You're looking at a specific version of this model. Jump to the model overview.
decaid-studio /fortnite:ef12760c
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run decaid-studio/fortnite using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"decaid-studio/fortnite:ef12760c9391cc1aca5dd3449efebc0e54a689fd5b2ad8769912f5a1bb0a867d",
{
input: {
width: 1024,
height: 1024,
prompt: "An astronaut riding a rainbow unicorn",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run decaid-studio/fortnite using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"decaid-studio/fortnite:ef12760c9391cc1aca5dd3449efebc0e54a689fd5b2ad8769912f5a1bb0a867d",
input={
"width": 1024,
"height": 1024,
"prompt": "An astronaut riding a rainbow unicorn",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run decaid-studio/fortnite using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "ef12760c9391cc1aca5dd3449efebc0e54a689fd5b2ad8769912f5a1bb0a867d",
"input": {
"width": 1024,
"height": 1024,
"prompt": "An astronaut riding a rainbow unicorn",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Pull and run decaid-studio/fortnite using Cog (this will download the full model and run it in your local environment):
cog predict r8.im/decaid-studio/fortnite@sha256:ef12760c9391cc1aca5dd3449efebc0e54a689fd5b2ad8769912f5a1bb0a867d \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="An astronaut riding a rainbow unicorn"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Pull and run decaid-studio/fortnite using Docker (this will download the full model and run it in your local environment):
docker run -d -p 5000:5000 --gpus=all r8.im/decaid-studio/fortnite@sha256:ef12760c9391cc1aca5dd3449efebc0e54a689fd5b2ad8769912f5a1bb0a867d
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "An astronaut riding a rainbow unicorn", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
Add a payment method to run this model.
Each run costs approximately $0.017. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
No output yet! Press "Submit" to start a prediction.