csyxwei / orojar

Online demo for "Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation"

  • Public
  • 1.9K runs
  • GitHub
  • Paper
  • License

😵 Uh oh! This model can't be run on Replicate because it was built with a version of Cog or Python that is no longer supported. Consider opening an issue on the model's GitHub repository to see if it can be updated to use a recent version of Cog. If you need any help, please Contact us about it.

Run time and cost

This model costs approximately $0.00010 to run on Replicate, or 10000 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.

This model runs on CPU hardware. Predictions typically complete within 1 seconds.

Readme

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation

Abstract : Unsupervised disentanglement learning is a crucial issue for understanding and exploiting deep generative models. Recently, SeFa tries to find latent disentangled directions by performing SVD on the first projection of a pre-trained GAN. However, it is only applied to the first layer and works in a post-processing way. Hessian Penalty minimizes the off-diagonal entries of the output’s Hessian matrix to facilitate disentanglement, and can be applied to multi-layers.However, it constrains each entry of output independently, making it not sufficient in disentangling the latent directions (e.g., shape, size, rotation, etc.) of spatially correlated variations. In this paper, we propose a simple Orthogonal Jacobian Regularization (OroJaR) to encourage deep generative model to learn disentangled representations. It simply encourages the variation of output caused by perturbations on different latent dimensions to be orthogonal, and the Jacobian with respect to the input is calculated to represent this variation. We show that our OroJaR also encourages the output’s Hessian matrix to be diagonal in an indirect manner. In contrast to the Hessian Penalty, our OroJaR constrains the output in a holistic way, making it very effective in disentangling latent dimensions corresponding to spatially correlated variations. Quantitative and qualitative experimental results show that our method is effective in disentangled and controllable image generation, and performs favorably against the state-of-the-art methods.

Citation

If our code aided your research, please cite our paper:

@InProceedings{Wei_2021_ICCV,
    author    = {Wei, Yuxiang and Shi, Yupeng and Liu, Xiao and Ji, Zhilong and Gao, Yuan and Wu, Zhongqin and Zuo, Wangmeng},
    title     = {Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {6721-6730}
}