Readme
:meow-party:
make meow emojis!
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run cuuupid/sdxl-meow using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"cuuupid/sdxl-meow:5dbab6584556dda0b1fb20e52d05f4ca805239795c51cadf951648c18088160f",
{
input: {
width: 1024,
height: 1024,
prompt: "a clipart emoji of tok detective wearing a deerstalker cap and smoking a pipe",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.75,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run cuuupid/sdxl-meow using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"cuuupid/sdxl-meow:5dbab6584556dda0b1fb20e52d05f4ca805239795c51cadf951648c18088160f",
input={
"width": 1024,
"height": 1024,
"prompt": "a clipart emoji of tok detective wearing a deerstalker cap and smoking a pipe",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.75,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run cuuupid/sdxl-meow using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "5dbab6584556dda0b1fb20e52d05f4ca805239795c51cadf951648c18088160f",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a clipart emoji of tok detective wearing a deerstalker cap and smoking a pipe",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.75,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Pull and run cuuupid/sdxl-meow using Cog (this will download the full model and run it in your local environment):
cog predict r8.im/cuuupid/sdxl-meow@sha256:5dbab6584556dda0b1fb20e52d05f4ca805239795c51cadf951648c18088160f \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="a clipart emoji of tok detective wearing a deerstalker cap and smoking a pipe"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.75' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Pull and run cuuupid/sdxl-meow using Docker (this will download the full model and run it in your local environment):
docker run -d -p 5000:5000 --gpus=all r8.im/cuuupid/sdxl-meow@sha256:5dbab6584556dda0b1fb20e52d05f4ca805239795c51cadf951648c18088160f
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "a clipart emoji of tok detective wearing a deerstalker cap and smoking a pipe", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
Add a payment method to run this model.
Each run costs approximately $0.023. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-01-11T21:05:06.123976Z",
"created_at": "2024-01-11T21:04:48.823014Z",
"data_removed": false,
"error": null,
"id": "ujdl5ttbnlsny6lk32beoi625e",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a clipart emoji of tok detective wearing a deerstalker cap and smoking a pipe",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.75,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 54267\nskipping loading .. weights already loaded\nPrompt: a clipart emoji of tok detective wearing a deerstalker cap and smoking a pipe\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.67it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.66it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.66it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.66it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.66it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.66it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.66it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.66it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.66it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.67it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.67it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.67it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.67it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.67it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.67it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.67it/s]\n 34%|███▍ | 17/50 [00:04<00:08, 3.67it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.67it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.67it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.67it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.67it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.67it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.67it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.67it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.67it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.67it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.67it/s]\n 56%|█████▌ | 28/50 [00:07<00:05, 3.67it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.67it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.67it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.67it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.67it/s]\n 66%|██████▌ | 33/50 [00:08<00:04, 3.67it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.67it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.67it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.67it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.67it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.67it/s]\n 78%|███████▊ | 39/50 [00:10<00:02, 3.67it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.67it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.67it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.67it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.67it/s]\n 88%|████████▊ | 44/50 [00:11<00:01, 3.66it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.66it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.66it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.66it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.66it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.66it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.66it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.67it/s]",
"metrics": {
"predict_time": 15.21131,
"total_time": 17.300962
},
"output": [
"https://replicate.delivery/pbxt/IPOihHc8fv2jISWK7eCzBvvAL8HhXreH2mjle1QiPPoGgCuIB/out-0.png"
],
"started_at": "2024-01-11T21:04:50.912666Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/ujdl5ttbnlsny6lk32beoi625e",
"cancel": "https://api.replicate.com/v1/predictions/ujdl5ttbnlsny6lk32beoi625e/cancel"
},
"version": "5dbab6584556dda0b1fb20e52d05f4ca805239795c51cadf951648c18088160f"
}
Using seed: 54267
skipping loading .. weights already loaded
Prompt: a clipart emoji of tok detective wearing a deerstalker cap and smoking a pipe
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.67it/s]
4%|▍ | 2/50 [00:00<00:13, 3.66it/s]
6%|▌ | 3/50 [00:00<00:12, 3.66it/s]
8%|▊ | 4/50 [00:01<00:12, 3.66it/s]
10%|█ | 5/50 [00:01<00:12, 3.66it/s]
12%|█▏ | 6/50 [00:01<00:12, 3.66it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.66it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.66it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.66it/s]
20%|██ | 10/50 [00:02<00:10, 3.67it/s]
22%|██▏ | 11/50 [00:03<00:10, 3.67it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.67it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.67it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.67it/s]
30%|███ | 15/50 [00:04<00:09, 3.67it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.67it/s]
34%|███▍ | 17/50 [00:04<00:08, 3.67it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.67it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.67it/s]
40%|████ | 20/50 [00:05<00:08, 3.67it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.67it/s]
44%|████▍ | 22/50 [00:06<00:07, 3.67it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.67it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.67it/s]
50%|█████ | 25/50 [00:06<00:06, 3.67it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.67it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.67it/s]
56%|█████▌ | 28/50 [00:07<00:05, 3.67it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.67it/s]
60%|██████ | 30/50 [00:08<00:05, 3.67it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.67it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.67it/s]
66%|██████▌ | 33/50 [00:08<00:04, 3.67it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.67it/s]
70%|███████ | 35/50 [00:09<00:04, 3.67it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.67it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.67it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.67it/s]
78%|███████▊ | 39/50 [00:10<00:02, 3.67it/s]
80%|████████ | 40/50 [00:10<00:02, 3.67it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.67it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.67it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.67it/s]
88%|████████▊ | 44/50 [00:11<00:01, 3.66it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.66it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.66it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.66it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.66it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.66it/s]
100%|██████████| 50/50 [00:13<00:00, 3.66it/s]
100%|██████████| 50/50 [00:13<00:00, 3.67it/s]
This model costs approximately $0.023 to run on Replicate, or 43 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 24 seconds.
:meow-party:
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 54267
skipping loading .. weights already loaded
Prompt: a clipart emoji of tok detective wearing a deerstalker cap and smoking a pipe
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.67it/s]
4%|▍ | 2/50 [00:00<00:13, 3.66it/s]
6%|▌ | 3/50 [00:00<00:12, 3.66it/s]
8%|▊ | 4/50 [00:01<00:12, 3.66it/s]
10%|█ | 5/50 [00:01<00:12, 3.66it/s]
12%|█▏ | 6/50 [00:01<00:12, 3.66it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.66it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.66it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.66it/s]
20%|██ | 10/50 [00:02<00:10, 3.67it/s]
22%|██▏ | 11/50 [00:03<00:10, 3.67it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.67it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.67it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.67it/s]
30%|███ | 15/50 [00:04<00:09, 3.67it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.67it/s]
34%|███▍ | 17/50 [00:04<00:08, 3.67it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.67it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.67it/s]
40%|████ | 20/50 [00:05<00:08, 3.67it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.67it/s]
44%|████▍ | 22/50 [00:06<00:07, 3.67it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.67it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.67it/s]
50%|█████ | 25/50 [00:06<00:06, 3.67it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.67it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.67it/s]
56%|█████▌ | 28/50 [00:07<00:05, 3.67it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.67it/s]
60%|██████ | 30/50 [00:08<00:05, 3.67it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.67it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.67it/s]
66%|██████▌ | 33/50 [00:08<00:04, 3.67it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.67it/s]
70%|███████ | 35/50 [00:09<00:04, 3.67it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.67it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.67it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.67it/s]
78%|███████▊ | 39/50 [00:10<00:02, 3.67it/s]
80%|████████ | 40/50 [00:10<00:02, 3.67it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.67it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.67it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.67it/s]
88%|████████▊ | 44/50 [00:11<00:01, 3.66it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.66it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.66it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.66it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.66it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.66it/s]
100%|██████████| 50/50 [00:13<00:00, 3.66it/s]
100%|██████████| 50/50 [00:13<00:00, 3.67it/s]