Readme
…
Model description
…
Intended use
…
Ethical considerations
…
Caveats and recommendations
…
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run cloneofsimo/realistic_vision_v1.3 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"cloneofsimo/realistic_vision_v1.3:db1c4227cbc7f985e335b2f0388cd6d3aa06d95087d6a71c5b3e07413738fa13",
{
input: {
width: 512,
height: 512,
prompt: "photo of <1>, detailed faces, highres, RAW photo 8k uhd, dslr",
lora_urls: "https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors",
scheduler: "DPMSolverMultistep",
lora_scales: "0.5",
num_outputs: 1,
adapter_type: "sketch",
guidance_scale: 3.5,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run cloneofsimo/realistic_vision_v1.3 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"cloneofsimo/realistic_vision_v1.3:db1c4227cbc7f985e335b2f0388cd6d3aa06d95087d6a71c5b3e07413738fa13",
input={
"width": 512,
"height": 512,
"prompt": "photo of <1>, detailed faces, highres, RAW photo 8k uhd, dslr",
"lora_urls": "https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors",
"scheduler": "DPMSolverMultistep",
"lora_scales": "0.5",
"num_outputs": 1,
"adapter_type": "sketch",
"guidance_scale": 3.5,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
# To access the file URL:
print(output[0].url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run cloneofsimo/realistic_vision_v1.3 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "cloneofsimo/realistic_vision_v1.3:db1c4227cbc7f985e335b2f0388cd6d3aa06d95087d6a71c5b3e07413738fa13",
"input": {
"width": 512,
"height": 512,
"prompt": "photo of <1>, detailed faces, highres, RAW photo 8k uhd, dslr",
"lora_urls": "https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors",
"scheduler": "DPMSolverMultistep",
"lora_scales": "0.5",
"num_outputs": 1,
"adapter_type": "sketch",
"guidance_scale": 3.5,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/cloneofsimo/realistic_vision_v1.3@sha256:db1c4227cbc7f985e335b2f0388cd6d3aa06d95087d6a71c5b3e07413738fa13 \
-i 'width=512' \
-i 'height=512' \
-i 'prompt="photo of <1>, detailed faces, highres, RAW photo 8k uhd, dslr"' \
-i 'lora_urls="https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors"' \
-i 'scheduler="DPMSolverMultistep"' \
-i 'lora_scales="0.5"' \
-i 'num_outputs=1' \
-i 'adapter_type="sketch"' \
-i 'guidance_scale=3.5' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/cloneofsimo/realistic_vision_v1.3@sha256:db1c4227cbc7f985e335b2f0388cd6d3aa06d95087d6a71c5b3e07413738fa13
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 512, "height": 512, "prompt": "photo of <1>, detailed faces, highres, RAW photo 8k uhd, dslr", "lora_urls": "https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors", "scheduler": "DPMSolverMultistep", "lora_scales": "0.5", "num_outputs": 1, "adapter_type": "sketch", "guidance_scale": 3.5, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.016. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-02-07T13:24:48.169940Z",
"created_at": "2023-02-07T13:24:26.271572Z",
"data_removed": false,
"error": null,
"id": "2msaktejgnclncd3menyburx5y",
"input": {
"width": 512,
"height": 512,
"prompt": "photo of <1>, detailed faces, highres, RAW photo 8k uhd, dslr",
"lora_urls": "https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors",
"scheduler": "DPMSolverMultistep",
"lora_scales": "0.5",
"num_outputs": 1,
"guidance_scale": "3.5",
"num_inference_steps": "50"
},
"logs": "Using seed: 53121\nDownloading LoRA model... from https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors\nEmbedding <s1> replaced to <s0-0>\nEmbedding <s2> replaced to <s0-1>\nSaved at 94ead0a58ea126d5f88d672a70bc05d27f4b9487785bdb3cb116f5deb7e7ecc73f59a9a87db2695d9b0e566c83b2f5145cadfa7b1cf65b2567d14f015a2d7b26.safetensors\nmerging time: 0.0844113826751709\n<s0-0>\n<s0-1>\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:03<03:00, 3.68s/it]\n 4%|▍ | 2/50 [00:03<01:18, 1.64s/it]\n 6%|▌ | 3/50 [00:04<00:46, 1.01it/s]\n 8%|▊ | 4/50 [00:04<00:31, 1.47it/s]\n 10%|█ | 5/50 [00:04<00:22, 1.96it/s]\n 12%|█▏ | 6/50 [00:04<00:18, 2.43it/s]\n 14%|█▍ | 7/50 [00:04<00:14, 2.89it/s]\n 16%|█▌ | 8/50 [00:05<00:12, 3.30it/s]\n 18%|█▊ | 9/50 [00:05<00:11, 3.66it/s]\n 20%|██ | 10/50 [00:05<00:10, 3.91it/s]\n 22%|██▏ | 11/50 [00:05<00:09, 4.12it/s]\n 24%|██▍ | 12/50 [00:06<00:08, 4.27it/s]\n 26%|██▌ | 13/50 [00:06<00:08, 4.40it/s]\n 28%|██▊ | 14/50 [00:06<00:08, 4.49it/s]\n 30%|███ | 15/50 [00:06<00:07, 4.56it/s]\n 32%|███▏ | 16/50 [00:06<00:07, 4.62it/s]\n 34%|███▍ | 17/50 [00:07<00:07, 4.63it/s]\n 36%|███▌ | 18/50 [00:07<00:06, 4.65it/s]\n 38%|███▊ | 19/50 [00:07<00:06, 4.67it/s]\n 40%|████ | 20/50 [00:07<00:06, 4.68it/s]\n 42%|████▏ | 21/50 [00:07<00:06, 4.68it/s]\n 44%|████▍ | 22/50 [00:08<00:05, 4.67it/s]\n 46%|████▌ | 23/50 [00:08<00:05, 4.69it/s]\n 48%|████▊ | 24/50 [00:08<00:05, 4.70it/s]\n 50%|█████ | 25/50 [00:08<00:05, 4.69it/s]\n 52%|█████▏ | 26/50 [00:08<00:05, 4.69it/s]\n 54%|█████▍ | 27/50 [00:09<00:04, 4.68it/s]\n 56%|█████▌ | 28/50 [00:09<00:04, 4.64it/s]\n 58%|█████▊ | 29/50 [00:09<00:04, 4.66it/s]\n 60%|██████ | 30/50 [00:09<00:04, 4.66it/s]\n 62%|██████▏ | 31/50 [00:10<00:04, 4.68it/s]\n 64%|██████▍ | 32/50 [00:10<00:03, 4.68it/s]\n 66%|██████▌ | 33/50 [00:10<00:03, 4.67it/s]\n 68%|██████▊ | 34/50 [00:10<00:03, 4.68it/s]\n 70%|███████ | 35/50 [00:10<00:03, 4.65it/s]\n 72%|███████▏ | 36/50 [00:11<00:03, 4.66it/s]\n 74%|███████▍ | 37/50 [00:11<00:02, 4.65it/s]\n 76%|███████▌ | 38/50 [00:11<00:02, 4.63it/s]\n 78%|███████▊ | 39/50 [00:11<00:02, 4.65it/s]\n 80%|████████ | 40/50 [00:11<00:02, 4.64it/s]\n 82%|████████▏ | 41/50 [00:12<00:01, 4.63it/s]\n 84%|████████▍ | 42/50 [00:12<00:01, 4.63it/s]\n 86%|████████▌ | 43/50 [00:12<00:01, 4.64it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 4.61it/s]\n 90%|█████████ | 45/50 [00:13<00:01, 4.62it/s]\n 92%|█████████▏| 46/50 [00:13<00:00, 4.63it/s]\n 94%|█████████▍| 47/50 [00:13<00:00, 4.62it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 4.62it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 4.62it/s]\n100%|██████████| 50/50 [00:14<00:00, 4.62it/s]\n100%|██████████| 50/50 [00:14<00:00, 3.53it/s]",
"metrics": {
"predict_time": 21.740504,
"total_time": 21.898368
},
"output": [
"https://replicate.delivery/pbxt/o3tSH9dKjjohIpKgJ4DnkdmUjWBceMnA67fZi67TeZefjBgDC/out-0.png"
],
"started_at": "2023-02-07T13:24:26.429436Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/2msaktejgnclncd3menyburx5y",
"cancel": "https://api.replicate.com/v1/predictions/2msaktejgnclncd3menyburx5y/cancel"
},
"version": "85906465af40dd645015e3e675e444037d15ba6d85f580ec2f53f5a7ad8323c1"
}
Using seed: 53121
Downloading LoRA model... from https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors
Embedding <s1> replaced to <s0-0>
Embedding <s2> replaced to <s0-1>
Saved at 94ead0a58ea126d5f88d672a70bc05d27f4b9487785bdb3cb116f5deb7e7ecc73f59a9a87db2695d9b0e566c83b2f5145cadfa7b1cf65b2567d14f015a2d7b26.safetensors
merging time: 0.0844113826751709
<s0-0>
<s0-1>
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:03<03:00, 3.68s/it]
4%|▍ | 2/50 [00:03<01:18, 1.64s/it]
6%|▌ | 3/50 [00:04<00:46, 1.01it/s]
8%|▊ | 4/50 [00:04<00:31, 1.47it/s]
10%|█ | 5/50 [00:04<00:22, 1.96it/s]
12%|█▏ | 6/50 [00:04<00:18, 2.43it/s]
14%|█▍ | 7/50 [00:04<00:14, 2.89it/s]
16%|█▌ | 8/50 [00:05<00:12, 3.30it/s]
18%|█▊ | 9/50 [00:05<00:11, 3.66it/s]
20%|██ | 10/50 [00:05<00:10, 3.91it/s]
22%|██▏ | 11/50 [00:05<00:09, 4.12it/s]
24%|██▍ | 12/50 [00:06<00:08, 4.27it/s]
26%|██▌ | 13/50 [00:06<00:08, 4.40it/s]
28%|██▊ | 14/50 [00:06<00:08, 4.49it/s]
30%|███ | 15/50 [00:06<00:07, 4.56it/s]
32%|███▏ | 16/50 [00:06<00:07, 4.62it/s]
34%|███▍ | 17/50 [00:07<00:07, 4.63it/s]
36%|███▌ | 18/50 [00:07<00:06, 4.65it/s]
38%|███▊ | 19/50 [00:07<00:06, 4.67it/s]
40%|████ | 20/50 [00:07<00:06, 4.68it/s]
42%|████▏ | 21/50 [00:07<00:06, 4.68it/s]
44%|████▍ | 22/50 [00:08<00:05, 4.67it/s]
46%|████▌ | 23/50 [00:08<00:05, 4.69it/s]
48%|████▊ | 24/50 [00:08<00:05, 4.70it/s]
50%|█████ | 25/50 [00:08<00:05, 4.69it/s]
52%|█████▏ | 26/50 [00:08<00:05, 4.69it/s]
54%|█████▍ | 27/50 [00:09<00:04, 4.68it/s]
56%|█████▌ | 28/50 [00:09<00:04, 4.64it/s]
58%|█████▊ | 29/50 [00:09<00:04, 4.66it/s]
60%|██████ | 30/50 [00:09<00:04, 4.66it/s]
62%|██████▏ | 31/50 [00:10<00:04, 4.68it/s]
64%|██████▍ | 32/50 [00:10<00:03, 4.68it/s]
66%|██████▌ | 33/50 [00:10<00:03, 4.67it/s]
68%|██████▊ | 34/50 [00:10<00:03, 4.68it/s]
70%|███████ | 35/50 [00:10<00:03, 4.65it/s]
72%|███████▏ | 36/50 [00:11<00:03, 4.66it/s]
74%|███████▍ | 37/50 [00:11<00:02, 4.65it/s]
76%|███████▌ | 38/50 [00:11<00:02, 4.63it/s]
78%|███████▊ | 39/50 [00:11<00:02, 4.65it/s]
80%|████████ | 40/50 [00:11<00:02, 4.64it/s]
82%|████████▏ | 41/50 [00:12<00:01, 4.63it/s]
84%|████████▍ | 42/50 [00:12<00:01, 4.63it/s]
86%|████████▌ | 43/50 [00:12<00:01, 4.64it/s]
88%|████████▊ | 44/50 [00:12<00:01, 4.61it/s]
90%|█████████ | 45/50 [00:13<00:01, 4.62it/s]
92%|█████████▏| 46/50 [00:13<00:00, 4.63it/s]
94%|█████████▍| 47/50 [00:13<00:00, 4.62it/s]
96%|█████████▌| 48/50 [00:13<00:00, 4.62it/s]
98%|█████████▊| 49/50 [00:13<00:00, 4.62it/s]
100%|██████████| 50/50 [00:14<00:00, 4.62it/s]
100%|██████████| 50/50 [00:14<00:00, 3.53it/s]
This output was created using a different version of the model, cloneofsimo/realistic_vision_v1.3:85906465.
This model costs approximately $0.016 to run on Replicate, or 62 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia A100 (80GB) GPU hardware. Predictions typically complete within 12 seconds. The predict time for this model varies significantly based on the inputs.
…
…
…
…
…
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
This model costs approximately $0.016 to run on Replicate, but this varies depending on your inputs. View more.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 53121
Downloading LoRA model... from https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors
Embedding <s1> replaced to <s0-0>
Embedding <s2> replaced to <s0-1>
Saved at 94ead0a58ea126d5f88d672a70bc05d27f4b9487785bdb3cb116f5deb7e7ecc73f59a9a87db2695d9b0e566c83b2f5145cadfa7b1cf65b2567d14f015a2d7b26.safetensors
merging time: 0.0844113826751709
<s0-0>
<s0-1>
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:03<03:00, 3.68s/it]
4%|▍ | 2/50 [00:03<01:18, 1.64s/it]
6%|▌ | 3/50 [00:04<00:46, 1.01it/s]
8%|▊ | 4/50 [00:04<00:31, 1.47it/s]
10%|█ | 5/50 [00:04<00:22, 1.96it/s]
12%|█▏ | 6/50 [00:04<00:18, 2.43it/s]
14%|█▍ | 7/50 [00:04<00:14, 2.89it/s]
16%|█▌ | 8/50 [00:05<00:12, 3.30it/s]
18%|█▊ | 9/50 [00:05<00:11, 3.66it/s]
20%|██ | 10/50 [00:05<00:10, 3.91it/s]
22%|██▏ | 11/50 [00:05<00:09, 4.12it/s]
24%|██▍ | 12/50 [00:06<00:08, 4.27it/s]
26%|██▌ | 13/50 [00:06<00:08, 4.40it/s]
28%|██▊ | 14/50 [00:06<00:08, 4.49it/s]
30%|███ | 15/50 [00:06<00:07, 4.56it/s]
32%|███▏ | 16/50 [00:06<00:07, 4.62it/s]
34%|███▍ | 17/50 [00:07<00:07, 4.63it/s]
36%|███▌ | 18/50 [00:07<00:06, 4.65it/s]
38%|███▊ | 19/50 [00:07<00:06, 4.67it/s]
40%|████ | 20/50 [00:07<00:06, 4.68it/s]
42%|████▏ | 21/50 [00:07<00:06, 4.68it/s]
44%|████▍ | 22/50 [00:08<00:05, 4.67it/s]
46%|████▌ | 23/50 [00:08<00:05, 4.69it/s]
48%|████▊ | 24/50 [00:08<00:05, 4.70it/s]
50%|█████ | 25/50 [00:08<00:05, 4.69it/s]
52%|█████▏ | 26/50 [00:08<00:05, 4.69it/s]
54%|█████▍ | 27/50 [00:09<00:04, 4.68it/s]
56%|█████▌ | 28/50 [00:09<00:04, 4.64it/s]
58%|█████▊ | 29/50 [00:09<00:04, 4.66it/s]
60%|██████ | 30/50 [00:09<00:04, 4.66it/s]
62%|██████▏ | 31/50 [00:10<00:04, 4.68it/s]
64%|██████▍ | 32/50 [00:10<00:03, 4.68it/s]
66%|██████▌ | 33/50 [00:10<00:03, 4.67it/s]
68%|██████▊ | 34/50 [00:10<00:03, 4.68it/s]
70%|███████ | 35/50 [00:10<00:03, 4.65it/s]
72%|███████▏ | 36/50 [00:11<00:03, 4.66it/s]
74%|███████▍ | 37/50 [00:11<00:02, 4.65it/s]
76%|███████▌ | 38/50 [00:11<00:02, 4.63it/s]
78%|███████▊ | 39/50 [00:11<00:02, 4.65it/s]
80%|████████ | 40/50 [00:11<00:02, 4.64it/s]
82%|████████▏ | 41/50 [00:12<00:01, 4.63it/s]
84%|████████▍ | 42/50 [00:12<00:01, 4.63it/s]
86%|████████▌ | 43/50 [00:12<00:01, 4.64it/s]
88%|████████▊ | 44/50 [00:12<00:01, 4.61it/s]
90%|█████████ | 45/50 [00:13<00:01, 4.62it/s]
92%|█████████▏| 46/50 [00:13<00:00, 4.63it/s]
94%|█████████▍| 47/50 [00:13<00:00, 4.62it/s]
96%|█████████▌| 48/50 [00:13<00:00, 4.62it/s]
98%|█████████▊| 49/50 [00:13<00:00, 4.62it/s]
100%|██████████| 50/50 [00:14<00:00, 4.62it/s]
100%|██████████| 50/50 [00:14<00:00, 3.53it/s]