Readme
LoRA-capable, fp16 model of Avatar characters
Generate characters from Avatar
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run cloneofsimo/avatar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"cloneofsimo/avatar:f72c64e7bdc9dfa0204a9700aca5c038d2f43c032ee97292b15ee7365651fe78",
{
input: {
width: 512,
height: 512,
prompt: "a photo of <1> riding a horse on mars, avatarart style",
lora_urls: "",
scheduler: "DPMSolverMultistep",
lora_scales: "0.3",
num_outputs: 1,
guidance_scale: 7.5,
negative_prompt: "",
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run cloneofsimo/avatar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"cloneofsimo/avatar:f72c64e7bdc9dfa0204a9700aca5c038d2f43c032ee97292b15ee7365651fe78",
input={
"width": 512,
"height": 512,
"prompt": "a photo of <1> riding a horse on mars, avatarart style",
"lora_urls": "",
"scheduler": "DPMSolverMultistep",
"lora_scales": "0.3",
"num_outputs": 1,
"guidance_scale": 7.5,
"negative_prompt": "",
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run cloneofsimo/avatar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "f72c64e7bdc9dfa0204a9700aca5c038d2f43c032ee97292b15ee7365651fe78",
"input": {
"width": 512,
"height": 512,
"prompt": "a photo of <1> riding a horse on mars, avatarart style",
"lora_urls": "",
"scheduler": "DPMSolverMultistep",
"lora_scales": "0.3",
"num_outputs": 1,
"guidance_scale": 7.5,
"negative_prompt": "",
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-02-07T09:12:48.567509Z",
"created_at": "2023-02-07T09:12:24.348184Z",
"data_removed": false,
"error": null,
"id": "6py6tchzlbb5bco6vundazwmde",
"input": {
"width": 512,
"height": 512,
"prompt": "a photo of <1> riding a horse on mars, avatarart style",
"scheduler": "DPMSolverMultistep",
"lora_scales": "0.3",
"num_outputs": 1,
"guidance_scale": 7.5,
"num_inference_steps": 50
},
"logs": "Using seed: 41696\nNo LoRA models provided, using default model...\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:24, 1.97it/s]\n 4%|▍ | 2/50 [00:00<00:22, 2.15it/s]\n 6%|▌ | 3/50 [00:01<00:21, 2.20it/s]\n 8%|▊ | 4/50 [00:01<00:20, 2.23it/s]\n 10%|█ | 5/50 [00:02<00:20, 2.24it/s]\n 12%|█▏ | 6/50 [00:02<00:19, 2.25it/s]\n 14%|█▍ | 7/50 [00:03<00:19, 2.25it/s]\n 16%|█▌ | 8/50 [00:03<00:18, 2.25it/s]\n 18%|█▊ | 9/50 [00:04<00:18, 2.26it/s]\n 20%|██ | 10/50 [00:04<00:17, 2.26it/s]\n 22%|██▏ | 11/50 [00:04<00:17, 2.26it/s]\n 24%|██▍ | 12/50 [00:05<00:16, 2.26it/s]\n 26%|██▌ | 13/50 [00:05<00:16, 2.26it/s]\n 28%|██▊ | 14/50 [00:06<00:15, 2.26it/s]\n 30%|███ | 15/50 [00:06<00:15, 2.26it/s]\n 32%|███▏ | 16/50 [00:07<00:15, 2.26it/s]\n 34%|███▍ | 17/50 [00:07<00:14, 2.26it/s]\n 36%|███▌ | 18/50 [00:08<00:14, 2.26it/s]\n 38%|███▊ | 19/50 [00:08<00:13, 2.25it/s]\n 40%|████ | 20/50 [00:08<00:13, 2.26it/s]\n 42%|████▏ | 21/50 [00:09<00:12, 2.25it/s]\n 44%|████▍ | 22/50 [00:09<00:12, 2.25it/s]\n 46%|████▌ | 23/50 [00:10<00:12, 2.25it/s]\n 48%|████▊ | 24/50 [00:10<00:11, 2.24it/s]\n 50%|█████ | 25/50 [00:11<00:11, 2.24it/s]\n 52%|█████▏ | 26/50 [00:11<00:10, 2.23it/s]\n 54%|█████▍ | 27/50 [00:12<00:10, 2.24it/s]\n 56%|█████▌ | 28/50 [00:12<00:09, 2.24it/s]\n 58%|█████▊ | 29/50 [00:12<00:09, 2.24it/s]\n 60%|██████ | 30/50 [00:13<00:08, 2.24it/s]\n 62%|██████▏ | 31/50 [00:13<00:08, 2.24it/s]\n 64%|██████▍ | 32/50 [00:14<00:08, 2.24it/s]\n 66%|██████▌ | 33/50 [00:14<00:07, 2.24it/s]\n 68%|██████▊ | 34/50 [00:15<00:07, 2.24it/s]\n 70%|███████ | 35/50 [00:15<00:06, 2.25it/s]\n 72%|███████▏ | 36/50 [00:16<00:06, 2.24it/s]\n 74%|███████▍ | 37/50 [00:16<00:05, 2.24it/s]\n 76%|███████▌ | 38/50 [00:16<00:05, 2.24it/s]\n 78%|███████▊ | 39/50 [00:17<00:04, 2.24it/s]\n 80%|████████ | 40/50 [00:17<00:04, 2.24it/s]\n 82%|████████▏ | 41/50 [00:18<00:04, 2.24it/s]\n 84%|████████▍ | 42/50 [00:18<00:03, 2.23it/s]\n 86%|████████▌ | 43/50 [00:19<00:03, 2.23it/s]\n 88%|████████▊ | 44/50 [00:19<00:02, 2.22it/s]\n 90%|█████████ | 45/50 [00:20<00:02, 2.22it/s]\n 92%|█████████▏| 46/50 [00:20<00:01, 2.23it/s]\n 94%|█████████▍| 47/50 [00:20<00:01, 2.23it/s]\n 96%|█████████▌| 48/50 [00:21<00:00, 2.23it/s]\n 98%|█████████▊| 49/50 [00:21<00:00, 2.23it/s]\n100%|██████████| 50/50 [00:22<00:00, 2.23it/s]\n100%|██████████| 50/50 [00:22<00:00, 2.24it/s]",
"metrics": {
"predict_time": 23.280949,
"total_time": 24.219325
},
"output": [
"https://replicate.delivery/pbxt/lLGfls5zK0Te5ELLvMb2yqRmTe2b2gvVAkFjpy2S6RBhA53gA/out-0.png"
],
"started_at": "2023-02-07T09:12:25.286560Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/6py6tchzlbb5bco6vundazwmde",
"cancel": "https://api.replicate.com/v1/predictions/6py6tchzlbb5bco6vundazwmde/cancel"
},
"version": "f72c64e7bdc9dfa0204a9700aca5c038d2f43c032ee97292b15ee7365651fe78"
}
Using seed: 41696
No LoRA models provided, using default model...
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:24, 1.97it/s]
4%|▍ | 2/50 [00:00<00:22, 2.15it/s]
6%|▌ | 3/50 [00:01<00:21, 2.20it/s]
8%|▊ | 4/50 [00:01<00:20, 2.23it/s]
10%|█ | 5/50 [00:02<00:20, 2.24it/s]
12%|█▏ | 6/50 [00:02<00:19, 2.25it/s]
14%|█▍ | 7/50 [00:03<00:19, 2.25it/s]
16%|█▌ | 8/50 [00:03<00:18, 2.25it/s]
18%|█▊ | 9/50 [00:04<00:18, 2.26it/s]
20%|██ | 10/50 [00:04<00:17, 2.26it/s]
22%|██▏ | 11/50 [00:04<00:17, 2.26it/s]
24%|██▍ | 12/50 [00:05<00:16, 2.26it/s]
26%|██▌ | 13/50 [00:05<00:16, 2.26it/s]
28%|██▊ | 14/50 [00:06<00:15, 2.26it/s]
30%|███ | 15/50 [00:06<00:15, 2.26it/s]
32%|███▏ | 16/50 [00:07<00:15, 2.26it/s]
34%|███▍ | 17/50 [00:07<00:14, 2.26it/s]
36%|███▌ | 18/50 [00:08<00:14, 2.26it/s]
38%|███▊ | 19/50 [00:08<00:13, 2.25it/s]
40%|████ | 20/50 [00:08<00:13, 2.26it/s]
42%|████▏ | 21/50 [00:09<00:12, 2.25it/s]
44%|████▍ | 22/50 [00:09<00:12, 2.25it/s]
46%|████▌ | 23/50 [00:10<00:12, 2.25it/s]
48%|████▊ | 24/50 [00:10<00:11, 2.24it/s]
50%|█████ | 25/50 [00:11<00:11, 2.24it/s]
52%|█████▏ | 26/50 [00:11<00:10, 2.23it/s]
54%|█████▍ | 27/50 [00:12<00:10, 2.24it/s]
56%|█████▌ | 28/50 [00:12<00:09, 2.24it/s]
58%|█████▊ | 29/50 [00:12<00:09, 2.24it/s]
60%|██████ | 30/50 [00:13<00:08, 2.24it/s]
62%|██████▏ | 31/50 [00:13<00:08, 2.24it/s]
64%|██████▍ | 32/50 [00:14<00:08, 2.24it/s]
66%|██████▌ | 33/50 [00:14<00:07, 2.24it/s]
68%|██████▊ | 34/50 [00:15<00:07, 2.24it/s]
70%|███████ | 35/50 [00:15<00:06, 2.25it/s]
72%|███████▏ | 36/50 [00:16<00:06, 2.24it/s]
74%|███████▍ | 37/50 [00:16<00:05, 2.24it/s]
76%|███████▌ | 38/50 [00:16<00:05, 2.24it/s]
78%|███████▊ | 39/50 [00:17<00:04, 2.24it/s]
80%|████████ | 40/50 [00:17<00:04, 2.24it/s]
82%|████████▏ | 41/50 [00:18<00:04, 2.24it/s]
84%|████████▍ | 42/50 [00:18<00:03, 2.23it/s]
86%|████████▌ | 43/50 [00:19<00:03, 2.23it/s]
88%|████████▊ | 44/50 [00:19<00:02, 2.22it/s]
90%|█████████ | 45/50 [00:20<00:02, 2.22it/s]
92%|█████████▏| 46/50 [00:20<00:01, 2.23it/s]
94%|█████████▍| 47/50 [00:20<00:01, 2.23it/s]
96%|█████████▌| 48/50 [00:21<00:00, 2.23it/s]
98%|█████████▊| 49/50 [00:21<00:00, 2.23it/s]
100%|██████████| 50/50 [00:22<00:00, 2.23it/s]
100%|██████████| 50/50 [00:22<00:00, 2.24it/s]
This model costs approximately $0.066 to run on Replicate, or 15 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia T4 GPU hardware. Predictions typically complete within 5 minutes. The predict time for this model varies significantly based on the inputs.
LoRA-capable, fp16 model of Avatar characters
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Using seed: 41696
No LoRA models provided, using default model...
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:24, 1.97it/s]
4%|▍ | 2/50 [00:00<00:22, 2.15it/s]
6%|▌ | 3/50 [00:01<00:21, 2.20it/s]
8%|▊ | 4/50 [00:01<00:20, 2.23it/s]
10%|█ | 5/50 [00:02<00:20, 2.24it/s]
12%|█▏ | 6/50 [00:02<00:19, 2.25it/s]
14%|█▍ | 7/50 [00:03<00:19, 2.25it/s]
16%|█▌ | 8/50 [00:03<00:18, 2.25it/s]
18%|█▊ | 9/50 [00:04<00:18, 2.26it/s]
20%|██ | 10/50 [00:04<00:17, 2.26it/s]
22%|██▏ | 11/50 [00:04<00:17, 2.26it/s]
24%|██▍ | 12/50 [00:05<00:16, 2.26it/s]
26%|██▌ | 13/50 [00:05<00:16, 2.26it/s]
28%|██▊ | 14/50 [00:06<00:15, 2.26it/s]
30%|███ | 15/50 [00:06<00:15, 2.26it/s]
32%|███▏ | 16/50 [00:07<00:15, 2.26it/s]
34%|███▍ | 17/50 [00:07<00:14, 2.26it/s]
36%|███▌ | 18/50 [00:08<00:14, 2.26it/s]
38%|███▊ | 19/50 [00:08<00:13, 2.25it/s]
40%|████ | 20/50 [00:08<00:13, 2.26it/s]
42%|████▏ | 21/50 [00:09<00:12, 2.25it/s]
44%|████▍ | 22/50 [00:09<00:12, 2.25it/s]
46%|████▌ | 23/50 [00:10<00:12, 2.25it/s]
48%|████▊ | 24/50 [00:10<00:11, 2.24it/s]
50%|█████ | 25/50 [00:11<00:11, 2.24it/s]
52%|█████▏ | 26/50 [00:11<00:10, 2.23it/s]
54%|█████▍ | 27/50 [00:12<00:10, 2.24it/s]
56%|█████▌ | 28/50 [00:12<00:09, 2.24it/s]
58%|█████▊ | 29/50 [00:12<00:09, 2.24it/s]
60%|██████ | 30/50 [00:13<00:08, 2.24it/s]
62%|██████▏ | 31/50 [00:13<00:08, 2.24it/s]
64%|██████▍ | 32/50 [00:14<00:08, 2.24it/s]
66%|██████▌ | 33/50 [00:14<00:07, 2.24it/s]
68%|██████▊ | 34/50 [00:15<00:07, 2.24it/s]
70%|███████ | 35/50 [00:15<00:06, 2.25it/s]
72%|███████▏ | 36/50 [00:16<00:06, 2.24it/s]
74%|███████▍ | 37/50 [00:16<00:05, 2.24it/s]
76%|███████▌ | 38/50 [00:16<00:05, 2.24it/s]
78%|███████▊ | 39/50 [00:17<00:04, 2.24it/s]
80%|████████ | 40/50 [00:17<00:04, 2.24it/s]
82%|████████▏ | 41/50 [00:18<00:04, 2.24it/s]
84%|████████▍ | 42/50 [00:18<00:03, 2.23it/s]
86%|████████▌ | 43/50 [00:19<00:03, 2.23it/s]
88%|████████▊ | 44/50 [00:19<00:02, 2.22it/s]
90%|█████████ | 45/50 [00:20<00:02, 2.22it/s]
92%|█████████▏| 46/50 [00:20<00:01, 2.23it/s]
94%|█████████▍| 47/50 [00:20<00:01, 2.23it/s]
96%|█████████▌| 48/50 [00:21<00:00, 2.23it/s]
98%|█████████▊| 49/50 [00:21<00:00, 2.23it/s]
100%|██████████| 50/50 [00:22<00:00, 2.23it/s]
100%|██████████| 50/50 [00:22<00:00, 2.24it/s]