You're looking at a specific version of this model. Jump to the model overview.
cloneofsimo /avatar:f72c64e7
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run cloneofsimo/avatar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"cloneofsimo/avatar:f72c64e7bdc9dfa0204a9700aca5c038d2f43c032ee97292b15ee7365651fe78",
{
input: {
width: 512,
height: 512,
prompt: "a photo of <1> riding a horse on mars, avatarart style",
lora_urls: "",
scheduler: "DPMSolverMultistep",
lora_scales: "0.3",
num_outputs: 1,
guidance_scale: 7.5,
negative_prompt: "",
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run cloneofsimo/avatar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"cloneofsimo/avatar:f72c64e7bdc9dfa0204a9700aca5c038d2f43c032ee97292b15ee7365651fe78",
input={
"width": 512,
"height": 512,
"prompt": "a photo of <1> riding a horse on mars, avatarart style",
"lora_urls": "",
"scheduler": "DPMSolverMultistep",
"lora_scales": "0.3",
"num_outputs": 1,
"guidance_scale": 7.5,
"negative_prompt": "",
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run cloneofsimo/avatar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "f72c64e7bdc9dfa0204a9700aca5c038d2f43c032ee97292b15ee7365651fe78",
"input": {
"width": 512,
"height": 512,
"prompt": "a photo of <1> riding a horse on mars, avatarart style",
"lora_urls": "",
"scheduler": "DPMSolverMultistep",
"lora_scales": "0.3",
"num_outputs": 1,
"guidance_scale": 7.5,
"negative_prompt": "",
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/cloneofsimo/avatar@sha256:f72c64e7bdc9dfa0204a9700aca5c038d2f43c032ee97292b15ee7365651fe78 \
-i 'width=512' \
-i 'height=512' \
-i 'prompt="a photo of <1> riding a horse on mars, avatarart style"' \
-i 'lora_urls=""' \
-i 'scheduler="DPMSolverMultistep"' \
-i 'lora_scales="0.3"' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'negative_prompt=""' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/cloneofsimo/avatar@sha256:f72c64e7bdc9dfa0204a9700aca5c038d2f43c032ee97292b15ee7365651fe78
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 512, "height": 512, "prompt": "a photo of <1> riding a horse on mars, avatarart style", "lora_urls": "", "scheduler": "DPMSolverMultistep", "lora_scales": "0.3", "num_outputs": 1, "guidance_scale": 7.5, "negative_prompt": "", "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.066. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-02-07T09:12:48.567509Z",
"created_at": "2023-02-07T09:12:24.348184Z",
"data_removed": false,
"error": null,
"id": "6py6tchzlbb5bco6vundazwmde",
"input": {
"width": 512,
"height": 512,
"prompt": "a photo of <1> riding a horse on mars, avatarart style",
"scheduler": "DPMSolverMultistep",
"lora_scales": "0.3",
"num_outputs": 1,
"guidance_scale": 7.5,
"num_inference_steps": 50
},
"logs": "Using seed: 41696\nNo LoRA models provided, using default model...\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:24, 1.97it/s]\n 4%|▍ | 2/50 [00:00<00:22, 2.15it/s]\n 6%|▌ | 3/50 [00:01<00:21, 2.20it/s]\n 8%|▊ | 4/50 [00:01<00:20, 2.23it/s]\n 10%|█ | 5/50 [00:02<00:20, 2.24it/s]\n 12%|█▏ | 6/50 [00:02<00:19, 2.25it/s]\n 14%|█▍ | 7/50 [00:03<00:19, 2.25it/s]\n 16%|█▌ | 8/50 [00:03<00:18, 2.25it/s]\n 18%|█▊ | 9/50 [00:04<00:18, 2.26it/s]\n 20%|██ | 10/50 [00:04<00:17, 2.26it/s]\n 22%|██▏ | 11/50 [00:04<00:17, 2.26it/s]\n 24%|██▍ | 12/50 [00:05<00:16, 2.26it/s]\n 26%|██▌ | 13/50 [00:05<00:16, 2.26it/s]\n 28%|██▊ | 14/50 [00:06<00:15, 2.26it/s]\n 30%|███ | 15/50 [00:06<00:15, 2.26it/s]\n 32%|███▏ | 16/50 [00:07<00:15, 2.26it/s]\n 34%|███▍ | 17/50 [00:07<00:14, 2.26it/s]\n 36%|███▌ | 18/50 [00:08<00:14, 2.26it/s]\n 38%|███▊ | 19/50 [00:08<00:13, 2.25it/s]\n 40%|████ | 20/50 [00:08<00:13, 2.26it/s]\n 42%|████▏ | 21/50 [00:09<00:12, 2.25it/s]\n 44%|████▍ | 22/50 [00:09<00:12, 2.25it/s]\n 46%|████▌ | 23/50 [00:10<00:12, 2.25it/s]\n 48%|████▊ | 24/50 [00:10<00:11, 2.24it/s]\n 50%|█████ | 25/50 [00:11<00:11, 2.24it/s]\n 52%|█████▏ | 26/50 [00:11<00:10, 2.23it/s]\n 54%|█████▍ | 27/50 [00:12<00:10, 2.24it/s]\n 56%|█████▌ | 28/50 [00:12<00:09, 2.24it/s]\n 58%|█████▊ | 29/50 [00:12<00:09, 2.24it/s]\n 60%|██████ | 30/50 [00:13<00:08, 2.24it/s]\n 62%|██████▏ | 31/50 [00:13<00:08, 2.24it/s]\n 64%|██████▍ | 32/50 [00:14<00:08, 2.24it/s]\n 66%|██████▌ | 33/50 [00:14<00:07, 2.24it/s]\n 68%|██████▊ | 34/50 [00:15<00:07, 2.24it/s]\n 70%|███████ | 35/50 [00:15<00:06, 2.25it/s]\n 72%|███████▏ | 36/50 [00:16<00:06, 2.24it/s]\n 74%|███████▍ | 37/50 [00:16<00:05, 2.24it/s]\n 76%|███████▌ | 38/50 [00:16<00:05, 2.24it/s]\n 78%|███████▊ | 39/50 [00:17<00:04, 2.24it/s]\n 80%|████████ | 40/50 [00:17<00:04, 2.24it/s]\n 82%|████████▏ | 41/50 [00:18<00:04, 2.24it/s]\n 84%|████████▍ | 42/50 [00:18<00:03, 2.23it/s]\n 86%|████████▌ | 43/50 [00:19<00:03, 2.23it/s]\n 88%|████████▊ | 44/50 [00:19<00:02, 2.22it/s]\n 90%|█████████ | 45/50 [00:20<00:02, 2.22it/s]\n 92%|█████████▏| 46/50 [00:20<00:01, 2.23it/s]\n 94%|█████████▍| 47/50 [00:20<00:01, 2.23it/s]\n 96%|█████████▌| 48/50 [00:21<00:00, 2.23it/s]\n 98%|█████████▊| 49/50 [00:21<00:00, 2.23it/s]\n100%|██████████| 50/50 [00:22<00:00, 2.23it/s]\n100%|██████████| 50/50 [00:22<00:00, 2.24it/s]",
"metrics": {
"predict_time": 23.280949,
"total_time": 24.219325
},
"output": [
"https://replicate.delivery/pbxt/lLGfls5zK0Te5ELLvMb2yqRmTe2b2gvVAkFjpy2S6RBhA53gA/out-0.png"
],
"started_at": "2023-02-07T09:12:25.286560Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/6py6tchzlbb5bco6vundazwmde",
"cancel": "https://api.replicate.com/v1/predictions/6py6tchzlbb5bco6vundazwmde/cancel"
},
"version": "f72c64e7bdc9dfa0204a9700aca5c038d2f43c032ee97292b15ee7365651fe78"
}
Using seed: 41696
No LoRA models provided, using default model...
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:24, 1.97it/s]
4%|▍ | 2/50 [00:00<00:22, 2.15it/s]
6%|▌ | 3/50 [00:01<00:21, 2.20it/s]
8%|▊ | 4/50 [00:01<00:20, 2.23it/s]
10%|█ | 5/50 [00:02<00:20, 2.24it/s]
12%|█▏ | 6/50 [00:02<00:19, 2.25it/s]
14%|█▍ | 7/50 [00:03<00:19, 2.25it/s]
16%|█▌ | 8/50 [00:03<00:18, 2.25it/s]
18%|█▊ | 9/50 [00:04<00:18, 2.26it/s]
20%|██ | 10/50 [00:04<00:17, 2.26it/s]
22%|██▏ | 11/50 [00:04<00:17, 2.26it/s]
24%|██▍ | 12/50 [00:05<00:16, 2.26it/s]
26%|██▌ | 13/50 [00:05<00:16, 2.26it/s]
28%|██▊ | 14/50 [00:06<00:15, 2.26it/s]
30%|███ | 15/50 [00:06<00:15, 2.26it/s]
32%|███▏ | 16/50 [00:07<00:15, 2.26it/s]
34%|███▍ | 17/50 [00:07<00:14, 2.26it/s]
36%|███▌ | 18/50 [00:08<00:14, 2.26it/s]
38%|███▊ | 19/50 [00:08<00:13, 2.25it/s]
40%|████ | 20/50 [00:08<00:13, 2.26it/s]
42%|████▏ | 21/50 [00:09<00:12, 2.25it/s]
44%|████▍ | 22/50 [00:09<00:12, 2.25it/s]
46%|████▌ | 23/50 [00:10<00:12, 2.25it/s]
48%|████▊ | 24/50 [00:10<00:11, 2.24it/s]
50%|█████ | 25/50 [00:11<00:11, 2.24it/s]
52%|█████▏ | 26/50 [00:11<00:10, 2.23it/s]
54%|█████▍ | 27/50 [00:12<00:10, 2.24it/s]
56%|█████▌ | 28/50 [00:12<00:09, 2.24it/s]
58%|█████▊ | 29/50 [00:12<00:09, 2.24it/s]
60%|██████ | 30/50 [00:13<00:08, 2.24it/s]
62%|██████▏ | 31/50 [00:13<00:08, 2.24it/s]
64%|██████▍ | 32/50 [00:14<00:08, 2.24it/s]
66%|██████▌ | 33/50 [00:14<00:07, 2.24it/s]
68%|██████▊ | 34/50 [00:15<00:07, 2.24it/s]
70%|███████ | 35/50 [00:15<00:06, 2.25it/s]
72%|███████▏ | 36/50 [00:16<00:06, 2.24it/s]
74%|███████▍ | 37/50 [00:16<00:05, 2.24it/s]
76%|███████▌ | 38/50 [00:16<00:05, 2.24it/s]
78%|███████▊ | 39/50 [00:17<00:04, 2.24it/s]
80%|████████ | 40/50 [00:17<00:04, 2.24it/s]
82%|████████▏ | 41/50 [00:18<00:04, 2.24it/s]
84%|████████▍ | 42/50 [00:18<00:03, 2.23it/s]
86%|████████▌ | 43/50 [00:19<00:03, 2.23it/s]
88%|████████▊ | 44/50 [00:19<00:02, 2.22it/s]
90%|█████████ | 45/50 [00:20<00:02, 2.22it/s]
92%|█████████▏| 46/50 [00:20<00:01, 2.23it/s]
94%|█████████▍| 47/50 [00:20<00:01, 2.23it/s]
96%|█████████▌| 48/50 [00:21<00:00, 2.23it/s]
98%|█████████▊| 49/50 [00:21<00:00, 2.23it/s]
100%|██████████| 50/50 [00:22<00:00, 2.23it/s]
100%|██████████| 50/50 [00:22<00:00, 2.24it/s]