You're looking at a specific version of this model. Jump to the model overview.

cloneofsimo /lora-advanced-training:8252738e

Input

*file

A ZIP file containing your training images (JPG, PNG, etc. size not restricted). These images contain your 'subject' that you want the trained model to embed in the output domain for later generating customized scenes beyond the training images. For best results, use images without noise or unrelated objects in the background.

file

An optional ZIP file containing the training data of class images. This corresponds to `class_prompt` above, also with the purpose of keeping the model generalizable. By default, the pretrained stable-diffusion model will generate N images (determined by the `num_class_images` you set) based on the `class_prompt` provided. But to save time or to have your preferred specific set of `class_data`, you can also provide them in a ZIP file.

integer

A seed for reproducible training

Default: 1337

integer

The resolution for input images. All the images in the train/validation dataset will be resized to this resolution.

Default: 512

boolean

Whether to train the text encoder

Default: true

integer

Batch size (per device) for the training dataloader.

Default: 1

integer

Number of updates steps to accumulate before performing a backward/update pass.

Default: 4

boolean

Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.

Default: false

boolean

Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.

Default: true

string

The scheduler type to use

Default: "constant"

integer

Number of steps for the warmup in the lr scheduler.

Default: 0

boolean

Whether or not to clip the TI decay to be between 0 and 1.

Default: true

boolean

Whether or not to use color jitter.

Default: true

boolean

Whether or not to continue an inversion.

Default: false

number

The learning rate for continuing an inversion.

Default: 0.0001

string
Shift + Return to add a new line

The device to use. Can be 'cuda' or 'cpu'.

Default: "cuda:0"

string
Shift + Return to add a new line

The tokens to use for the initializer. If not provided, will randomly initialize from gaussian N(0,0.017^2)

number

The learning rate for the text encoder.

Default: 0.00001

number

The learning rate for the TI.

Default: 0.0005

number

The learning rate for the unet.

Default: 0.0001

integer

The rank for the LORA.

Default: 4

number

Dropout at lora

Default: 0.1

number

Scale for the LORA.

Default: 1

string

The scheduler type to use

Default: "constant"

integer

Number of steps for the warmup in the lr scheduler.

Default: 0

integer

The maximum number of training steps for the TI.

Default: 500

integer

The maximum number of training steps for the tuning.

Default: 1000

boolean

Whether to perform inversion during training.

Default: true

string
Shift + Return to add a new line

Whether or not to use a placeholder token at the data.

string
Shift + Return to add a new line

The placeholder tokens to use for the initializer. If not provided, will use the first tokens of the data.

Default: "<s1>|<s2>"

boolean

Whether or not to use the face segmentation condition.

Default: false

string

The template to use for the inversion.

Default: "object"

number

The weight decay for the LORA loss.

Default: 0.001

number

The weight decay for the TI.

Default: 0

Output

No output yet! Press "Submit" to start a prediction.