Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run cloneofsimo/inkpunk_lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"cloneofsimo/inkpunk_lora:ee4b561bb68d45b1bef3779188abadce87e7bb9ffa5349e47d1e6e9db5573012",
{
input: {
width: 512,
height: 512,
prompt: "a photo of <1>, nvinkpunk",
lora_urls: "https://replicate.delivery/pbxt/IzbeguwVsW3PcC1gbiLy5SeALwk4sGgWroHagcYIn9I960bQA/tmpjlodd7vazekezip.safetensors",
scheduler: "DPMSolverMultistep",
lora_scales: "0.6",
num_outputs: 1,
adapter_type: "sketch",
guidance_scale: 4.02,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 35
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run cloneofsimo/inkpunk_lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"cloneofsimo/inkpunk_lora:ee4b561bb68d45b1bef3779188abadce87e7bb9ffa5349e47d1e6e9db5573012",
input={
"width": 512,
"height": 512,
"prompt": "a photo of <1>, nvinkpunk",
"lora_urls": "https://replicate.delivery/pbxt/IzbeguwVsW3PcC1gbiLy5SeALwk4sGgWroHagcYIn9I960bQA/tmpjlodd7vazekezip.safetensors",
"scheduler": "DPMSolverMultistep",
"lora_scales": "0.6",
"num_outputs": 1,
"adapter_type": "sketch",
"guidance_scale": 4.02,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 35
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run cloneofsimo/inkpunk_lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "ee4b561bb68d45b1bef3779188abadce87e7bb9ffa5349e47d1e6e9db5573012",
"input": {
"width": 512,
"height": 512,
"prompt": "a photo of <1>, nvinkpunk",
"lora_urls": "https://replicate.delivery/pbxt/IzbeguwVsW3PcC1gbiLy5SeALwk4sGgWroHagcYIn9I960bQA/tmpjlodd7vazekezip.safetensors",
"scheduler": "DPMSolverMultistep",
"lora_scales": "0.6",
"num_outputs": 1,
"adapter_type": "sketch",
"guidance_scale": 4.02,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 35
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/cloneofsimo/inkpunk_lora@sha256:ee4b561bb68d45b1bef3779188abadce87e7bb9ffa5349e47d1e6e9db5573012 \
-i 'width=512' \
-i 'height=512' \
-i 'prompt="a photo of <1>, nvinkpunk"' \
-i 'lora_urls="https://replicate.delivery/pbxt/IzbeguwVsW3PcC1gbiLy5SeALwk4sGgWroHagcYIn9I960bQA/tmpjlodd7vazekezip.safetensors"' \
-i 'scheduler="DPMSolverMultistep"' \
-i 'lora_scales="0.6"' \
-i 'num_outputs=1' \
-i 'adapter_type="sketch"' \
-i 'guidance_scale=4.02' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=35'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/cloneofsimo/inkpunk_lora@sha256:ee4b561bb68d45b1bef3779188abadce87e7bb9ffa5349e47d1e6e9db5573012
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 512, "height": 512, "prompt": "a photo of <1>, nvinkpunk", "lora_urls": "https://replicate.delivery/pbxt/IzbeguwVsW3PcC1gbiLy5SeALwk4sGgWroHagcYIn9I960bQA/tmpjlodd7vazekezip.safetensors", "scheduler": "DPMSolverMultistep", "lora_scales": "0.6", "num_outputs": 1, "adapter_type": "sketch", "guidance_scale": 4.02, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 35 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.0026. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-02-09T22:09:30.079551Z",
"created_at": "2023-02-09T22:09:21.901795Z",
"data_removed": false,
"error": null,
"id": "getff7cfwzek5ma5wzi22wrdji",
"input": {
"width": 512,
"height": 512,
"prompt": "a photo of <1>, nvinkpunk",
"lora_urls": "https://replicate.delivery/pbxt/IzbeguwVsW3PcC1gbiLy5SeALwk4sGgWroHagcYIn9I960bQA/tmpjlodd7vazekezip.safetensors",
"scheduler": "DPMSolverMultistep",
"lora_scales": "0.6",
"num_outputs": 1,
"guidance_scale": "4.02",
"num_inference_steps": "35"
},
"logs": "Using seed: 45176\nThe requested LoRAs are loaded.\n 0%| | 0/35 [00:00<?, ?it/s]\n 3%|▎ | 1/35 [00:00<00:08, 4.04it/s]\n 6%|▌ | 2/35 [00:00<00:07, 4.52it/s]\n 9%|▊ | 3/35 [00:00<00:06, 4.77it/s]\n 11%|█▏ | 4/35 [00:00<00:06, 4.89it/s]\n 14%|█▍ | 5/35 [00:01<00:06, 4.95it/s]\n 17%|█▋ | 6/35 [00:01<00:05, 4.96it/s]\n 20%|██ | 7/35 [00:01<00:05, 4.99it/s]\n 23%|██▎ | 8/35 [00:01<00:05, 5.02it/s]\n 26%|██▌ | 9/35 [00:01<00:05, 5.03it/s]\n 29%|██▊ | 10/35 [00:02<00:04, 5.03it/s]\n 31%|███▏ | 11/35 [00:02<00:04, 5.02it/s]\n 34%|███▍ | 12/35 [00:02<00:04, 5.03it/s]\n 37%|███▋ | 13/35 [00:02<00:04, 5.05it/s]\n 40%|████ | 14/35 [00:02<00:04, 5.05it/s]\n 43%|████▎ | 15/35 [00:03<00:03, 5.07it/s]\n 46%|████▌ | 16/35 [00:03<00:03, 5.05it/s]\n 49%|████▊ | 17/35 [00:03<00:03, 5.03it/s]\n 51%|█████▏ | 18/35 [00:03<00:03, 5.03it/s]\n 54%|█████▍ | 19/35 [00:03<00:03, 5.04it/s]\n 57%|█████▋ | 20/35 [00:04<00:02, 5.05it/s]\n 60%|██████ | 21/35 [00:04<00:02, 5.04it/s]\n 63%|██████▎ | 22/35 [00:04<00:02, 5.03it/s]\n 66%|██████▌ | 23/35 [00:04<00:02, 5.03it/s]\n 69%|██████▊ | 24/35 [00:04<00:02, 5.03it/s]\n 71%|███████▏ | 25/35 [00:05<00:01, 5.04it/s]\n 74%|███████▍ | 26/35 [00:05<00:01, 5.04it/s]\n 77%|███████▋ | 27/35 [00:05<00:01, 5.02it/s]\n 80%|████████ | 28/35 [00:05<00:01, 5.02it/s]\n 83%|████████▎ | 29/35 [00:05<00:01, 5.03it/s]\n 86%|████████▌ | 30/35 [00:05<00:00, 5.05it/s]\n 89%|████████▊ | 31/35 [00:06<00:00, 5.05it/s]\n 91%|█████████▏| 32/35 [00:06<00:00, 5.04it/s]\n 94%|█████████▍| 33/35 [00:06<00:00, 5.03it/s]\n 97%|█████████▋| 34/35 [00:06<00:00, 5.02it/s]\n100%|██████████| 35/35 [00:06<00:00, 5.04it/s]\n100%|██████████| 35/35 [00:06<00:00, 5.00it/s]",
"metrics": {
"predict_time": 8.111725,
"total_time": 8.177756
},
"output": [
"https://replicate.delivery/pbxt/lBxnbTYCLYY9BJcIWnGoFmaHZIeiUm8tYRmew8E8As6ZEycQA/out-0.png"
],
"started_at": "2023-02-09T22:09:21.967826Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/getff7cfwzek5ma5wzi22wrdji",
"cancel": "https://api.replicate.com/v1/predictions/getff7cfwzek5ma5wzi22wrdji/cancel"
},
"version": "d89bdb54b7cfe2fafe47bd00ede021a10c9487449bab8840414e0d3c49786f62"
}
Using seed: 45176
The requested LoRAs are loaded.
0%| | 0/35 [00:00<?, ?it/s]
3%|▎ | 1/35 [00:00<00:08, 4.04it/s]
6%|▌ | 2/35 [00:00<00:07, 4.52it/s]
9%|▊ | 3/35 [00:00<00:06, 4.77it/s]
11%|█▏ | 4/35 [00:00<00:06, 4.89it/s]
14%|█▍ | 5/35 [00:01<00:06, 4.95it/s]
17%|█▋ | 6/35 [00:01<00:05, 4.96it/s]
20%|██ | 7/35 [00:01<00:05, 4.99it/s]
23%|██▎ | 8/35 [00:01<00:05, 5.02it/s]
26%|██▌ | 9/35 [00:01<00:05, 5.03it/s]
29%|██▊ | 10/35 [00:02<00:04, 5.03it/s]
31%|███▏ | 11/35 [00:02<00:04, 5.02it/s]
34%|███▍ | 12/35 [00:02<00:04, 5.03it/s]
37%|███▋ | 13/35 [00:02<00:04, 5.05it/s]
40%|████ | 14/35 [00:02<00:04, 5.05it/s]
43%|████▎ | 15/35 [00:03<00:03, 5.07it/s]
46%|████▌ | 16/35 [00:03<00:03, 5.05it/s]
49%|████▊ | 17/35 [00:03<00:03, 5.03it/s]
51%|█████▏ | 18/35 [00:03<00:03, 5.03it/s]
54%|█████▍ | 19/35 [00:03<00:03, 5.04it/s]
57%|█████▋ | 20/35 [00:04<00:02, 5.05it/s]
60%|██████ | 21/35 [00:04<00:02, 5.04it/s]
63%|██████▎ | 22/35 [00:04<00:02, 5.03it/s]
66%|██████▌ | 23/35 [00:04<00:02, 5.03it/s]
69%|██████▊ | 24/35 [00:04<00:02, 5.03it/s]
71%|███████▏ | 25/35 [00:05<00:01, 5.04it/s]
74%|███████▍ | 26/35 [00:05<00:01, 5.04it/s]
77%|███████▋ | 27/35 [00:05<00:01, 5.02it/s]
80%|████████ | 28/35 [00:05<00:01, 5.02it/s]
83%|████████▎ | 29/35 [00:05<00:01, 5.03it/s]
86%|████████▌ | 30/35 [00:05<00:00, 5.05it/s]
89%|████████▊ | 31/35 [00:06<00:00, 5.05it/s]
91%|█████████▏| 32/35 [00:06<00:00, 5.04it/s]
94%|█████████▍| 33/35 [00:06<00:00, 5.03it/s]
97%|█████████▋| 34/35 [00:06<00:00, 5.02it/s]
100%|██████████| 35/35 [00:06<00:00, 5.04it/s]
100%|██████████| 35/35 [00:06<00:00, 5.00it/s]
This output was created using a different version of the model, cloneofsimo/inkpunk_lora:d89bdb54.
This model costs approximately $0.0026 to run on Replicate, or 384 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia T4 GPU hardware. Predictions typically complete within 12 seconds.
This model doesn't have a readme.
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 45176
The requested LoRAs are loaded.
0%| | 0/35 [00:00<?, ?it/s]
3%|▎ | 1/35 [00:00<00:08, 4.04it/s]
6%|▌ | 2/35 [00:00<00:07, 4.52it/s]
9%|▊ | 3/35 [00:00<00:06, 4.77it/s]
11%|█▏ | 4/35 [00:00<00:06, 4.89it/s]
14%|█▍ | 5/35 [00:01<00:06, 4.95it/s]
17%|█▋ | 6/35 [00:01<00:05, 4.96it/s]
20%|██ | 7/35 [00:01<00:05, 4.99it/s]
23%|██▎ | 8/35 [00:01<00:05, 5.02it/s]
26%|██▌ | 9/35 [00:01<00:05, 5.03it/s]
29%|██▊ | 10/35 [00:02<00:04, 5.03it/s]
31%|███▏ | 11/35 [00:02<00:04, 5.02it/s]
34%|███▍ | 12/35 [00:02<00:04, 5.03it/s]
37%|███▋ | 13/35 [00:02<00:04, 5.05it/s]
40%|████ | 14/35 [00:02<00:04, 5.05it/s]
43%|████▎ | 15/35 [00:03<00:03, 5.07it/s]
46%|████▌ | 16/35 [00:03<00:03, 5.05it/s]
49%|████▊ | 17/35 [00:03<00:03, 5.03it/s]
51%|█████▏ | 18/35 [00:03<00:03, 5.03it/s]
54%|█████▍ | 19/35 [00:03<00:03, 5.04it/s]
57%|█████▋ | 20/35 [00:04<00:02, 5.05it/s]
60%|██████ | 21/35 [00:04<00:02, 5.04it/s]
63%|██████▎ | 22/35 [00:04<00:02, 5.03it/s]
66%|██████▌ | 23/35 [00:04<00:02, 5.03it/s]
69%|██████▊ | 24/35 [00:04<00:02, 5.03it/s]
71%|███████▏ | 25/35 [00:05<00:01, 5.04it/s]
74%|███████▍ | 26/35 [00:05<00:01, 5.04it/s]
77%|███████▋ | 27/35 [00:05<00:01, 5.02it/s]
80%|████████ | 28/35 [00:05<00:01, 5.02it/s]
83%|████████▎ | 29/35 [00:05<00:01, 5.03it/s]
86%|████████▌ | 30/35 [00:05<00:00, 5.05it/s]
89%|████████▊ | 31/35 [00:06<00:00, 5.05it/s]
91%|█████████▏| 32/35 [00:06<00:00, 5.04it/s]
94%|█████████▍| 33/35 [00:06<00:00, 5.03it/s]
97%|█████████▋| 34/35 [00:06<00:00, 5.02it/s]
100%|██████████| 35/35 [00:06<00:00, 5.04it/s]
100%|██████████| 35/35 [00:06<00:00, 5.00it/s]