 3/40 [00:02<00:36, 1.02it/s] 10%|█ | 4/40 [00:03<00:36, 1.01s/it] 12%|█▎ | 5/40 [00:05<00:35, 1.02s/it] 15%|█▌ | 6/40 [00:06<00:35, 1.03s/it] 18%|█▊ | 7/40 [00:07<00:34, 1.04s/it] 20%|██ | 8/40 [00:08<00:33, 1.05s/it] 22%|██▎ | 9/40 [00:09<00:32, 1.05s/it] 25%|██▌ | 10/40 [00:10<00:31, 1.05s/it] 28%|██▊ | 11/40 [00:11<00:30, 1.05s/it] 30%|███ | 12/40 [00:12<00:29, 1.05s/it] 32%|███▎ | 13/40 [00:13<00:28, 1.05s/it] 35%|███▌ | 14/40 [00:14<00:27, 1.05s/it] 38%|███▊ | 15/40 [00:15<00:26, 1.05s/it] 40%|████ | 16/40 [00:16<00:25, 1.06s/it] 42%|████▎ | 17/40 [00:17<00:24, 1.06s/it] 45%|████▌ | 18/40 [00:18<00:23, 1.06s/it] 48%|████▊ | 19/40 [00:19<00:22, 1.06s/it] 50%|█████ | 20/40 [00:20<00:21, 1.06s/it] 52%|█████▎ | 21/40 [00:21<00:20, 1.06s/it] 55%|█████▌ | 22/40 [00:22<00:19, 1.06s/it] 57%|█████▊ | 23/40 [00:24<00:17, 1.06s/it] 60%|██████ | 24/40 [00:25<00:16, 1.06s/it] 62%|██████▎ | 25/40 [00:26<00:15, 1.06s/it] 65%|██████▌ | 26/40 [00:27<00:14, 1.06s/it] 68%|██████▊ | 27/40 [00:28<00:13, 1.05s/it] 70%|███████ | 28/40 [00:29<00:12, 1.06s/it] 72%|███████▎ | 29/40 [00:30<00:11, 1.06s/it] 75%|███████▌ | 30/40 [00:31<00:10, 1.06s/it] 78%|███████▊ | 31/40 [00:32<00:09, 1.06s/it] 80%|████████ | 32/40 [00:33<00:08, 1.06s/it] 82%|████████▎ | 33/40 [00:34<00:07, 1.06s/it] 85%|████████▌ | 34/40 [00:35<00:06, 1.06s/it] 88%|████████▊ | 35/40 [00:36<00:05, 1.06s/it] 90%|█████████ | 36/40 [00:37<00:04, 1.05s/it] 92%|█████████▎| 37/40 [00:38<00:03, 1.05s/it] 95%|█████████▌| 38/40 [00:39<00:02, 1.06s/it] 98%|█████████▊| 39/40 [00:40<00:01, 1.06s/it] 100%|██████████| 40/40 [00:42<00:00, 1.06s/it] 100%|██████████| 40/40 [00:42<00:00, 1.05s/it]
Prediction
ckizer/ckizer-64:b48db8cd39b088807800d7e7235024d116b9b1bd1fc2b8e1689b32743aae7b6cIDcs0fsq65ssrm20chqmx8qvy7h0StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 8.14
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 0.8
- num_inference_steps
- 40
{ "model": "dev", "prompt": "a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 8.14, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 40 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ckizer/ckizer-64 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ckizer/ckizer-64:b48db8cd39b088807800d7e7235024d116b9b1bd1fc2b8e1689b32743aae7b6c", { input: { model: "dev", prompt: "a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting", lora_scale: 1, num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 8.14, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 0.8, num_inference_steps: 40 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ckizer/ckizer-64 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ckizer/ckizer-64:b48db8cd39b088807800d7e7235024d116b9b1bd1fc2b8e1689b32743aae7b6c", input={ "model": "dev", "prompt": "a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 8.14, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 40 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run ckizer/ckizer-64 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ckizer/ckizer-64:b48db8cd39b088807800d7e7235024d116b9b1bd1fc2b8e1689b32743aae7b6c", "input": { "model": "dev", "prompt": "a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 8.14, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 40 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-04T13:31:35.560741Z", "created_at": "2024-09-04T13:30:31.246000Z", "data_removed": false, "error": null, "id": "cs0fsq65ssrm20chqmx8qvy7h0", "input": { "model": "dev", "prompt": "a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 8.14, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 40 }, "logs": "Using seed: 63915\nPrompt: a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting\ntxt2img mode\nUsing dev model\nfree=9351005888512\nDownloading weights\n2024-09-04T13:30:31Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpvzifpnlp/weights url=https://replicate.delivery/yhqm/Sb6AbPuwFbrGGlFxtCD965mrg7SeQXDDoPWfIrKQq5d26gZTA/trained_model.tar\n2024-09-04T13:30:34Z | INFO | [ Complete ] dest=/tmp/tmpvzifpnlp/weights size=\"172 MB\" total_elapsed=3.089s url=https://replicate.delivery/yhqm/Sb6AbPuwFbrGGlFxtCD965mrg7SeQXDDoPWfIrKQq5d26gZTA/trained_model.tar\nDownloaded weights in 3.12s\nLoaded LoRAs in 19.65s\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:01<00:41, 1.07s/it]\n 5%|▌ | 2/40 [00:01<00:36, 1.05it/s]\n 8%|▊ | 3/40 [00:03<00:37, 1.01s/it]\n 10%|█ | 4/40 [00:04<00:37, 1.04s/it]\n 12%|█▎ | 5/40 [00:05<00:36, 1.05s/it]\n 15%|█▌ | 6/40 [00:06<00:36, 1.06s/it]\n 18%|█▊ | 7/40 [00:07<00:35, 1.07s/it]\n 20%|██ | 8/40 [00:08<00:34, 1.07s/it]\n 22%|██▎ | 9/40 [00:09<00:33, 1.08s/it]\n 25%|██▌ | 10/40 [00:10<00:32, 1.08s/it]\n 28%|██▊ | 11/40 [00:11<00:31, 1.08s/it]\n 30%|███ | 12/40 [00:12<00:30, 1.08s/it]\n 32%|███▎ | 13/40 [00:13<00:29, 1.08s/it]\n 35%|███▌ | 14/40 [00:14<00:28, 1.08s/it]\n 38%|███▊ | 15/40 [00:15<00:27, 1.08s/it]\n 40%|████ | 16/40 [00:17<00:25, 1.08s/it]\n 42%|████▎ | 17/40 [00:18<00:24, 1.08s/it]\n 45%|████▌ | 18/40 [00:19<00:23, 1.08s/it]\n 48%|████▊ | 19/40 [00:20<00:22, 1.08s/it]\n 50%|█████ | 20/40 [00:21<00:21, 1.08s/it]\n 52%|█████▎ | 21/40 [00:22<00:20, 1.08s/it]\n 55%|█████▌ | 22/40 [00:23<00:19, 1.08s/it]\n 57%|█████▊ | 23/40 [00:24<00:18, 1.08s/it]\n 60%|██████ | 24/40 [00:25<00:17, 1.08s/it]\n 62%|██████▎ | 25/40 [00:26<00:16, 1.08s/it]\n 65%|██████▌ | 26/40 [00:27<00:15, 1.08s/it]\n 68%|██████▊ | 27/40 [00:28<00:14, 1.08s/it]\n 70%|███████ | 28/40 [00:30<00:12, 1.08s/it]\n 72%|███████▎ | 29/40 [00:31<00:11, 1.08s/it]\n 75%|███████▌ | 30/40 [00:32<00:10, 1.08s/it]\n 78%|███████▊ | 31/40 [00:33<00:09, 1.08s/it]\n 80%|████████ | 32/40 [00:34<00:08, 1.08s/it]\n 82%|████████▎ | 33/40 [00:35<00:07, 1.08s/it]\n 85%|████████▌ | 34/40 [00:36<00:06, 1.08s/it]\n 88%|████████▊ | 35/40 [00:37<00:05, 1.08s/it]\n 90%|█████████ | 36/40 [00:38<00:04, 1.08s/it]\n 92%|█████████▎| 37/40 [00:39<00:03, 1.08s/it]\n 95%|█████████▌| 38/40 [00:40<00:02, 1.08s/it]\n 98%|█████████▊| 39/40 [00:41<00:01, 1.08s/it]\n100%|██████████| 40/40 [00:43<00:00, 1.08s/it]\n100%|██████████| 40/40 [00:43<00:00, 1.08s/it]", "metrics": { "predict_time": 64.309145626, "total_time": 64.314741 }, "output": [ "https://replicate.delivery/yhqm/ODtQGYafBkzZWSWu5Efh7HEKnhnTclybNwxdjXEpkPs3MhZTA/out-0.webp", "https://replicate.delivery/yhqm/5TZje8wc1XUeTUtaofDn31hcczO90RdoNdOD2CtWaCmvZCzmA/out-1.webp", "https://replicate.delivery/yhqm/IE9uCepxKoT0aq8v22gBsrF0Bvmi3NznIDfu9fKYMMfemJMbC/out-2.webp", "https://replicate.delivery/yhqm/oebCWMd83sxefJnj1jNxVGlUpyCnXEQATCqeZyyIDue8mJMbC/out-3.webp" ], "started_at": "2024-09-04T13:30:31.251595Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/cs0fsq65ssrm20chqmx8qvy7h0", "cancel": "https://api.replicate.com/v1/predictions/cs0fsq65ssrm20chqmx8qvy7h0/cancel" }, "version": "b48db8cd39b088807800d7e7235024d116b9b1bd1fc2b8e1689b32743aae7b6c" }
Generated inUsing seed: 63915 Prompt: a portrait of ckizer a human man sitting on a porch swing in a screened in patio, beautiful lighting txt2img mode Using dev model free=9351005888512 Downloading weights 2024-09-04T13:30:31Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpvzifpnlp/weights url=https://replicate.delivery/yhqm/Sb6AbPuwFbrGGlFxtCD965mrg7SeQXDDoPWfIrKQq5d26gZTA/trained_model.tar 2024-09-04T13:30:34Z | INFO | [ Complete ] dest=/tmp/tmpvzifpnlp/weights size="172 MB" total_elapsed=3.089s url=https://replicate.delivery/yhqm/Sb6AbPuwFbrGGlFxtCD965mrg7SeQXDDoPWfIrKQq5d26gZTA/trained_model.tar Downloaded weights in 3.12s Loaded LoRAs in 19.65s 0%| | 0/40 [00:00<?, ?it/s] 2%|▎ | 1/40 [00:01<00:41, 1.07s/it] 5%|▌ | 2/40 [00:01<00:36, 1.05it/s] 8%|▊ | 3/40 [00:03<00:37, 1.01s/it] 10%|█ | 4/40 [00:04<00:37, 1.04s/it] 12%|█▎ | 5/40 [00:05<00:36, 1.05s/it] 15%|█▌ | 6/40 [00:06<00:36, 1.06s/it] 18%|█▊ | 7/40 [00:07<00:35, 1.07s/it] 20%|██ | 8/40 [00:08<00:34, 1.07s/it] 22%|██▎ | 9/40 [00:09<00:33, 1.08s/it] 25%|██▌ | 10/40 [00:10<00:32, 1.08s/it] 28%|██▊ | 11/40 [00:11<00:31, 1.08s/it] 30%|███ | 12/40 [00:12<00:30, 1.08s/it] 32%|███▎ | 13/40 [00:13<00:29, 1.08s/it] 35%|███▌ | 14/40 [00:14<00:28, 1.08s/it] 38%|███▊ | 15/40 [00:15<00:27, 1.08s/it] 40%|████ | 16/40 [00:17<00:25, 1.08s/it] 42%|████▎ | 17/40 [00:18<00:24, 1.08s/it] 45%|████▌ | 18/40 [00:19<00:23, 1.08s/it] 48%|████▊ | 19/40 [00:20<00:22, 1.08s/it] 50%|█████ | 20/40 [00:21<00:21, 1.08s/it] 52%|█████▎ | 21/40 [00:22<00:20, 1.08s/it] 55%|█████▌ | 22/40 [00:23<00:19, 1.08s/it] 57%|█████▊ | 23/40 [00:24<00:18, 1.08s/it] 60%|██████ | 24/40 [00:25<00:17, 1.08s/it] 62%|██████▎ | 25/40 [00:26<00:16, 1.08s/it] 65%|██████▌ | 26/40 [00:27<00:15, 1.08s/it] 68%|██████▊ | 27/40 [00:28<00:14, 1.08s/it] 70%|███████ | 28/40 [00:30<00:12, 1.08s/it] 72%|███████▎ | 29/40 [00:31<00:11, 1.08s/it] 75%|███████▌ | 30/40 [00:32<00:10, 1.08s/it] 78%|███████▊ | 31/40 [00:33<00:09, 1.08s/it] 80%|████████ | 32/40 [00:34<00:08, 1.08s/it] 82%|████████▎ | 33/40 [00:35<00:07, 1.08s/it] 85%|████████▌ | 34/40 [00:36<00:06, 1.08s/it] 88%|████████▊ | 35/40 [00:37<00:05, 1.08s/it] 90%|█████████ | 36/40 [00:38<00:04, 1.08s/it] 92%|█████████▎| 37/40 [00:39<00:03, 1.08s/it] 95%|█████████▌| 38/40 [00:40<00:02, 1.08s/it] 98%|█████████▊| 39/40 [00:41<00:01, 1.08s/it] 100%|██████████| 40/40 [00:43<00:00, 1.08s/it] 100%|██████████| 40/40 [00:43<00:00, 1.08s/it]
Want to make some of these yourself?
Run this model