davidkwcheng
/
jessicayu02
- Public
- 36 runs
-
H100
Prediction
davidkwcheng/jessicayu02:ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2ID1jxnqapng1rm40chqbct0n89ewStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- portrait of jessicayu walking on the street of New York
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 16:9
- output_format
- jpg
- guidance_scale
- 3.5
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "portrait of jessicayu walking on the street of New York", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "16:9", "output_format": "jpg", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run davidkwcheng/jessicayu02 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "davidkwcheng/jessicayu02:ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2", { input: { model: "dev", prompt: "portrait of jessicayu walking on the street of New York", lora_scale: 1, num_outputs: 4, aspect_ratio: "16:9", output_format: "jpg", guidance_scale: 3.5, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run davidkwcheng/jessicayu02 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "davidkwcheng/jessicayu02:ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2", input={ "model": "dev", "prompt": "portrait of jessicayu walking on the street of New York", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "16:9", "output_format": "jpg", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run davidkwcheng/jessicayu02 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2", "input": { "model": "dev", "prompt": "portrait of jessicayu walking on the street of New York", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "16:9", "output_format": "jpg", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-04T02:26:06.664431Z", "created_at": "2024-09-04T02:25:23.840000Z", "data_removed": false, "error": null, "id": "1jxnqapng1rm40chqbct0n89ew", "input": { "model": "dev", "prompt": "portrait of jessicayu walking on the street of New York", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "16:9", "output_format": "jpg", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 39710\nPrompt: portrait of jessicayu walking on the street of New York\ntxt2img mode\nUsing dev model\nfree=9847050407936\nDownloading weights\n2024-09-04T02:25:23Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpahth6yx7/weights url=https://replicate.delivery/yhqm/hPHtwIU8IHYfXaDfy3C4nVekoWSe35gIRNh8nlmgc93m8clNB/trained_model.tar\n2024-09-04T02:25:27Z | INFO | [ Complete ] dest=/tmp/tmpahth6yx7/weights size=\"172 MB\" total_elapsed=3.362s url=https://replicate.delivery/yhqm/hPHtwIU8IHYfXaDfy3C4nVekoWSe35gIRNh8nlmgc93m8clNB/trained_model.tar\nDownloaded weights in 3.39s\nLoaded LoRAs in 12.09s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:28, 1.04s/it]\n 7%|▋ | 2/28 [00:01<00:24, 1.07it/s]\n 11%|█ | 3/28 [00:02<00:24, 1.02it/s]\n 14%|█▍ | 4/28 [00:04<00:24, 1.01s/it]\n 18%|█▊ | 5/28 [00:05<00:23, 1.03s/it]\n 21%|██▏ | 6/28 [00:06<00:22, 1.04s/it]\n 25%|██▌ | 7/28 [00:07<00:22, 1.05s/it]\n 29%|██▊ | 8/28 [00:08<00:21, 1.05s/it]\n 32%|███▏ | 9/28 [00:09<00:20, 1.05s/it]\n 36%|███▌ | 10/28 [00:10<00:19, 1.06s/it]\n 39%|███▉ | 11/28 [00:11<00:17, 1.06s/it]\n 43%|████▎ | 12/28 [00:12<00:16, 1.06s/it]\n 46%|████▋ | 13/28 [00:13<00:15, 1.06s/it]\n 50%|█████ | 14/28 [00:14<00:14, 1.06s/it]\n 54%|█████▎ | 15/28 [00:15<00:13, 1.06s/it]\n 57%|█████▋ | 16/28 [00:16<00:12, 1.06s/it]\n 61%|██████ | 17/28 [00:17<00:11, 1.06s/it]\n 64%|██████▍ | 18/28 [00:18<00:10, 1.06s/it]\n 68%|██████▊ | 19/28 [00:19<00:09, 1.06s/it]\n 71%|███████▏ | 20/28 [00:20<00:08, 1.06s/it]\n 75%|███████▌ | 21/28 [00:22<00:07, 1.06s/it]\n 79%|███████▊ | 22/28 [00:23<00:06, 1.06s/it]\n 82%|████████▏ | 23/28 [00:24<00:05, 1.06s/it]\n 86%|████████▌ | 24/28 [00:25<00:04, 1.06s/it]\n 89%|████████▉ | 25/28 [00:26<00:03, 1.06s/it]\n 93%|█████████▎| 26/28 [00:27<00:02, 1.06s/it]\n 96%|█████████▋| 27/28 [00:28<00:01, 1.06s/it]\n100%|██████████| 28/28 [00:29<00:00, 1.06s/it]\n100%|██████████| 28/28 [00:29<00:00, 1.05s/it]", "metrics": { "predict_time": 42.815669923, "total_time": 42.824431 }, "output": [ "https://replicate.delivery/yhqm/2eNrCbdYxG0DXCh0gLftplk9FhT1xXq3FF0Jqv6LXhQe5uymA/out-0.jpg", "https://replicate.delivery/yhqm/fPp3UVClwuUNDKcDheN2NfdogAmIxtx3mVXkZxEvbv685uymA/out-1.jpg", "https://replicate.delivery/yhqm/CNrU7E5sQEKCGpSJm0pgoDsTmtl9GzTfvJzpx4Ck3jQfcXZTA/out-2.jpg", "https://replicate.delivery/yhqm/ZPvJ9P1DX3oPDxDnjh64A0brsQ6tWmarzjdcojR7y8lP3V2E/out-3.jpg" ], "started_at": "2024-09-04T02:25:23.848761Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/1jxnqapng1rm40chqbct0n89ew", "cancel": "https://api.replicate.com/v1/predictions/1jxnqapng1rm40chqbct0n89ew/cancel" }, "version": "ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2" }
Generated inUsing seed: 39710 Prompt: portrait of jessicayu walking on the street of New York txt2img mode Using dev model free=9847050407936 Downloading weights 2024-09-04T02:25:23Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpahth6yx7/weights url=https://replicate.delivery/yhqm/hPHtwIU8IHYfXaDfy3C4nVekoWSe35gIRNh8nlmgc93m8clNB/trained_model.tar 2024-09-04T02:25:27Z | INFO | [ Complete ] dest=/tmp/tmpahth6yx7/weights size="172 MB" total_elapsed=3.362s url=https://replicate.delivery/yhqm/hPHtwIU8IHYfXaDfy3C4nVekoWSe35gIRNh8nlmgc93m8clNB/trained_model.tar Downloaded weights in 3.39s Loaded LoRAs in 12.09s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:28, 1.04s/it] 7%|▋ | 2/28 [00:01<00:24, 1.07it/s] 11%|█ | 3/28 [00:02<00:24, 1.02it/s] 14%|█▍ | 4/28 [00:04<00:24, 1.01s/it] 18%|█▊ | 5/28 [00:05<00:23, 1.03s/it] 21%|██▏ | 6/28 [00:06<00:22, 1.04s/it] 25%|██▌ | 7/28 [00:07<00:22, 1.05s/it] 29%|██▊ | 8/28 [00:08<00:21, 1.05s/it] 32%|███▏ | 9/28 [00:09<00:20, 1.05s/it] 36%|███▌ | 10/28 [00:10<00:19, 1.06s/it] 39%|███▉ | 11/28 [00:11<00:17, 1.06s/it] 43%|████▎ | 12/28 [00:12<00:16, 1.06s/it] 46%|████▋ | 13/28 [00:13<00:15, 1.06s/it] 50%|█████ | 14/28 [00:14<00:14, 1.06s/it] 54%|█████▎ | 15/28 [00:15<00:13, 1.06s/it] 57%|█████▋ | 16/28 [00:16<00:12, 1.06s/it] 61%|██████ | 17/28 [00:17<00:11, 1.06s/it] 64%|██████▍ | 18/28 [00:18<00:10, 1.06s/it] 68%|██████▊ | 19/28 [00:19<00:09, 1.06s/it] 71%|███████▏ | 20/28 [00:20<00:08, 1.06s/it] 75%|███████▌ | 21/28 [00:22<00:07, 1.06s/it] 79%|███████▊ | 22/28 [00:23<00:06, 1.06s/it] 82%|████████▏ | 23/28 [00:24<00:05, 1.06s/it] 86%|████████▌ | 24/28 [00:25<00:04, 1.06s/it] 89%|████████▉ | 25/28 [00:26<00:03, 1.06s/it] 93%|█████████▎| 26/28 [00:27<00:02, 1.06s/it] 96%|█████████▋| 27/28 [00:28<00:01, 1.06s/it] 100%|██████████| 28/28 [00:29<00:00, 1.06s/it] 100%|██████████| 28/28 [00:29<00:00, 1.05s/it]
Prediction
davidkwcheng/jessicayu02:ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2ID2j0169913nrm40chqbft2wjebrStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- portrait of jessicayu with a beautiful smile with Potala Palace in the background
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 16:9
- output_format
- jpg
- guidance_scale
- 3.5
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "portrait of jessicayu with a beautiful smile with Potala Palace in the background", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "16:9", "output_format": "jpg", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run davidkwcheng/jessicayu02 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "davidkwcheng/jessicayu02:ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2", { input: { model: "dev", prompt: "portrait of jessicayu with a beautiful smile with Potala Palace in the background", lora_scale: 1, num_outputs: 4, aspect_ratio: "16:9", output_format: "jpg", guidance_scale: 3.5, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run davidkwcheng/jessicayu02 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "davidkwcheng/jessicayu02:ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2", input={ "model": "dev", "prompt": "portrait of jessicayu with a beautiful smile with Potala Palace in the background", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "16:9", "output_format": "jpg", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run davidkwcheng/jessicayu02 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2", "input": { "model": "dev", "prompt": "portrait of jessicayu with a beautiful smile with Potala Palace in the background", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "16:9", "output_format": "jpg", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-04T02:31:54.028755Z", "created_at": "2024-09-04T02:31:10.877000Z", "data_removed": false, "error": null, "id": "2j0169913nrm40chqbft2wjebr", "input": { "model": "dev", "prompt": "portrait of jessicayu with a beautiful smile with Potala Palace in the background", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "16:9", "output_format": "jpg", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 60522\nPrompt: portrait of jessicayu with a beautiful smile with Potala Palace in the background\ntxt2img mode\nUsing dev model\nfree=9708252856320\nDownloading weights\n2024-09-04T02:31:11Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpyipc07tm/weights url=https://replicate.delivery/yhqm/hPHtwIU8IHYfXaDfy3C4nVekoWSe35gIRNh8nlmgc93m8clNB/trained_model.tar\n2024-09-04T02:31:15Z | INFO | [ Complete ] dest=/tmp/tmpyipc07tm/weights size=\"172 MB\" total_elapsed=4.233s url=https://replicate.delivery/yhqm/hPHtwIU8IHYfXaDfy3C4nVekoWSe35gIRNh8nlmgc93m8clNB/trained_model.tar\nDownloaded weights in 4.26s\nLoaded LoRAs in 12.17s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:28, 1.05s/it]\n 7%|▋ | 2/28 [00:01<00:24, 1.07it/s]\n 11%|█ | 3/28 [00:02<00:24, 1.01it/s]\n 14%|█▍ | 4/28 [00:04<00:24, 1.02s/it]\n 18%|█▊ | 5/28 [00:05<00:23, 1.04s/it]\n 21%|██▏ | 6/28 [00:06<00:23, 1.05s/it]\n 25%|██▌ | 7/28 [00:07<00:22, 1.05s/it]\n 29%|██▊ | 8/28 [00:08<00:21, 1.05s/it]\n 32%|███▏ | 9/28 [00:09<00:20, 1.06s/it]\n 36%|███▌ | 10/28 [00:10<00:19, 1.06s/it]\n 39%|███▉ | 11/28 [00:11<00:18, 1.06s/it]\n 43%|████▎ | 12/28 [00:12<00:17, 1.06s/it]\n 46%|████▋ | 13/28 [00:13<00:15, 1.06s/it]\n 50%|█████ | 14/28 [00:14<00:14, 1.07s/it]\n 54%|█████▎ | 15/28 [00:15<00:13, 1.06s/it]\n 57%|█████▋ | 16/28 [00:16<00:12, 1.06s/it]\n 61%|██████ | 17/28 [00:17<00:11, 1.06s/it]\n 64%|██████▍ | 18/28 [00:18<00:10, 1.06s/it]\n 68%|██████▊ | 19/28 [00:19<00:09, 1.06s/it]\n 71%|███████▏ | 20/28 [00:21<00:08, 1.07s/it]\n 75%|███████▌ | 21/28 [00:22<00:07, 1.07s/it]\n 79%|███████▊ | 22/28 [00:23<00:06, 1.06s/it]\n 82%|████████▏ | 23/28 [00:24<00:05, 1.07s/it]\n 86%|████████▌ | 24/28 [00:25<00:04, 1.07s/it]\n 89%|████████▉ | 25/28 [00:26<00:03, 1.07s/it]\n 93%|█████████▎| 26/28 [00:27<00:02, 1.07s/it]\n 96%|█████████▋| 27/28 [00:28<00:01, 1.07s/it]\n100%|██████████| 28/28 [00:29<00:00, 1.07s/it]\n100%|██████████| 28/28 [00:29<00:00, 1.06s/it]", "metrics": { "predict_time": 43.14002542, "total_time": 43.151755 }, "output": [ "https://replicate.delivery/yhqm/r1xelbMKDLT8dilR9LdOOJp0TWWfUhFpiHSsB9ZXfmrzEvymA/out-0.jpg", "https://replicate.delivery/yhqm/2E0yTdtnlgKwNpXuVNVABamCJnG2ihqibzui3BeDO3zMxrsJA/out-1.jpg", "https://replicate.delivery/yhqm/JV6B3NlEie1VRi416GsBgQNuRTxoac3olqfvQsqYVP1ZiXZTA/out-2.jpg", "https://replicate.delivery/yhqm/c50q8TvW0a4MDJZOQjok6neNffv4Etb7b21mvAencoeJT8KbC/out-3.jpg" ], "started_at": "2024-09-04T02:31:10.888730Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/2j0169913nrm40chqbft2wjebr", "cancel": "https://api.replicate.com/v1/predictions/2j0169913nrm40chqbft2wjebr/cancel" }, "version": "ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2" }
Generated inUsing seed: 60522 Prompt: portrait of jessicayu with a beautiful smile with Potala Palace in the background txt2img mode Using dev model free=9708252856320 Downloading weights 2024-09-04T02:31:11Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpyipc07tm/weights url=https://replicate.delivery/yhqm/hPHtwIU8IHYfXaDfy3C4nVekoWSe35gIRNh8nlmgc93m8clNB/trained_model.tar 2024-09-04T02:31:15Z | INFO | [ Complete ] dest=/tmp/tmpyipc07tm/weights size="172 MB" total_elapsed=4.233s url=https://replicate.delivery/yhqm/hPHtwIU8IHYfXaDfy3C4nVekoWSe35gIRNh8nlmgc93m8clNB/trained_model.tar Downloaded weights in 4.26s Loaded LoRAs in 12.17s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:28, 1.05s/it] 7%|▋ | 2/28 [00:01<00:24, 1.07it/s] 11%|█ | 3/28 [00:02<00:24, 1.01it/s] 14%|█▍ | 4/28 [00:04<00:24, 1.02s/it] 18%|█▊ | 5/28 [00:05<00:23, 1.04s/it] 21%|██▏ | 6/28 [00:06<00:23, 1.05s/it] 25%|██▌ | 7/28 [00:07<00:22, 1.05s/it] 29%|██▊ | 8/28 [00:08<00:21, 1.05s/it] 32%|███▏ | 9/28 [00:09<00:20, 1.06s/it] 36%|███▌ | 10/28 [00:10<00:19, 1.06s/it] 39%|███▉ | 11/28 [00:11<00:18, 1.06s/it] 43%|████▎ | 12/28 [00:12<00:17, 1.06s/it] 46%|████▋ | 13/28 [00:13<00:15, 1.06s/it] 50%|█████ | 14/28 [00:14<00:14, 1.07s/it] 54%|█████▎ | 15/28 [00:15<00:13, 1.06s/it] 57%|█████▋ | 16/28 [00:16<00:12, 1.06s/it] 61%|██████ | 17/28 [00:17<00:11, 1.06s/it] 64%|██████▍ | 18/28 [00:18<00:10, 1.06s/it] 68%|██████▊ | 19/28 [00:19<00:09, 1.06s/it] 71%|███████▏ | 20/28 [00:21<00:08, 1.07s/it] 75%|███████▌ | 21/28 [00:22<00:07, 1.07s/it] 79%|███████▊ | 22/28 [00:23<00:06, 1.06s/it] 82%|████████▏ | 23/28 [00:24<00:05, 1.07s/it] 86%|████████▌ | 24/28 [00:25<00:04, 1.07s/it] 89%|████████▉ | 25/28 [00:26<00:03, 1.07s/it] 93%|█████████▎| 26/28 [00:27<00:02, 1.07s/it] 96%|█████████▋| 27/28 [00:28<00:01, 1.07s/it] 100%|██████████| 28/28 [00:29<00:00, 1.07s/it] 100%|██████████| 28/28 [00:29<00:00, 1.06s/it]
Prediction
davidkwcheng/jessicayu02:ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2ID7bg8xnk3sdrm60chr5c80be1mrStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- portrait of jessicayu running in the Amazon forest with sun beam shing on her long black hair
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 16:9
- output_format
- jpg
- guidance_scale
- 2.68
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "portrait of jessicayu running in the Amazon forest with sun beam shing on her long black hair", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "16:9", "output_format": "jpg", "guidance_scale": 2.68, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run davidkwcheng/jessicayu02 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "davidkwcheng/jessicayu02:ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2", { input: { model: "dev", prompt: "portrait of jessicayu running in the Amazon forest with sun beam shing on her long black hair", lora_scale: 1, num_outputs: 4, aspect_ratio: "16:9", output_format: "jpg", guidance_scale: 2.68, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run davidkwcheng/jessicayu02 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "davidkwcheng/jessicayu02:ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2", input={ "model": "dev", "prompt": "portrait of jessicayu running in the Amazon forest with sun beam shing on her long black hair", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "16:9", "output_format": "jpg", "guidance_scale": 2.68, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run davidkwcheng/jessicayu02 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2", "input": { "model": "dev", "prompt": "portrait of jessicayu running in the Amazon forest with sun beam shing on her long black hair", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "16:9", "output_format": "jpg", "guidance_scale": 2.68, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-05T08:42:12.786388Z", "created_at": "2024-09-05T08:41:21.099000Z", "data_removed": false, "error": null, "id": "7bg8xnk3sdrm60chr5c80be1mr", "input": { "model": "dev", "prompt": "portrait of jessicayu running in the Amazon forest with sun beam shing on her long black hair", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "16:9", "output_format": "jpg", "guidance_scale": 2.68, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 47543\nPrompt: portrait of jessicayu running in the Amazon forest with sun beam shing on her long black hair\ntxt2img mode\nUsing dev model\nfree=8342475943936\nDownloading weights\n2024-09-05T08:41:33Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpbr184a9g/weights url=https://replicate.delivery/yhqm/hPHtwIU8IHYfXaDfy3C4nVekoWSe35gIRNh8nlmgc93m8clNB/trained_model.tar\n2024-09-05T08:41:34Z | INFO | [ Complete ] dest=/tmp/tmpbr184a9g/weights size=\"172 MB\" total_elapsed=1.157s url=https://replicate.delivery/yhqm/hPHtwIU8IHYfXaDfy3C4nVekoWSe35gIRNh8nlmgc93m8clNB/trained_model.tar\nDownloaded weights in 1.19s\nLoaded LoRAs in 9.10s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:28, 1.04s/it]\n 7%|▋ | 2/28 [00:01<00:23, 1.09it/s]\n 11%|█ | 3/28 [00:02<00:24, 1.03it/s]\n 14%|█▍ | 4/28 [00:03<00:24, 1.00s/it]\n 18%|█▊ | 5/28 [00:04<00:23, 1.02s/it]\n 21%|██▏ | 6/28 [00:06<00:22, 1.02s/it]\n 25%|██▌ | 7/28 [00:07<00:21, 1.03s/it]\n 29%|██▊ | 8/28 [00:08<00:20, 1.03s/it]\n 32%|███▏ | 9/28 [00:09<00:19, 1.04s/it]\n 36%|███▌ | 10/28 [00:10<00:18, 1.04s/it]\n 39%|███▉ | 11/28 [00:11<00:17, 1.04s/it]\n 43%|████▎ | 12/28 [00:12<00:16, 1.04s/it]\n 46%|████▋ | 13/28 [00:13<00:15, 1.04s/it]\n 50%|█████ | 14/28 [00:14<00:14, 1.04s/it]\n 54%|█████▎ | 15/28 [00:15<00:13, 1.04s/it]\n 57%|█████▋ | 16/28 [00:16<00:12, 1.04s/it]\n 61%|██████ | 17/28 [00:17<00:11, 1.04s/it]\n 64%|██████▍ | 18/28 [00:18<00:10, 1.04s/it]\n 68%|██████▊ | 19/28 [00:19<00:09, 1.04s/it]\n 71%|███████▏ | 20/28 [00:20<00:08, 1.04s/it]\n 75%|███████▌ | 21/28 [00:21<00:07, 1.04s/it]\n 79%|███████▊ | 22/28 [00:22<00:06, 1.04s/it]\n 82%|████████▏ | 23/28 [00:23<00:05, 1.04s/it]\n 86%|████████▌ | 24/28 [00:24<00:04, 1.04s/it]\n 89%|████████▉ | 25/28 [00:25<00:03, 1.04s/it]\n 93%|█████████▎| 26/28 [00:26<00:02, 1.04s/it]\n 96%|█████████▋| 27/28 [00:27<00:01, 1.04s/it]\n100%|██████████| 28/28 [00:28<00:00, 1.04s/it]\n100%|██████████| 28/28 [00:28<00:00, 1.03s/it]", "metrics": { "predict_time": 39.341806256, "total_time": 51.687388 }, "output": [ "https://replicate.delivery/yhqm/jUj8j4ydVqq1NhsSgpD6prOemZd8QvcqYGDrn6FtC2CyB5sJA/out-0.jpg", "https://replicate.delivery/yhqm/k418qqoqYorTFRdfPmaJcnKScEIldpFRdHedXtePfAKSOInNB/out-1.jpg", "https://replicate.delivery/yhqm/ev6ZGO4xZqzeDUNap4LO2WSwcmW06iukYF9JqNP73sqkDyZTA/out-2.jpg", "https://replicate.delivery/yhqm/cNzr9J5rTvqoC5lC4IN314QkJ2GDGCcGVn765u5bZUL5gc2E/out-3.jpg" ], "started_at": "2024-09-05T08:41:33.444582Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/7bg8xnk3sdrm60chr5c80be1mr", "cancel": "https://api.replicate.com/v1/predictions/7bg8xnk3sdrm60chr5c80be1mr/cancel" }, "version": "ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2" }
Generated inUsing seed: 47543 Prompt: portrait of jessicayu running in the Amazon forest with sun beam shing on her long black hair txt2img mode Using dev model free=8342475943936 Downloading weights 2024-09-05T08:41:33Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpbr184a9g/weights url=https://replicate.delivery/yhqm/hPHtwIU8IHYfXaDfy3C4nVekoWSe35gIRNh8nlmgc93m8clNB/trained_model.tar 2024-09-05T08:41:34Z | INFO | [ Complete ] dest=/tmp/tmpbr184a9g/weights size="172 MB" total_elapsed=1.157s url=https://replicate.delivery/yhqm/hPHtwIU8IHYfXaDfy3C4nVekoWSe35gIRNh8nlmgc93m8clNB/trained_model.tar Downloaded weights in 1.19s Loaded LoRAs in 9.10s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:28, 1.04s/it] 7%|▋ | 2/28 [00:01<00:23, 1.09it/s] 11%|█ | 3/28 [00:02<00:24, 1.03it/s] 14%|█▍ | 4/28 [00:03<00:24, 1.00s/it] 18%|█▊ | 5/28 [00:04<00:23, 1.02s/it] 21%|██▏ | 6/28 [00:06<00:22, 1.02s/it] 25%|██▌ | 7/28 [00:07<00:21, 1.03s/it] 29%|██▊ | 8/28 [00:08<00:20, 1.03s/it] 32%|███▏ | 9/28 [00:09<00:19, 1.04s/it] 36%|███▌ | 10/28 [00:10<00:18, 1.04s/it] 39%|███▉ | 11/28 [00:11<00:17, 1.04s/it] 43%|████▎ | 12/28 [00:12<00:16, 1.04s/it] 46%|████▋ | 13/28 [00:13<00:15, 1.04s/it] 50%|█████ | 14/28 [00:14<00:14, 1.04s/it] 54%|█████▎ | 15/28 [00:15<00:13, 1.04s/it] 57%|█████▋ | 16/28 [00:16<00:12, 1.04s/it] 61%|██████ | 17/28 [00:17<00:11, 1.04s/it] 64%|██████▍ | 18/28 [00:18<00:10, 1.04s/it] 68%|██████▊ | 19/28 [00:19<00:09, 1.04s/it] 71%|███████▏ | 20/28 [00:20<00:08, 1.04s/it] 75%|███████▌ | 21/28 [00:21<00:07, 1.04s/it] 79%|███████▊ | 22/28 [00:22<00:06, 1.04s/it] 82%|████████▏ | 23/28 [00:23<00:05, 1.04s/it] 86%|████████▌ | 24/28 [00:24<00:04, 1.04s/it] 89%|████████▉ | 25/28 [00:25<00:03, 1.04s/it] 93%|█████████▎| 26/28 [00:26<00:02, 1.04s/it] 96%|█████████▋| 27/28 [00:27<00:01, 1.04s/it] 100%|██████████| 28/28 [00:28<00:00, 1.04s/it] 100%|██████████| 28/28 [00:28<00:00, 1.03s/it]
Prediction
davidkwcheng/jessicayu02:ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2IDqkbr6bc8b9rm60chxsjazbch9wStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- front photo of jessicayu with high likeness of her ridding on a white horse in a long white wedding gown on a sandy beach with a beautiful orange sun setting in the horizon cloud in the background
- lora_scale
- 1
- num_outputs
- 4
- aspect_ratio
- 9:16
- output_format
- jpg
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "front photo of jessicayu with high likeness of her ridding on a white horse in a long white wedding gown on a sandy beach with a beautiful orange sun setting in the horizon cloud in the background", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "9:16", "output_format": "jpg", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run davidkwcheng/jessicayu02 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "davidkwcheng/jessicayu02:ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2", { input: { model: "dev", prompt: "front photo of jessicayu with high likeness of her ridding on a white horse in a long white wedding gown on a sandy beach with a beautiful orange sun setting in the horizon cloud in the background", lora_scale: 1, num_outputs: 4, aspect_ratio: "9:16", output_format: "jpg", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run davidkwcheng/jessicayu02 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "davidkwcheng/jessicayu02:ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2", input={ "model": "dev", "prompt": "front photo of jessicayu with high likeness of her ridding on a white horse in a long white wedding gown on a sandy beach with a beautiful orange sun setting in the horizon cloud in the background", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "9:16", "output_format": "jpg", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run davidkwcheng/jessicayu02 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2", "input": { "model": "dev", "prompt": "front photo of jessicayu with high likeness of her ridding on a white horse in a long white wedding gown on a sandy beach with a beautiful orange sun setting in the horizon cloud in the background", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "9:16", "output_format": "jpg", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-14T02:38:11.727209Z", "created_at": "2024-09-14T02:37:31.610000Z", "data_removed": false, "error": null, "id": "qkbr6bc8b9rm60chxsjazbch9w", "input": { "model": "dev", "prompt": "front photo of jessicayu with high likeness of her ridding on a white horse in a long white wedding gown on a sandy beach with a beautiful orange sun setting in the horizon cloud in the background", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "9:16", "output_format": "jpg", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 9706\nPrompt: front photo of jessicayu with high likeness of her ridding on a white horse in a long white wedding gown on a sandy beach with a beautiful orange sun setting in the horizon cloud in the background\n[!] txt2img mode\nUsing dev model\nfree=7911408443392\nDownloading weights\n2024-09-14T02:37:31Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp1pm6ro3h/weights url=https://replicate.delivery/yhqm/hPHtwIU8IHYfXaDfy3C4nVekoWSe35gIRNh8nlmgc93m8clNB/trained_model.tar\n2024-09-14T02:37:33Z | INFO | [ Complete ] dest=/tmp/tmp1pm6ro3h/weights size=\"172 MB\" total_elapsed=1.509s url=https://replicate.delivery/yhqm/hPHtwIU8IHYfXaDfy3C4nVekoWSe35gIRNh8nlmgc93m8clNB/trained_model.tar\nDownloaded weights in 1.55s\nLoaded LoRAs in 9.73s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:28, 1.06s/it]\n 7%|▋ | 2/28 [00:01<00:24, 1.07it/s]\n 11%|█ | 3/28 [00:02<00:24, 1.01it/s]\n 14%|█▍ | 4/28 [00:04<00:24, 1.02s/it]\n 18%|█▊ | 5/28 [00:05<00:23, 1.03s/it]\n 21%|██▏ | 6/28 [00:06<00:22, 1.04s/it]\n 25%|██▌ | 7/28 [00:07<00:21, 1.05s/it]\n 29%|██▊ | 8/28 [00:08<00:21, 1.05s/it]\n 32%|███▏ | 9/28 [00:09<00:20, 1.05s/it]\n 36%|███▌ | 10/28 [00:10<00:19, 1.06s/it]\n 39%|███▉ | 11/28 [00:11<00:17, 1.06s/it]\n 43%|████▎ | 12/28 [00:12<00:16, 1.06s/it]\n 46%|████▋ | 13/28 [00:13<00:15, 1.06s/it]\n 50%|█████ | 14/28 [00:14<00:14, 1.06s/it]\n 54%|█████▎ | 15/28 [00:15<00:13, 1.06s/it]\n 57%|█████▋ | 16/28 [00:16<00:12, 1.06s/it]\n 61%|██████ | 17/28 [00:17<00:11, 1.06s/it]\n 64%|██████▍ | 18/28 [00:18<00:10, 1.06s/it]\n 68%|██████▊ | 19/28 [00:19<00:09, 1.06s/it]\n 71%|███████▏ | 20/28 [00:21<00:08, 1.06s/it]\n 75%|███████▌ | 21/28 [00:22<00:07, 1.06s/it]\n 79%|███████▊ | 22/28 [00:23<00:06, 1.06s/it]\n 82%|████████▏ | 23/28 [00:24<00:05, 1.06s/it]\n 86%|████████▌ | 24/28 [00:25<00:04, 1.06s/it]\n 89%|████████▉ | 25/28 [00:26<00:03, 1.06s/it]\n 93%|█████████▎| 26/28 [00:27<00:02, 1.06s/it]\n 96%|█████████▋| 27/28 [00:28<00:01, 1.06s/it]\n100%|██████████| 28/28 [00:29<00:00, 1.06s/it]\n100%|██████████| 28/28 [00:29<00:00, 1.05s/it]", "metrics": { "predict_time": 40.108397322, "total_time": 40.117209 }, "output": [ "https://replicate.delivery/yhqm/Ax1x2hfxTc3sHa8MSDYsAuy2d5ULYfwSIUaTT8wO6FbTkqcTA/out-0.jpg", "https://replicate.delivery/yhqm/z2wXbp3Q4pLwEVPufSJyf5yn0zf1aD7M6owU2X6ER8HmIV5mA/out-1.jpg", "https://replicate.delivery/yhqm/9GFNMo8VUBI5H5lHqGyaJL6mEAacNyTNC2Qfr6utnXhJSVuJA/out-2.jpg", "https://replicate.delivery/yhqm/fokpyWxaEuyxDylWL2LCwb3LHUFk9wQf6fXzlWOGGUInIV5mA/out-3.jpg" ], "started_at": "2024-09-14T02:37:31.618812Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/qkbr6bc8b9rm60chxsjazbch9w", "cancel": "https://api.replicate.com/v1/predictions/qkbr6bc8b9rm60chxsjazbch9w/cancel" }, "version": "ddaa7ec7edf2b43ea5fee72950a662179dbaf54ee3bb4e8075cbe14efdd6e8c2" }
Generated inUsing seed: 9706 Prompt: front photo of jessicayu with high likeness of her ridding on a white horse in a long white wedding gown on a sandy beach with a beautiful orange sun setting in the horizon cloud in the background [!] txt2img mode Using dev model free=7911408443392 Downloading weights 2024-09-14T02:37:31Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp1pm6ro3h/weights url=https://replicate.delivery/yhqm/hPHtwIU8IHYfXaDfy3C4nVekoWSe35gIRNh8nlmgc93m8clNB/trained_model.tar 2024-09-14T02:37:33Z | INFO | [ Complete ] dest=/tmp/tmp1pm6ro3h/weights size="172 MB" total_elapsed=1.509s url=https://replicate.delivery/yhqm/hPHtwIU8IHYfXaDfy3C4nVekoWSe35gIRNh8nlmgc93m8clNB/trained_model.tar Downloaded weights in 1.55s Loaded LoRAs in 9.73s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:28, 1.06s/it] 7%|▋ | 2/28 [00:01<00:24, 1.07it/s] 11%|█ | 3/28 [00:02<00:24, 1.01it/s] 14%|█▍ | 4/28 [00:04<00:24, 1.02s/it] 18%|█▊ | 5/28 [00:05<00:23, 1.03s/it] 21%|██▏ | 6/28 [00:06<00:22, 1.04s/it] 25%|██▌ | 7/28 [00:07<00:21, 1.05s/it] 29%|██▊ | 8/28 [00:08<00:21, 1.05s/it] 32%|███▏ | 9/28 [00:09<00:20, 1.05s/it] 36%|███▌ | 10/28 [00:10<00:19, 1.06s/it] 39%|███▉ | 11/28 [00:11<00:17, 1.06s/it] 43%|████▎ | 12/28 [00:12<00:16, 1.06s/it] 46%|████▋ | 13/28 [00:13<00:15, 1.06s/it] 50%|█████ | 14/28 [00:14<00:14, 1.06s/it] 54%|█████▎ | 15/28 [00:15<00:13, 1.06s/it] 57%|█████▋ | 16/28 [00:16<00:12, 1.06s/it] 61%|██████ | 17/28 [00:17<00:11, 1.06s/it] 64%|██████▍ | 18/28 [00:18<00:10, 1.06s/it] 68%|██████▊ | 19/28 [00:19<00:09, 1.06s/it] 71%|███████▏ | 20/28 [00:21<00:08, 1.06s/it] 75%|███████▌ | 21/28 [00:22<00:07, 1.06s/it] 79%|███████▊ | 22/28 [00:23<00:06, 1.06s/it] 82%|████████▏ | 23/28 [00:24<00:05, 1.06s/it] 86%|████████▌ | 24/28 [00:25<00:04, 1.06s/it] 89%|████████▉ | 25/28 [00:26<00:03, 1.06s/it] 93%|█████████▎| 26/28 [00:27<00:02, 1.06s/it] 96%|█████████▋| 27/28 [00:28<00:01, 1.06s/it] 100%|██████████| 28/28 [00:29<00:00, 1.06s/it] 100%|██████████| 28/28 [00:29<00:00, 1.05s/it]
Want to make some of these yourself?
Run this model