Readme
Created by https://instafill.ai, a PDF filler app.
Inspired by the vibrant and imaginative style of Ukrainian folk artist Maria Prymachenko, this AI model specializes in creating whimsical and colorful artworks that reflect the essence of traditional folklore and nature themes.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run copilot-us/maria-prymachenko using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"copilot-us/maria-prymachenko:6af6a92b15f665f9d783baac6db56fa58f5259a90cd7f677f68851d4ddaabc98",
{
input: {
width: 1024,
height: 1024,
prompt: "A mythical cow with big sharp teeth in the night sky in the style of TOK. ",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run copilot-us/maria-prymachenko using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"copilot-us/maria-prymachenko:6af6a92b15f665f9d783baac6db56fa58f5259a90cd7f677f68851d4ddaabc98",
input={
"width": 1024,
"height": 1024,
"prompt": "A mythical cow with big sharp teeth in the night sky in the style of TOK. ",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run copilot-us/maria-prymachenko using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "6af6a92b15f665f9d783baac6db56fa58f5259a90cd7f677f68851d4ddaabc98",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A mythical cow with big sharp teeth in the night sky in the style of TOK. ",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/copilot-us/maria-prymachenko@sha256:6af6a92b15f665f9d783baac6db56fa58f5259a90cd7f677f68851d4ddaabc98 \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="A mythical cow with big sharp teeth in the night sky in the style of TOK. "' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/copilot-us/maria-prymachenko@sha256:6af6a92b15f665f9d783baac6db56fa58f5259a90cd7f677f68851d4ddaabc98
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "A mythical cow with big sharp teeth in the night sky in the style of TOK. ", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.025. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-12-09T06:02:45.843564Z",
"created_at": "2023-12-09T06:02:18.300402Z",
"data_removed": false,
"error": null,
"id": "ljm2ckdbmfughzy4ganfnk27a4",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A mythical cow with big sharp teeth in the night sky in the style of TOK. ",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 29795\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: A mythical cow with big sharp teeth in the night sky in the style of <s0><s1>.\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.51it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.49it/s]\n 6%|▌ | 3/50 [00:00<00:13, 3.49it/s]\n 8%|▊ | 4/50 [00:01<00:13, 3.49it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.48it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.48it/s]\n 14%|█▍ | 7/50 [00:02<00:12, 3.48it/s]\n 16%|█▌ | 8/50 [00:02<00:12, 3.49it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.48it/s]\n 20%|██ | 10/50 [00:02<00:11, 3.48it/s]\n 22%|██▏ | 11/50 [00:03<00:11, 3.48it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.48it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.48it/s]\n 28%|██▊ | 14/50 [00:04<00:10, 3.48it/s]\n 30%|███ | 15/50 [00:04<00:10, 3.48it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.48it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.48it/s]\n 36%|███▌ | 18/50 [00:05<00:09, 3.47it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.47it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.47it/s]\n 42%|████▏ | 21/50 [00:06<00:08, 3.47it/s]\n 44%|████▍ | 22/50 [00:06<00:08, 3.47it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.47it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.47it/s]\n 50%|█████ | 25/50 [00:07<00:07, 3.47it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.47it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.47it/s]\n 56%|█████▌ | 28/50 [00:08<00:06, 3.47it/s]\n 58%|█████▊ | 29/50 [00:08<00:06, 3.47it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.47it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.47it/s]\n 64%|██████▍ | 32/50 [00:09<00:05, 3.47it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.47it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.47it/s]\n 70%|███████ | 35/50 [00:10<00:04, 3.47it/s]\n 72%|███████▏ | 36/50 [00:10<00:04, 3.46it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.46it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.46it/s]\n 78%|███████▊ | 39/50 [00:11<00:03, 3.46it/s]\n 80%|████████ | 40/50 [00:11<00:02, 3.46it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.46it/s]\n 84%|████████▍ | 42/50 [00:12<00:02, 3.46it/s]\n 86%|████████▌ | 43/50 [00:12<00:02, 3.46it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.46it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.46it/s]\n 92%|█████████▏| 46/50 [00:13<00:01, 3.46it/s]\n 94%|█████████▍| 47/50 [00:13<00:00, 3.46it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.46it/s]\n 98%|█████████▊| 49/50 [00:14<00:00, 3.45it/s]\n100%|██████████| 50/50 [00:14<00:00, 3.45it/s]\n100%|██████████| 50/50 [00:14<00:00, 3.47it/s]",
"metrics": {
"predict_time": 17.512442,
"total_time": 27.543162
},
"output": [
"https://replicate.delivery/pbxt/yBk3EumfQet3nUQlR9fytzFrjqFEzYzJWDn5QWPn1nsIo2AkA/out-0.png"
],
"started_at": "2023-12-09T06:02:28.331122Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/ljm2ckdbmfughzy4ganfnk27a4",
"cancel": "https://api.replicate.com/v1/predictions/ljm2ckdbmfughzy4ganfnk27a4/cancel"
},
"version": "6af6a92b15f665f9d783baac6db56fa58f5259a90cd7f677f68851d4ddaabc98"
}
Using seed: 29795
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: A mythical cow with big sharp teeth in the night sky in the style of <s0><s1>.
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.51it/s]
4%|▍ | 2/50 [00:00<00:13, 3.49it/s]
6%|▌ | 3/50 [00:00<00:13, 3.49it/s]
8%|▊ | 4/50 [00:01<00:13, 3.49it/s]
10%|█ | 5/50 [00:01<00:12, 3.48it/s]
12%|█▏ | 6/50 [00:01<00:12, 3.48it/s]
14%|█▍ | 7/50 [00:02<00:12, 3.48it/s]
16%|█▌ | 8/50 [00:02<00:12, 3.49it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.48it/s]
20%|██ | 10/50 [00:02<00:11, 3.48it/s]
22%|██▏ | 11/50 [00:03<00:11, 3.48it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.48it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.48it/s]
28%|██▊ | 14/50 [00:04<00:10, 3.48it/s]
30%|███ | 15/50 [00:04<00:10, 3.48it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.48it/s]
34%|███▍ | 17/50 [00:04<00:09, 3.48it/s]
36%|███▌ | 18/50 [00:05<00:09, 3.47it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.47it/s]
40%|████ | 20/50 [00:05<00:08, 3.47it/s]
42%|████▏ | 21/50 [00:06<00:08, 3.47it/s]
44%|████▍ | 22/50 [00:06<00:08, 3.47it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.47it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.47it/s]
50%|█████ | 25/50 [00:07<00:07, 3.47it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.47it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.47it/s]
56%|█████▌ | 28/50 [00:08<00:06, 3.47it/s]
58%|█████▊ | 29/50 [00:08<00:06, 3.47it/s]
60%|██████ | 30/50 [00:08<00:05, 3.47it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.47it/s]
64%|██████▍ | 32/50 [00:09<00:05, 3.47it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.47it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.47it/s]
70%|███████ | 35/50 [00:10<00:04, 3.47it/s]
72%|███████▏ | 36/50 [00:10<00:04, 3.46it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.46it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.46it/s]
78%|███████▊ | 39/50 [00:11<00:03, 3.46it/s]
80%|████████ | 40/50 [00:11<00:02, 3.46it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.46it/s]
84%|████████▍ | 42/50 [00:12<00:02, 3.46it/s]
86%|████████▌ | 43/50 [00:12<00:02, 3.46it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.46it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.46it/s]
92%|█████████▏| 46/50 [00:13<00:01, 3.46it/s]
94%|█████████▍| 47/50 [00:13<00:00, 3.46it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.46it/s]
98%|█████████▊| 49/50 [00:14<00:00, 3.45it/s]
100%|██████████| 50/50 [00:14<00:00, 3.45it/s]
100%|██████████| 50/50 [00:14<00:00, 3.47it/s]
This model costs approximately $0.025 to run on Replicate, or 40 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 26 seconds.
Created by https://instafill.ai, a PDF filler app.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 29795
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: A mythical cow with big sharp teeth in the night sky in the style of <s0><s1>.
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.51it/s]
4%|▍ | 2/50 [00:00<00:13, 3.49it/s]
6%|▌ | 3/50 [00:00<00:13, 3.49it/s]
8%|▊ | 4/50 [00:01<00:13, 3.49it/s]
10%|█ | 5/50 [00:01<00:12, 3.48it/s]
12%|█▏ | 6/50 [00:01<00:12, 3.48it/s]
14%|█▍ | 7/50 [00:02<00:12, 3.48it/s]
16%|█▌ | 8/50 [00:02<00:12, 3.49it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.48it/s]
20%|██ | 10/50 [00:02<00:11, 3.48it/s]
22%|██▏ | 11/50 [00:03<00:11, 3.48it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.48it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.48it/s]
28%|██▊ | 14/50 [00:04<00:10, 3.48it/s]
30%|███ | 15/50 [00:04<00:10, 3.48it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.48it/s]
34%|███▍ | 17/50 [00:04<00:09, 3.48it/s]
36%|███▌ | 18/50 [00:05<00:09, 3.47it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.47it/s]
40%|████ | 20/50 [00:05<00:08, 3.47it/s]
42%|████▏ | 21/50 [00:06<00:08, 3.47it/s]
44%|████▍ | 22/50 [00:06<00:08, 3.47it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.47it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.47it/s]
50%|█████ | 25/50 [00:07<00:07, 3.47it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.47it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.47it/s]
56%|█████▌ | 28/50 [00:08<00:06, 3.47it/s]
58%|█████▊ | 29/50 [00:08<00:06, 3.47it/s]
60%|██████ | 30/50 [00:08<00:05, 3.47it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.47it/s]
64%|██████▍ | 32/50 [00:09<00:05, 3.47it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.47it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.47it/s]
70%|███████ | 35/50 [00:10<00:04, 3.47it/s]
72%|███████▏ | 36/50 [00:10<00:04, 3.46it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.46it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.46it/s]
78%|███████▊ | 39/50 [00:11<00:03, 3.46it/s]
80%|████████ | 40/50 [00:11<00:02, 3.46it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.46it/s]
84%|████████▍ | 42/50 [00:12<00:02, 3.46it/s]
86%|████████▌ | 43/50 [00:12<00:02, 3.46it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.46it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.46it/s]
92%|█████████▏| 46/50 [00:13<00:01, 3.46it/s]
94%|█████████▍| 47/50 [00:13<00:00, 3.46it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.46it/s]
98%|█████████▊| 49/50 [00:14<00:00, 3.45it/s]
100%|██████████| 50/50 [00:14<00:00, 3.45it/s]
100%|██████████| 50/50 [00:14<00:00, 3.47it/s]