Readme
This model doesn't have a readme.
Creates realistic KLM flight attendants
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run dcamsdev/klm-lora-flux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"dcamsdev/klm-lora-flux:b44d8509a34daf2f6bb469c31bb3e4864fc2660dddd496a994f65da395c8f8e6",
{
input: {
model: "dev",
prompt: "A female KLM flight attendant windsurfing in the sea, looking at camera and smiling, colorful setting, in style of a film scene, cinematinc lighting, koda, film style",
go_fast: false,
lora_scale: 0.94,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 5.77,
output_quality: 90,
prompt_strength: 0.85,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run dcamsdev/klm-lora-flux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"dcamsdev/klm-lora-flux:b44d8509a34daf2f6bb469c31bb3e4864fc2660dddd496a994f65da395c8f8e6",
input={
"model": "dev",
"prompt": "A female KLM flight attendant windsurfing in the sea, looking at camera and smiling, colorful setting, in style of a film scene, cinematinc lighting, koda, film style",
"go_fast": False,
"lora_scale": 0.94,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 5.77,
"output_quality": 90,
"prompt_strength": 0.85,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run dcamsdev/klm-lora-flux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "b44d8509a34daf2f6bb469c31bb3e4864fc2660dddd496a994f65da395c8f8e6",
"input": {
"model": "dev",
"prompt": "A female KLM flight attendant windsurfing in the sea, looking at camera and smiling, colorful setting, in style of a film scene, cinematinc lighting, koda, film style",
"go_fast": false,
"lora_scale": 0.94,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 5.77,
"output_quality": 90,
"prompt_strength": 0.85,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
Each run costs approximately $0.052. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-09-05T16:55:46.789645Z",
"created_at": "2024-09-05T16:55:28.624000Z",
"data_removed": false,
"error": null,
"id": "1at83vy6e1rm20chrcead7qxnr",
"input": {
"model": "dev",
"prompt": "A female KLM flight attendant windsurfing in the sea, looking at camera and smiling, colorful setting, in style of a film scene, cinematinc lighting, koda, film style",
"lora_scale": 0.94,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 5.77,
"output_quality": 90,
"prompt_strength": 0.85,
"extra_lora_scale": 1,
"num_inference_steps": 28
},
"logs": "Using seed: 37009\nPrompt: A female KLM flight attendant windsurfing in the sea, looking at camera and smiling, colorful setting, in style of a film scene, cinematinc lighting, koda, film style\n[!] txt2img mode\nUsing dev model\nfree=8459560759296\nDownloading weights\n2024-09-05T16:55:28Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp1muvasxo/weights url=https://replicate.delivery/yhqm/p0FaD61vYVpmCtW4RqCbce1Dk7avKxfNLW6Sx8QwTKrRi3ZTA/trained_model.tar\n2024-09-05T16:55:30Z | INFO | [ Complete ] dest=/tmp/tmp1muvasxo/weights size=\"172 MB\" total_elapsed=1.373s url=https://replicate.delivery/yhqm/p0FaD61vYVpmCtW4RqCbce1Dk7avKxfNLW6Sx8QwTKrRi3ZTA/trained_model.tar\nDownloaded weights in 1.40s\nLoaded LoRAs in 9.62s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.40it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.78it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.64it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.58it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.56it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.53it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.52it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.52it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.50it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.50it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.50it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.49it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.49it/s]\n 50%|█████ | 14/28 [00:03<00:04, 3.49it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.48it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.49it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.49it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.49it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.49it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.49it/s]\n 75%|███████▌ | 21/28 [00:05<00:02, 3.49it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.48it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.49it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.48it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.49it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.49it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.48it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.49it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.50it/s]",
"metrics": {
"predict_time": 18.155520949,
"total_time": 18.165645
},
"output": [
"https://replicate.delivery/yhqm/PFK6S8rOuAKMB91CXlvKMZ8zI3lAtCZtdKFAiR8651pkUesJA/out-0.webp"
],
"started_at": "2024-09-05T16:55:28.634124Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/1at83vy6e1rm20chrcead7qxnr",
"cancel": "https://api.replicate.com/v1/predictions/1at83vy6e1rm20chrcead7qxnr/cancel"
},
"version": "b44d8509a34daf2f6bb469c31bb3e4864fc2660dddd496a994f65da395c8f8e6"
}
Using seed: 37009
Prompt: A female KLM flight attendant windsurfing in the sea, looking at camera and smiling, colorful setting, in style of a film scene, cinematinc lighting, koda, film style
[!] txt2img mode
Using dev model
free=8459560759296
Downloading weights
2024-09-05T16:55:28Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp1muvasxo/weights url=https://replicate.delivery/yhqm/p0FaD61vYVpmCtW4RqCbce1Dk7avKxfNLW6Sx8QwTKrRi3ZTA/trained_model.tar
2024-09-05T16:55:30Z | INFO | [ Complete ] dest=/tmp/tmp1muvasxo/weights size="172 MB" total_elapsed=1.373s url=https://replicate.delivery/yhqm/p0FaD61vYVpmCtW4RqCbce1Dk7avKxfNLW6Sx8QwTKrRi3ZTA/trained_model.tar
Downloaded weights in 1.40s
Loaded LoRAs in 9.62s
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.40it/s]
7%|▋ | 2/28 [00:00<00:06, 3.78it/s]
11%|█ | 3/28 [00:00<00:06, 3.64it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.58it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.56it/s]
21%|██▏ | 6/28 [00:01<00:06, 3.53it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.52it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.52it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.50it/s]
36%|███▌ | 10/28 [00:02<00:05, 3.50it/s]
39%|███▉ | 11/28 [00:03<00:04, 3.50it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.49it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.49it/s]
50%|█████ | 14/28 [00:03<00:04, 3.49it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.48it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.49it/s]
61%|██████ | 17/28 [00:04<00:03, 3.49it/s]
64%|██████▍ | 18/28 [00:05<00:02, 3.49it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.49it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.49it/s]
75%|███████▌ | 21/28 [00:05<00:02, 3.49it/s]
79%|███████▊ | 22/28 [00:06<00:01, 3.48it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.49it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.48it/s]
89%|████████▉ | 25/28 [00:07<00:00, 3.49it/s]
93%|█████████▎| 26/28 [00:07<00:00, 3.49it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.48it/s]
100%|██████████| 28/28 [00:07<00:00, 3.49it/s]
100%|██████████| 28/28 [00:07<00:00, 3.50it/s]
This model costs approximately $0.052 to run on Replicate, or 19 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia H100 GPU hardware. Predictions typically complete within 35 seconds. The predict time for this model varies significantly based on the inputs.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 37009
Prompt: A female KLM flight attendant windsurfing in the sea, looking at camera and smiling, colorful setting, in style of a film scene, cinematinc lighting, koda, film style
[!] txt2img mode
Using dev model
free=8459560759296
Downloading weights
2024-09-05T16:55:28Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp1muvasxo/weights url=https://replicate.delivery/yhqm/p0FaD61vYVpmCtW4RqCbce1Dk7avKxfNLW6Sx8QwTKrRi3ZTA/trained_model.tar
2024-09-05T16:55:30Z | INFO | [ Complete ] dest=/tmp/tmp1muvasxo/weights size="172 MB" total_elapsed=1.373s url=https://replicate.delivery/yhqm/p0FaD61vYVpmCtW4RqCbce1Dk7avKxfNLW6Sx8QwTKrRi3ZTA/trained_model.tar
Downloaded weights in 1.40s
Loaded LoRAs in 9.62s
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.40it/s]
7%|▋ | 2/28 [00:00<00:06, 3.78it/s]
11%|█ | 3/28 [00:00<00:06, 3.64it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.58it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.56it/s]
21%|██▏ | 6/28 [00:01<00:06, 3.53it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.52it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.52it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.50it/s]
36%|███▌ | 10/28 [00:02<00:05, 3.50it/s]
39%|███▉ | 11/28 [00:03<00:04, 3.50it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.49it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.49it/s]
50%|█████ | 14/28 [00:03<00:04, 3.49it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.48it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.49it/s]
61%|██████ | 17/28 [00:04<00:03, 3.49it/s]
64%|██████▍ | 18/28 [00:05<00:02, 3.49it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.49it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.49it/s]
75%|███████▌ | 21/28 [00:05<00:02, 3.49it/s]
79%|███████▊ | 22/28 [00:06<00:01, 3.48it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.49it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.48it/s]
89%|████████▉ | 25/28 [00:07<00:00, 3.49it/s]
93%|█████████▎| 26/28 [00:07<00:00, 3.49it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.48it/s]
100%|██████████| 28/28 [00:07<00:00, 3.49it/s]
100%|██████████| 28/28 [00:07<00:00, 3.50it/s]