Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run cloneofsimo/gta5_lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"cloneofsimo/gta5_lora:3c2f37b92610fb0d92d6acdb3e7754e467790c7ed76760fcc0b952f9c0ec49cd",
{
input: {
width: 512,
height: 512,
prompt: "a photo of <1> gtav style",
lora_urls: "https://replicate.delivery/pbxt/IzbeguwVsW3PcC1gbiLy5SeALwk4sGgWroHagcYIn9I960bQA/tmpjlodd7vazekezip.safetensors",
scheduler: "DPMSolverMultistep",
lora_scales: "0.3",
num_outputs: 1,
adapter_type: "sketch",
guidance_scale: 7.5,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run cloneofsimo/gta5_lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"cloneofsimo/gta5_lora:3c2f37b92610fb0d92d6acdb3e7754e467790c7ed76760fcc0b952f9c0ec49cd",
input={
"width": 512,
"height": 512,
"prompt": "a photo of <1> gtav style",
"lora_urls": "https://replicate.delivery/pbxt/IzbeguwVsW3PcC1gbiLy5SeALwk4sGgWroHagcYIn9I960bQA/tmpjlodd7vazekezip.safetensors",
"scheduler": "DPMSolverMultistep",
"lora_scales": "0.3",
"num_outputs": 1,
"adapter_type": "sketch",
"guidance_scale": 7.5,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run cloneofsimo/gta5_lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "3c2f37b92610fb0d92d6acdb3e7754e467790c7ed76760fcc0b952f9c0ec49cd",
"input": {
"width": 512,
"height": 512,
"prompt": "a photo of <1> gtav style",
"lora_urls": "https://replicate.delivery/pbxt/IzbeguwVsW3PcC1gbiLy5SeALwk4sGgWroHagcYIn9I960bQA/tmpjlodd7vazekezip.safetensors",
"scheduler": "DPMSolverMultistep",
"lora_scales": "0.3",
"num_outputs": 1,
"adapter_type": "sketch",
"guidance_scale": 7.5,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-02-07T12:23:47.003961Z",
"created_at": "2023-02-07T12:18:39.363405Z",
"data_removed": false,
"error": null,
"id": "326cs4pgdbhxbku3acyd4tvlna",
"input": {
"width": 512,
"height": 512,
"prompt": "a photo of <1> gtav style",
"lora_urls": "https://replicate.delivery/pbxt/IzbeguwVsW3PcC1gbiLy5SeALwk4sGgWroHagcYIn9I960bQA/tmpjlodd7vazekezip.safetensors",
"scheduler": "DPMSolverMultistep",
"lora_scales": "0.3",
"num_outputs": 1,
"guidance_scale": 7.5,
"num_inference_steps": 50
},
"logs": "Using seed: 34243\nDownloading LoRA model... from https://replicate.delivery/pbxt/IzbeguwVsW3PcC1gbiLy5SeALwk4sGgWroHagcYIn9I960bQA/tmpjlodd7vazekezip.safetensors\nEmbedding <s1> replaced to <s0-0>\nEmbedding <s2> replaced to <s0-1>\nSaved at a19abd9d90155444e77213ffdb9df509104c355cf2070e66c289ca10190d119b7247ec08de67cee71cbafc02e4d35a005a68eba909b4cce697fe7b695de4b355.safetensors\nmerging time: 0.04404568672180176\n<s0-0>\nThe tokenizer already contains the token <s0-0>.\nReplacing <s0-0> embedding.\n<s0-1>\nThe tokenizer already contains the token <s0-1>.\nReplacing <s0-1> embedding.\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.71it/s]\n 4%|▍ | 2/50 [00:00<00:10, 4.37it/s]\n 6%|▌ | 3/50 [00:00<00:10, 4.68it/s]\n 8%|▊ | 4/50 [00:00<00:09, 4.86it/s]\n 10%|█ | 5/50 [00:01<00:09, 4.93it/s]\n 12%|█▏ | 6/50 [00:01<00:08, 4.96it/s]\n 14%|█▍ | 7/50 [00:01<00:08, 5.00it/s]\n 16%|█▌ | 8/50 [00:01<00:08, 5.02it/s]\n 18%|█▊ | 9/50 [00:01<00:08, 5.05it/s]\n 20%|██ | 10/50 [00:02<00:07, 5.07it/s]\n 22%|██▏ | 11/50 [00:02<00:07, 5.06it/s]\n 24%|██▍ | 12/50 [00:02<00:07, 5.05it/s]\n 26%|██▌ | 13/50 [00:02<00:07, 5.07it/s]\n 28%|██▊ | 14/50 [00:02<00:07, 5.08it/s]\n 30%|███ | 15/50 [00:03<00:06, 5.08it/s]\n 32%|███▏ | 16/50 [00:03<00:06, 5.08it/s]\n 34%|███▍ | 17/50 [00:03<00:06, 5.07it/s]\n 36%|███▌ | 18/50 [00:03<00:06, 5.06it/s]\n 38%|███▊ | 19/50 [00:03<00:06, 5.06it/s]\n 40%|████ | 20/50 [00:04<00:05, 5.05it/s]\n 42%|████▏ | 21/50 [00:04<00:05, 5.06it/s]\n 44%|████▍ | 22/50 [00:04<00:05, 5.06it/s]\n 46%|████▌ | 23/50 [00:04<00:05, 5.05it/s]\n 48%|████▊ | 24/50 [00:04<00:05, 5.04it/s]\n 50%|█████ | 25/50 [00:05<00:04, 5.06it/s]\n 52%|█████▏ | 26/50 [00:05<00:04, 5.06it/s]\n 54%|█████▍ | 27/50 [00:05<00:04, 5.06it/s]\n 56%|█████▌ | 28/50 [00:05<00:04, 5.04it/s]\n 58%|█████▊ | 29/50 [00:05<00:04, 5.04it/s]\n 60%|██████ | 30/50 [00:05<00:03, 5.06it/s]\n 62%|██████▏ | 31/50 [00:06<00:03, 5.07it/s]\n 64%|██████▍ | 32/50 [00:06<00:03, 5.05it/s]\n 66%|██████▌ | 33/50 [00:06<00:03, 5.05it/s]\n 68%|██████▊ | 34/50 [00:06<00:03, 5.07it/s]\n 70%|███████ | 35/50 [00:06<00:02, 5.07it/s]\n 72%|███████▏ | 36/50 [00:07<00:02, 5.07it/s]\n 74%|███████▍ | 37/50 [00:07<00:02, 5.08it/s]\n 76%|███████▌ | 38/50 [00:07<00:02, 5.08it/s]\n 78%|███████▊ | 39/50 [00:07<00:02, 5.06it/s]\n 80%|████████ | 40/50 [00:07<00:01, 5.07it/s]\n 82%|████████▏ | 41/50 [00:08<00:01, 5.08it/s]\n 84%|████████▍ | 42/50 [00:08<00:01, 5.07it/s]\n 86%|████████▌ | 43/50 [00:08<00:01, 5.07it/s]\n 88%|████████▊ | 44/50 [00:08<00:01, 5.05it/s]\n 90%|█████████ | 45/50 [00:08<00:00, 5.06it/s]\n 92%|█████████▏| 46/50 [00:09<00:00, 5.07it/s]\n 94%|█████████▍| 47/50 [00:09<00:00, 5.06it/s]\n 96%|█████████▌| 48/50 [00:09<00:00, 5.05it/s]\n 98%|█████████▊| 49/50 [00:09<00:00, 5.03it/s]\n100%|██████████| 50/50 [00:09<00:00, 5.04it/s]\n100%|██████████| 50/50 [00:09<00:00, 5.03it/s]",
"metrics": {
"predict_time": 13.025214,
"total_time": 307.640556
},
"output": [
"https://replicate.delivery/pbxt/cSmt4kc1qALpLReNU1OS67BskmlogVo8trBzjktCAf9STf3gA/out-0.png"
],
"started_at": "2023-02-07T12:23:33.978747Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/326cs4pgdbhxbku3acyd4tvlna",
"cancel": "https://api.replicate.com/v1/predictions/326cs4pgdbhxbku3acyd4tvlna/cancel"
},
"version": "510cd14734751629cdd247aa8f46bdbed91043302a3a4c9fd0d02b71b4f42dd1"
}
Using seed: 34243
Downloading LoRA model... from https://replicate.delivery/pbxt/IzbeguwVsW3PcC1gbiLy5SeALwk4sGgWroHagcYIn9I960bQA/tmpjlodd7vazekezip.safetensors
Embedding <s1> replaced to <s0-0>
Embedding <s2> replaced to <s0-1>
Saved at a19abd9d90155444e77213ffdb9df509104c355cf2070e66c289ca10190d119b7247ec08de67cee71cbafc02e4d35a005a68eba909b4cce697fe7b695de4b355.safetensors
merging time: 0.04404568672180176
<s0-0>
The tokenizer already contains the token <s0-0>.
Replacing <s0-0> embedding.
<s0-1>
The tokenizer already contains the token <s0-1>.
Replacing <s0-1> embedding.
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.71it/s]
4%|▍ | 2/50 [00:00<00:10, 4.37it/s]
6%|▌ | 3/50 [00:00<00:10, 4.68it/s]
8%|▊ | 4/50 [00:00<00:09, 4.86it/s]
10%|█ | 5/50 [00:01<00:09, 4.93it/s]
12%|█▏ | 6/50 [00:01<00:08, 4.96it/s]
14%|█▍ | 7/50 [00:01<00:08, 5.00it/s]
16%|█▌ | 8/50 [00:01<00:08, 5.02it/s]
18%|█▊ | 9/50 [00:01<00:08, 5.05it/s]
20%|██ | 10/50 [00:02<00:07, 5.07it/s]
22%|██▏ | 11/50 [00:02<00:07, 5.06it/s]
24%|██▍ | 12/50 [00:02<00:07, 5.05it/s]
26%|██▌ | 13/50 [00:02<00:07, 5.07it/s]
28%|██▊ | 14/50 [00:02<00:07, 5.08it/s]
30%|███ | 15/50 [00:03<00:06, 5.08it/s]
32%|███▏ | 16/50 [00:03<00:06, 5.08it/s]
34%|███▍ | 17/50 [00:03<00:06, 5.07it/s]
36%|███▌ | 18/50 [00:03<00:06, 5.06it/s]
38%|███▊ | 19/50 [00:03<00:06, 5.06it/s]
40%|████ | 20/50 [00:04<00:05, 5.05it/s]
42%|████▏ | 21/50 [00:04<00:05, 5.06it/s]
44%|████▍ | 22/50 [00:04<00:05, 5.06it/s]
46%|████▌ | 23/50 [00:04<00:05, 5.05it/s]
48%|████▊ | 24/50 [00:04<00:05, 5.04it/s]
50%|█████ | 25/50 [00:05<00:04, 5.06it/s]
52%|█████▏ | 26/50 [00:05<00:04, 5.06it/s]
54%|█████▍ | 27/50 [00:05<00:04, 5.06it/s]
56%|█████▌ | 28/50 [00:05<00:04, 5.04it/s]
58%|█████▊ | 29/50 [00:05<00:04, 5.04it/s]
60%|██████ | 30/50 [00:05<00:03, 5.06it/s]
62%|██████▏ | 31/50 [00:06<00:03, 5.07it/s]
64%|██████▍ | 32/50 [00:06<00:03, 5.05it/s]
66%|██████▌ | 33/50 [00:06<00:03, 5.05it/s]
68%|██████▊ | 34/50 [00:06<00:03, 5.07it/s]
70%|███████ | 35/50 [00:06<00:02, 5.07it/s]
72%|███████▏ | 36/50 [00:07<00:02, 5.07it/s]
74%|███████▍ | 37/50 [00:07<00:02, 5.08it/s]
76%|███████▌ | 38/50 [00:07<00:02, 5.08it/s]
78%|███████▊ | 39/50 [00:07<00:02, 5.06it/s]
80%|████████ | 40/50 [00:07<00:01, 5.07it/s]
82%|████████▏ | 41/50 [00:08<00:01, 5.08it/s]
84%|████████▍ | 42/50 [00:08<00:01, 5.07it/s]
86%|████████▌ | 43/50 [00:08<00:01, 5.07it/s]
88%|████████▊ | 44/50 [00:08<00:01, 5.05it/s]
90%|█████████ | 45/50 [00:08<00:00, 5.06it/s]
92%|█████████▏| 46/50 [00:09<00:00, 5.07it/s]
94%|█████████▍| 47/50 [00:09<00:00, 5.06it/s]
96%|█████████▌| 48/50 [00:09<00:00, 5.05it/s]
98%|█████████▊| 49/50 [00:09<00:00, 5.03it/s]
100%|██████████| 50/50 [00:09<00:00, 5.04it/s]
100%|██████████| 50/50 [00:09<00:00, 5.03it/s]
This output was created using a different version of the model, cloneofsimo/gta5_lora:510cd147.
This model costs approximately $0.0025 to run on Replicate, or 400 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia T4 GPU hardware. Predictions typically complete within 12 seconds.
This model doesn't have a readme.
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 34243
Downloading LoRA model... from https://replicate.delivery/pbxt/IzbeguwVsW3PcC1gbiLy5SeALwk4sGgWroHagcYIn9I960bQA/tmpjlodd7vazekezip.safetensors
Embedding <s1> replaced to <s0-0>
Embedding <s2> replaced to <s0-1>
Saved at a19abd9d90155444e77213ffdb9df509104c355cf2070e66c289ca10190d119b7247ec08de67cee71cbafc02e4d35a005a68eba909b4cce697fe7b695de4b355.safetensors
merging time: 0.04404568672180176
<s0-0>
The tokenizer already contains the token <s0-0>.
Replacing <s0-0> embedding.
<s0-1>
The tokenizer already contains the token <s0-1>.
Replacing <s0-1> embedding.
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.71it/s]
4%|▍ | 2/50 [00:00<00:10, 4.37it/s]
6%|▌ | 3/50 [00:00<00:10, 4.68it/s]
8%|▊ | 4/50 [00:00<00:09, 4.86it/s]
10%|█ | 5/50 [00:01<00:09, 4.93it/s]
12%|█▏ | 6/50 [00:01<00:08, 4.96it/s]
14%|█▍ | 7/50 [00:01<00:08, 5.00it/s]
16%|█▌ | 8/50 [00:01<00:08, 5.02it/s]
18%|█▊ | 9/50 [00:01<00:08, 5.05it/s]
20%|██ | 10/50 [00:02<00:07, 5.07it/s]
22%|██▏ | 11/50 [00:02<00:07, 5.06it/s]
24%|██▍ | 12/50 [00:02<00:07, 5.05it/s]
26%|██▌ | 13/50 [00:02<00:07, 5.07it/s]
28%|██▊ | 14/50 [00:02<00:07, 5.08it/s]
30%|███ | 15/50 [00:03<00:06, 5.08it/s]
32%|███▏ | 16/50 [00:03<00:06, 5.08it/s]
34%|███▍ | 17/50 [00:03<00:06, 5.07it/s]
36%|███▌ | 18/50 [00:03<00:06, 5.06it/s]
38%|███▊ | 19/50 [00:03<00:06, 5.06it/s]
40%|████ | 20/50 [00:04<00:05, 5.05it/s]
42%|████▏ | 21/50 [00:04<00:05, 5.06it/s]
44%|████▍ | 22/50 [00:04<00:05, 5.06it/s]
46%|████▌ | 23/50 [00:04<00:05, 5.05it/s]
48%|████▊ | 24/50 [00:04<00:05, 5.04it/s]
50%|█████ | 25/50 [00:05<00:04, 5.06it/s]
52%|█████▏ | 26/50 [00:05<00:04, 5.06it/s]
54%|█████▍ | 27/50 [00:05<00:04, 5.06it/s]
56%|█████▌ | 28/50 [00:05<00:04, 5.04it/s]
58%|█████▊ | 29/50 [00:05<00:04, 5.04it/s]
60%|██████ | 30/50 [00:05<00:03, 5.06it/s]
62%|██████▏ | 31/50 [00:06<00:03, 5.07it/s]
64%|██████▍ | 32/50 [00:06<00:03, 5.05it/s]
66%|██████▌ | 33/50 [00:06<00:03, 5.05it/s]
68%|██████▊ | 34/50 [00:06<00:03, 5.07it/s]
70%|███████ | 35/50 [00:06<00:02, 5.07it/s]
72%|███████▏ | 36/50 [00:07<00:02, 5.07it/s]
74%|███████▍ | 37/50 [00:07<00:02, 5.08it/s]
76%|███████▌ | 38/50 [00:07<00:02, 5.08it/s]
78%|███████▊ | 39/50 [00:07<00:02, 5.06it/s]
80%|████████ | 40/50 [00:07<00:01, 5.07it/s]
82%|████████▏ | 41/50 [00:08<00:01, 5.08it/s]
84%|████████▍ | 42/50 [00:08<00:01, 5.07it/s]
86%|████████▌ | 43/50 [00:08<00:01, 5.07it/s]
88%|████████▊ | 44/50 [00:08<00:01, 5.05it/s]
90%|█████████ | 45/50 [00:08<00:00, 5.06it/s]
92%|█████████▏| 46/50 [00:09<00:00, 5.07it/s]
94%|█████████▍| 47/50 [00:09<00:00, 5.06it/s]
96%|█████████▌| 48/50 [00:09<00:00, 5.05it/s]
98%|█████████▊| 49/50 [00:09<00:00, 5.03it/s]
100%|██████████| 50/50 [00:09<00:00, 5.04it/s]
100%|██████████| 50/50 [00:09<00:00, 5.03it/s]