Readme
This model doesn't have a readme.
Flux finetuned for black and white line art.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run cuuupid/flux-lineart using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"cuuupid/flux-lineart:3cfd38225f82f47062567c783c555c97ac2669868b0c9a5002e14fe88cdde319",
{
input: {
model: "dev",
prompt: "a picture in black and white lineart in the style of TOK, astronaut riding a unicorn, black background",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run cuuupid/flux-lineart using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"cuuupid/flux-lineart:3cfd38225f82f47062567c783c555c97ac2669868b0c9a5002e14fe88cdde319",
input={
"model": "dev",
"prompt": "a picture in black and white lineart in the style of TOK, astronaut riding a unicorn, black background",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run cuuupid/flux-lineart using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "3cfd38225f82f47062567c783c555c97ac2669868b0c9a5002e14fe88cdde319",
"input": {
"model": "dev",
"prompt": "a picture in black and white lineart in the style of TOK, astronaut riding a unicorn, black background",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-08-23T02:46:18.644899Z",
"created_at": "2024-08-23T02:45:55.148000Z",
"data_removed": false,
"error": null,
"id": "mdsvqjjf9hrm20chfmgacnykv8",
"input": {
"model": "dev",
"prompt": "a picture in black and white lineart in the style of TOK, astronaut riding a unicorn, black background",
"lora_scale": 1,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"num_inference_steps": 28
},
"logs": "Using seed: 24713\nPrompt: a picture in black and white lineart in the style of TOK, astronaut riding a unicorn, black background\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nEnsuring enough disk space...\nFree disk space: 9879319384064\nDownloading weights\n2024-08-23T02:45:57Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/420af9807290b0a4 url=https://replicate.delivery/yhqm/zSfM5QIKu4RmByTVhaXGPXZPufmuV1BhUJl4nyw67RyYcaVTA/trained_model.tar\n2024-08-23T02:46:01Z | INFO | [ Complete ] dest=/src/weights-cache/420af9807290b0a4 size=\"172 MB\" total_elapsed=3.898s url=https://replicate.delivery/yhqm/zSfM5QIKu4RmByTVhaXGPXZPufmuV1BhUJl4nyw67RyYcaVTA/trained_model.tar\nb''\nDownloaded weights in 3.926804304122925 seconds\nLoRA weights loaded successfully\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.64it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.19it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.94it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.82it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.76it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.72it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.70it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.69it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.67it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.67it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.67it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.67it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.66it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.66it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.66it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.66it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.66it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.65it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.66it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.66it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.66it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.65it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.66it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.66it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.66it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.66it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.66it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.66it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.69it/s]",
"metrics": {
"predict_time": 21.279760788,
"total_time": 23.496899
},
"output": [
"https://replicate.delivery/yhqm/jwLs1kjmSfUeK0deCFkG0jfoo1GLfDBUHkhsN83YngaXfpW1E/out-0.webp"
],
"started_at": "2024-08-23T02:45:57.365139Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/mdsvqjjf9hrm20chfmgacnykv8",
"cancel": "https://api.replicate.com/v1/predictions/mdsvqjjf9hrm20chfmgacnykv8/cancel"
},
"version": "3cfd38225f82f47062567c783c555c97ac2669868b0c9a5002e14fe88cdde319"
}
Using seed: 24713
Prompt: a picture in black and white lineart in the style of TOK, astronaut riding a unicorn, black background
txt2img mode
Using dev model
Loading LoRA weights
Ensuring enough disk space...
Free disk space: 9879319384064
Downloading weights
2024-08-23T02:45:57Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/420af9807290b0a4 url=https://replicate.delivery/yhqm/zSfM5QIKu4RmByTVhaXGPXZPufmuV1BhUJl4nyw67RyYcaVTA/trained_model.tar
2024-08-23T02:46:01Z | INFO | [ Complete ] dest=/src/weights-cache/420af9807290b0a4 size="172 MB" total_elapsed=3.898s url=https://replicate.delivery/yhqm/zSfM5QIKu4RmByTVhaXGPXZPufmuV1BhUJl4nyw67RyYcaVTA/trained_model.tar
b''
Downloaded weights in 3.926804304122925 seconds
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.64it/s]
7%|▋ | 2/28 [00:00<00:06, 4.19it/s]
11%|█ | 3/28 [00:00<00:06, 3.94it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.82it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.76it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.72it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.70it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.69it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.67it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.67it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.67it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.67it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.66it/s]
50%|█████ | 14/28 [00:03<00:03, 3.66it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.66it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.66it/s]
61%|██████ | 17/28 [00:04<00:03, 3.66it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.65it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.66it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.66it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.66it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.65it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.66it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.66it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.66it/s]
93%|█████████▎| 26/28 [00:07<00:00, 3.66it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.66it/s]
100%|██████████| 28/28 [00:07<00:00, 3.66it/s]
100%|██████████| 28/28 [00:07<00:00, 3.69it/s]
This model costs approximately $0.017 to run on Replicate, or 58 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia H100 GPU hardware. Predictions typically complete within 11 seconds.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 24713
Prompt: a picture in black and white lineart in the style of TOK, astronaut riding a unicorn, black background
txt2img mode
Using dev model
Loading LoRA weights
Ensuring enough disk space...
Free disk space: 9879319384064
Downloading weights
2024-08-23T02:45:57Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/420af9807290b0a4 url=https://replicate.delivery/yhqm/zSfM5QIKu4RmByTVhaXGPXZPufmuV1BhUJl4nyw67RyYcaVTA/trained_model.tar
2024-08-23T02:46:01Z | INFO | [ Complete ] dest=/src/weights-cache/420af9807290b0a4 size="172 MB" total_elapsed=3.898s url=https://replicate.delivery/yhqm/zSfM5QIKu4RmByTVhaXGPXZPufmuV1BhUJl4nyw67RyYcaVTA/trained_model.tar
b''
Downloaded weights in 3.926804304122925 seconds
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.64it/s]
7%|▋ | 2/28 [00:00<00:06, 4.19it/s]
11%|█ | 3/28 [00:00<00:06, 3.94it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.82it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.76it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.72it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.70it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.69it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.67it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.67it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.67it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.67it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.66it/s]
50%|█████ | 14/28 [00:03<00:03, 3.66it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.66it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.66it/s]
61%|██████ | 17/28 [00:04<00:03, 3.66it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.65it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.66it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.66it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.66it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.65it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.66it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.66it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.66it/s]
93%|█████████▎| 26/28 [00:07<00:00, 3.66it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.66it/s]
100%|██████████| 28/28 [00:07<00:00, 3.66it/s]
100%|██████████| 28/28 [00:07<00:00, 3.69it/s]