devxpy
/
glid-3-xl-stable
Stable diffusion, but with more powerful in-painting & out-painting capabilities
Prediction
devxpy/glid-3-xl-stable:7d6a340eIDthh6qyqtmjbd5adxy7w5s3pfhyStatusSucceededSourceWebHardware–Total durationCreatedInput
{ "mask": "https://replicate.delivery/mgxm/e2dfe2c5-7578-421e-ab55-ae9b553243ec/face_mask.png", "prompt": "Jon snow from the game of thrones", "edit_image": "https://replicate.delivery/mgxm/8a83b0ca-2ea7-4095-8057-499f35a085d8/205032562_345087143808969_4674423480430035886_n.png", "num_outputs": 1, "num_inference_steps": "500" }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run devxpy/glid-3-xl-stable using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "devxpy/glid-3-xl-stable:7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7", { input: { mask: "https://replicate.delivery/mgxm/e2dfe2c5-7578-421e-ab55-ae9b553243ec/face_mask.png", prompt: "Jon snow from the game of thrones", edit_image: "https://replicate.delivery/mgxm/8a83b0ca-2ea7-4095-8057-499f35a085d8/205032562_345087143808969_4674423480430035886_n.png", num_outputs: 1, num_inference_steps: "500" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run devxpy/glid-3-xl-stable using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "devxpy/glid-3-xl-stable:7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7", input={ "mask": "https://replicate.delivery/mgxm/e2dfe2c5-7578-421e-ab55-ae9b553243ec/face_mask.png", "prompt": "Jon snow from the game of thrones", "edit_image": "https://replicate.delivery/mgxm/8a83b0ca-2ea7-4095-8057-499f35a085d8/205032562_345087143808969_4674423480430035886_n.png", "num_outputs": 1, "num_inference_steps": "500" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run devxpy/glid-3-xl-stable using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7", "input": { "mask": "https://replicate.delivery/mgxm/e2dfe2c5-7578-421e-ab55-ae9b553243ec/face_mask.png", "prompt": "Jon snow from the game of thrones", "edit_image": "https://replicate.delivery/mgxm/8a83b0ca-2ea7-4095-8057-499f35a085d8/205032562_345087143808969_4674423480430035886_n.png", "num_outputs": 1, "num_inference_steps": "500" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/devxpy/glid-3-xl-stable@sha256:7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7 \ -i 'mask="https://replicate.delivery/mgxm/e2dfe2c5-7578-421e-ab55-ae9b553243ec/face_mask.png"' \ -i 'prompt="Jon snow from the game of thrones"' \ -i 'edit_image="https://replicate.delivery/mgxm/8a83b0ca-2ea7-4095-8057-499f35a085d8/205032562_345087143808969_4674423480430035886_n.png"' \ -i 'num_outputs=1' \ -i 'num_inference_steps="500"'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/devxpy/glid-3-xl-stable@sha256:7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mask": "https://replicate.delivery/mgxm/e2dfe2c5-7578-421e-ab55-ae9b553243ec/face_mask.png", "prompt": "Jon snow from the game of thrones", "edit_image": "https://replicate.delivery/mgxm/8a83b0ca-2ea7-4095-8057-499f35a085d8/205032562_345087143808969_4674423480430035886_n.png", "num_outputs": 1, "num_inference_steps": "500" } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2022-10-10T19:35:56.409213Z", "created_at": "2022-10-10T19:34:28.966972Z", "data_removed": false, "error": null, "id": "thh6qyqtmjbd5adxy7w5s3pfhy", "input": { "mask": "https://replicate.delivery/mgxm/e2dfe2c5-7578-421e-ab55-ae9b553243ec/face_mask.png", "prompt": "Jon snow from the game of thrones", "edit_image": "https://replicate.delivery/mgxm/8a83b0ca-2ea7-4095-8057-499f35a085d8/205032562_345087143808969_4674423480430035886_n.png", "num_outputs": 1, "num_inference_steps": "500" }, "logs": "$ /root/.pyenv/versions/3.10.7/bin/python sample.py --model_path inpaint.pt --edit /tmp/tmpc_o91y0t205032562_345087143808969_4674423480430035886_n.png --mask /tmp/tmpvkqeu1cpface_mask.png --steps 500 --text Jon snow from the game of thrones --num_batches 1\nUsing device: cuda:0\nmaking attention of type 'vanilla' with 512 in_channels\nWorking with z of shape (1, 4, 32, 32) = 4096 dimensions.\nmaking attention of type 'vanilla' with 512 in_channels\nSome weights of the model checkpoint at openai/clip-vit-large-patch14 were not used when initializing CLIPTextModel: ['vision_model.encoder.layers.19.self_attn.k_proj.bias', 'vision_model.encoder.layers.21.layer_norm1.weight', 'vision_model.encoder.layers.0.self_attn.out_proj.bias', 'vision_model.encoder.layers.14.layer_norm1.bias', 'vision_model.encoder.layers.21.mlp.fc2.weight', 'vision_model.encoder.layers.3.mlp.fc1.bias', 'vision_model.encoder.layers.11.mlp.fc1.weight', 'vision_model.encoder.layers.3.self_attn.v_proj.bias', 'vision_model.encoder.layers.10.mlp.fc2.weight', 'vision_model.encoder.layers.8.self_attn.q_proj.bias', 'vision_model.encoder.layers.6.layer_norm1.bias', 'vision_model.encoder.layers.18.self_attn.k_proj.bias', 'vision_model.encoder.layers.8.layer_norm2.bias', 'vision_model.encoder.layers.20.mlp.fc1.bias', 'vision_model.encoder.layers.2.layer_norm1.bias', 'vision_model.encoder.layers.17.self_attn.v_proj.bias', 'vision_model.encoder.layers.1.self_attn.q_proj.bias', 'vision_model.encoder.layers.8.mlp.fc1.weight', 'vision_model.encoder.layers.13.layer_norm1.bias', 'vision_model.encoder.layers.21.self_attn.q_proj.weight', 'vision_model.encoder.layers.13.self_attn.k_proj.bias', 'vision_model.encoder.layers.10.self_attn.v_proj.bias', 'vision_model.encoder.layers.6.layer_norm2.weight', 'vision_model.encoder.layers.11.layer_norm2.weight', 'vision_model.encoder.layers.18.mlp.fc2.weight', 'vision_model.encoder.layers.8.layer_norm1.bias', 'vision_model.encoder.layers.4.mlp.fc2.weight', 'vision_model.encoder.layers.2.self_attn.out_proj.weight', 'vision_model.encoder.layers.8.mlp.fc1.bias', 'vision_model.encoder.layers.11.mlp.fc2.bias', 'vision_model.encoder.layers.17.layer_norm1.bias', 'vision_model.encoder.layers.2.layer_norm2.weight', 'vision_model.embeddings.position_ids', 'vision_model.encoder.layers.2.mlp.fc1.weight', 'vision_model.encoder.layers.20.self_attn.v_proj.bias', 'vision_model.encoder.layers.17.layer_norm2.bias', 'vision_model.encoder.layers.4.self_attn.out_proj.weight', 'vision_model.encoder.layers.4.self_attn.v_proj.weight', 'vision_model.encoder.layers.17.self_attn.q_proj.weight', 'vision_model.encoder.layers.20.self_attn.v_proj.weight', 'vision_model.encoder.layers.7.mlp.fc2.weight', 'vision_model.encoder.layers.3.layer_norm1.weight', 'vision_model.encoder.layers.22.self_attn.v_proj.weight', 'vision_model.encoder.layers.21.layer_norm1.bias', 'vision_model.encoder.layers.2.mlp.fc2.bias', 'vision_model.encoder.layers.4.self_attn.q_proj.bias', 'vision_model.encoder.layers.6.self_attn.k_proj.weight', 'vision_model.encoder.layers.6.layer_norm2.bias', 'vision_model.encoder.layers.11.mlp.fc2.weight', 'vision_model.encoder.layers.15.mlp.fc1.bias', 'vision_model.encoder.layers.15.layer_norm2.weight', 'vision_model.encoder.layers.4.self_attn.k_proj.weight', 'vision_model.encoder.layers.9.self_attn.v_proj.weight', 'vision_model.encoder.layers.16.self_attn.q_proj.weight', 'vision_model.encoder.layers.10.layer_norm1.bias', 'vision_model.encoder.layers.9.self_attn.k_proj.bias', 'vision_model.encoder.layers.7.self_attn.q_proj.weight', 'vision_model.encoder.layers.13.self_attn.q_proj.bias', 'vision_model.encoder.layers.5.layer_norm2.bias', 'vision_model.encoder.layers.15.self_attn.q_proj.weight', 'vision_model.encoder.layers.15.mlp.fc1.weight', 'vision_model.encoder.layers.21.self_attn.out_proj.weight', 'vision_model.encoder.layers.13.self_attn.q_proj.weight', 'vision_model.encoder.layers.19.self_attn.q_proj.weight', 'vision_model.encoder.layers.17.self_attn.out_proj.weight', 'vision_model.encoder.layers.10.self_attn.out_proj.bias', 'vision_model.encoder.layers.19.mlp.fc2.weight', 'vision_model.encoder.layers.13.self_attn.out_proj.bias', 'vision_model.encoder.layers.16.mlp.fc2.weight', 'vision_model.encoder.layers.3.mlp.fc1.weight', 'vision_model.encoder.layers.4.mlp.fc1.bias', 'vision_model.encoder.layers.0.mlp.fc2.bias', 'vision_model.encoder.layers.21.mlp.fc2.bias', 'vision_model.encoder.layers.18.layer_norm2.bias', 'vision_model.encoder.layers.23.mlp.fc2.bias', 'vision_model.encoder.layers.8.mlp.fc2.bias', 'vision_model.encoder.layers.21.self_attn.k_proj.weight', 'vision_model.encoder.layers.7.mlp.fc1.bias', 'vision_model.encoder.layers.19.layer_norm1.weight', 'vision_model.encoder.layers.0.layer_norm1.weight', 'vision_model.encoder.layers.4.mlp.fc1.weight', 'vision_model.encoder.layers.16.self_attn.q_proj.bias', 'vision_model.encoder.layers.1.layer_norm2.bias', 'vision_model.encoder.layers.20.layer_norm2.bias', 'vision_model.encoder.layers.12.self_attn.k_proj.bias', 'vision_model.encoder.layers.4.layer_norm1.weight', 'vision_model.encoder.layers.20.self_attn.q_proj.bias', 'vision_model.encoder.layers.6.self_attn.q_proj.bias', 'vision_model.encoder.layers.3.layer_norm2.weight', 'vision_model.encoder.layers.4.self_attn.k_proj.bias', 'vision_model.encoder.layers.5.self_attn.out_proj.bias', 'vision_model.encoder.layers.10.mlp.fc1.weight', 'vision_model.encoder.layers.17.self_attn.out_proj.bias', 'vision_model.encoder.layers.5.layer_norm1.weight', 'vision_model.encoder.layers.7.mlp.fc1.weight', 'vision_model.encoder.layers.2.self_attn.q_proj.weight', 'vision_model.encoder.layers.7.layer_norm2.bias', 'vision_model.encoder.layers.0.mlp.fc1.bias', 'vision_model.encoder.layers.8.self_attn.v_proj.weight', 'text_projection.weight', 'vision_model.encoder.layers.6.mlp.fc1.weight', 'vision_model.encoder.layers.20.layer_norm1.weight', 'vision_model.encoder.layers.21.self_attn.v_proj.weight', 'vision_model.encoder.layers.8.self_attn.k_proj.weight', 'vision_model.encoder.layers.13.self_attn.v_proj.bias', 'vision_model.encoder.layers.8.self_attn.out_proj.weight', 'vision_model.encoder.layers.13.self_attn.k_proj.weight', 'vision_model.encoder.layers.8.self_attn.out_proj.bias', 'vision_model.encoder.layers.12.layer_norm1.bias', 'vision_model.encoder.layers.7.self_attn.out_proj.bias', 'vision_model.encoder.layers.20.layer_norm1.bias', 'vision_model.encoder.layers.15.self_attn.k_proj.weight', 'vision_model.encoder.layers.22.mlp.fc1.weight', 'vision_model.encoder.layers.11.self_attn.q_proj.weight', 'vision_model.encoder.layers.1.self_attn.k_proj.bias', 'vision_model.encoder.layers.14.self_attn.k_proj.weight', 'vision_model.encoder.layers.22.self_attn.k_proj.bias', 'vision_model.encoder.layers.3.self_attn.q_proj.bias', 'vision_model.encoder.layers.12.mlp.fc1.bias', 'vision_model.encoder.layers.8.layer_norm2.weight', 'vision_model.encoder.layers.19.self_attn.k_proj.weight', 'vision_model.encoder.layers.17.layer_norm1.weight', 'vision_model.encoder.layers.17.self_attn.k_proj.weight', 'vision_model.encoder.layers.13.layer_norm1.weight', 'vision_model.encoder.layers.22.self_attn.out_proj.bias', 'vision_model.encoder.layers.8.self_attn.k_proj.bias', 'vision_model.encoder.layers.10.self_attn.k_proj.bias', 'vision_model.encoder.layers.18.self_attn.v_proj.weight', 'vision_model.encoder.layers.18.self_attn.out_proj.bias', 'vision_model.encoder.layers.15.layer_norm1.weight', 'vision_model.encoder.layers.13.mlp.fc2.bias', 'vision_model.encoder.layers.23.layer_norm1.bias', 'vision_model.encoder.layers.7.self_attn.q_proj.bias', 'vision_model.encoder.layers.18.layer_norm1.bias', 'vision_model.encoder.layers.23.mlp.fc1.weight', 'vision_model.encoder.layers.16.self_attn.v_proj.weight', 'vision_model.encoder.layers.20.self_attn.k_proj.weight', 'vision_model.encoder.layers.11.self_attn.v_proj.bias', 'vision_model.encoder.layers.19.mlp.fc2.bias', 'vision_model.encoder.layers.13.mlp.fc1.bias', 'vision_model.encoder.layers.3.self_attn.out_proj.bias', 'vision_model.encoder.layers.3.mlp.fc2.bias', 'vision_model.encoder.layers.2.self_attn.v_proj.weight', 'vision_model.encoder.layers.5.mlp.fc1.bias', 'vision_model.encoder.layers.5.mlp.fc2.bias', 'vision_model.encoder.layers.1.mlp.fc2.bias', 'vision_model.encoder.layers.19.layer_norm2.bias', 'vision_model.encoder.layers.15.layer_norm1.bias', 'vision_model.encoder.layers.16.self_attn.k_proj.bias', 'vision_model.encoder.layers.3.self_attn.k_proj.weight', 'vision_model.encoder.layers.3.layer_norm2.bias', 'vision_model.encoder.layers.18.mlp.fc1.bias', 'vision_model.encoder.layers.7.layer_norm2.weight', 'vision_model.encoder.layers.2.self_attn.v_proj.bias', 'vision_model.encoder.layers.3.self_attn.k_proj.bias', 'vision_model.encoder.layers.0.self_attn.v_proj.weight', 'vision_model.encoder.layers.0.self_attn.q_proj.bias', 'vision_model.encoder.layers.12.self_attn.v_proj.bias', 'vision_model.encoder.layers.14.layer_norm1.weight', 'vision_model.encoder.layers.4.layer_norm2.bias', 'vision_model.encoder.layers.20.self_attn.out_proj.bias', 'vision_model.encoder.layers.12.self_attn.out_proj.bias', 'vision_model.encoder.layers.6.mlp.fc2.weight', 'vision_model.encoder.layers.21.self_attn.out_proj.bias', 'vision_model.encoder.layers.22.mlp.fc2.bias', 'vision_model.encoder.layers.18.mlp.fc2.bias', 'vision_model.embeddings.patch_embedding.weight', 'vision_model.encoder.layers.9.self_attn.v_proj.bias', 'vision_model.encoder.layers.13.self_attn.v_proj.weight', 'vision_model.encoder.layers.9.layer_norm2.weight', 'vision_model.encoder.layers.10.layer_norm2.bias', 'vision_model.encoder.layers.22.layer_norm2.bias', 'vision_model.encoder.layers.22.layer_norm2.weight', 'vision_model.encoder.layers.0.self_attn.k_proj.bias', 'vision_model.encoder.layers.0.self_attn.k_proj.weight', 'vision_model.encoder.layers.7.self_attn.v_proj.weight', 'vision_model.encoder.layers.3.self_attn.q_proj.weight', 'vision_model.encoder.layers.16.self_attn.v_proj.bias', 'vision_model.encoder.layers.23.self_attn.out_proj.weight', 'vision_model.encoder.layers.10.self_attn.out_proj.weight', 'vision_model.encoder.layers.14.self_attn.v_proj.bias', 'vision_model.encoder.layers.4.mlp.fc2.bias', 'vision_model.encoder.layers.11.self_attn.v_proj.weight', 'vision_model.encoder.layers.12.mlp.fc2.weight', 'vision_model.encoder.layers.7.self_attn.v_proj.bias', 'vision_model.encoder.layers.1.self_attn.q_proj.weight', 'vision_model.encoder.layers.19.layer_norm2.weight', 'vision_model.encoder.layers.21.layer_norm2.bias', 'vision_model.encoder.layers.2.self_attn.k_proj.weight', 'vision_model.encoder.layers.18.self_attn.k_proj.weight', 'vision_model.encoder.layers.13.self_attn.out_proj.weight', 'vision_model.encoder.layers.21.self_attn.q_proj.bias', 'vision_model.encoder.layers.20.self_attn.out_proj.weight', 'vision_model.encoder.layers.16.self_attn.k_proj.weight', 'vision_model.encoder.layers.6.self_attn.v_proj.weight', 'vision_model.encoder.layers.11.self_attn.out_proj.weight', 'vision_model.encoder.layers.2.layer_norm1.weight', 'vision_model.encoder.layers.7.layer_norm1.bias', 'vision_model.encoder.layers.14.self_attn.v_proj.weight', 'vision_model.encoder.layers.16.layer_norm1.bias', 'vision_model.encoder.layers.15.layer_norm2.bias', 'vision_model.encoder.layers.16.mlp.fc1.bias', 'vision_model.encoder.layers.20.mlp.fc2.bias', 'vision_model.encoder.layers.23.self_attn.v_proj.bias', 'vision_model.encoder.layers.3.mlp.fc2.weight', 'vision_model.encoder.layers.23.layer_norm2.weight', 'vision_model.encoder.layers.20.self_attn.k_proj.bias', 'vision_model.encoder.layers.6.layer_norm1.weight', 'vision_model.encoder.layers.1.self_attn.out_proj.bias', 'vision_model.encoder.layers.6.mlp.fc2.bias', 'vision_model.encoder.layers.22.self_attn.q_proj.bias', 'vision_model.encoder.layers.9.mlp.fc2.bias', 'vision_model.encoder.layers.7.mlp.fc2.bias', 'vision_model.encoder.layers.23.layer_norm1.weight', 'vision_model.encoder.layers.6.self_attn.v_proj.bias', 'vision_model.encoder.layers.4.self_attn.out_proj.bias', 'vision_model.encoder.layers.21.layer_norm2.weight', 'vision_model.encoder.layers.2.mlp.fc2.weight', 'vision_model.encoder.layers.0.self_attn.out_proj.weight', 'vision_model.encoder.layers.6.self_attn.k_proj.bias', 'vision_model.encoder.layers.22.mlp.fc2.weight', 'vision_model.embeddings.position_embedding.weight', 'vision_model.encoder.layers.15.mlp.fc2.weight', 'vision_model.encoder.layers.3.layer_norm1.bias', 'vision_model.encoder.layers.5.self_attn.v_proj.weight', 'vision_model.encoder.layers.10.mlp.fc1.bias', 'vision_model.encoder.layers.2.layer_norm2.bias', 'vision_model.encoder.layers.16.self_attn.out_proj.bias', 'vision_model.encoder.layers.21.mlp.fc1.bias', 'vision_model.encoder.layers.6.self_attn.out_proj.weight', 'vision_model.encoder.layers.6.self_attn.q_proj.weight', 'vision_model.encoder.layers.5.layer_norm1.bias', 'vision_model.encoder.layers.10.layer_norm1.weight', 'vision_model.encoder.layers.13.layer_norm2.bias', 'vision_model.encoder.layers.23.self_attn.q_proj.weight', 'vision_model.encoder.layers.7.self_attn.out_proj.weight', 'vision_model.encoder.layers.11.self_attn.q_proj.bias', 'vision_model.encoder.layers.5.layer_norm2.weight', 'vision_model.encoder.layers.16.layer_norm2.bias', 'vision_model.encoder.layers.16.layer_norm2.weight', 'vision_model.encoder.layers.10.self_attn.q_proj.bias', 'vision_model.encoder.layers.0.layer_norm2.weight', 'vision_model.encoder.layers.12.self_attn.q_proj.bias', 'vision_model.encoder.layers.11.self_attn.k_proj.bias', 'vision_model.encoder.layers.7.layer_norm1.weight', 'vision_model.encoder.layers.7.self_attn.k_proj.bias', 'vision_model.encoder.layers.11.layer_norm2.bias', 'vision_model.encoder.layers.21.self_attn.k_proj.bias', 'vision_model.encoder.layers.21.self_attn.v_proj.bias', 'vision_model.encoder.layers.9.self_attn.q_proj.bias', 'vision_model.encoder.layers.15.self_attn.v_proj.weight', 'vision_model.encoder.layers.10.self_attn.q_proj.weight', 'vision_model.encoder.layers.6.self_attn.out_proj.bias', 'vision_model.encoder.layers.20.layer_norm2.weight', 'vision_model.encoder.layers.2.self_attn.k_proj.bias', 'vision_model.pre_layrnorm.weight', 'vision_model.encoder.layers.18.self_attn.out_proj.weight', 'vision_model.encoder.layers.19.mlp.fc1.weight', 'vision_model.encoder.layers.13.mlp.fc2.weight', 'vision_model.encoder.layers.22.self_attn.k_proj.weight', 'vision_model.encoder.layers.17.mlp.fc2.bias', 'vision_model.encoder.layers.23.mlp.fc1.bias', 'vision_model.encoder.layers.7.self_attn.k_proj.weight', 'vision_model.encoder.layers.11.mlp.fc1.bias', 'vision_model.encoder.layers.10.layer_norm2.weight', 'vision_model.encoder.layers.21.mlp.fc1.weight', 'vision_model.encoder.layers.14.self_attn.q_proj.bias', 'vision_model.encoder.layers.5.self_attn.q_proj.bias', 'vision_model.encoder.layers.1.self_attn.out_proj.weight', 'vision_model.encoder.layers.14.mlp.fc1.bias', 'vision_model.encoder.layers.17.self_attn.q_proj.bias', 'vision_model.encoder.layers.14.self_attn.q_proj.weight', 'vision_model.encoder.layers.12.layer_norm1.weight', 'vision_model.encoder.layers.18.self_attn.q_proj.weight', 'vision_model.encoder.layers.15.self_attn.v_proj.bias', 'vision_model.encoder.layers.2.mlp.fc1.bias', 'vision_model.pre_layrnorm.bias', 'vision_model.encoder.layers.23.self_attn.k_proj.weight', 'vision_model.encoder.layers.14.self_attn.out_proj.weight', 'vision_model.encoder.layers.8.self_attn.q_proj.weight', 'vision_model.encoder.layers.10.mlp.fc2.bias', 'vision_model.encoder.layers.17.mlp.fc2.weight', 'vision_model.encoder.layers.8.layer_norm1.weight', 'vision_model.encoder.layers.11.self_attn.k_proj.weight', 'vision_model.encoder.layers.15.self_attn.out_proj.weight', 'vision_model.encoder.layers.8.mlp.fc2.weight', 'vision_model.encoder.layers.19.layer_norm1.bias', 'vision_model.encoder.layers.8.self_attn.v_proj.bias', 'vision_model.encoder.layers.22.self_attn.q_proj.weight', 'vision_model.encoder.layers.23.self_attn.k_proj.bias', 'vision_model.encoder.layers.0.mlp.fc1.weight', 'vision_model.encoder.layers.16.layer_norm1.weight', 'vision_model.encoder.layers.18.layer_norm1.weight', 'vision_model.encoder.layers.2.self_attn.out_proj.bias', 'vision_model.encoder.layers.9.self_attn.q_proj.weight', 'vision_model.encoder.layers.15.self_attn.q_proj.bias', 'vision_model.encoder.layers.17.self_attn.v_proj.weight', 'vision_model.encoder.layers.14.layer_norm2.bias', 'vision_model.encoder.layers.14.self_attn.out_proj.bias', 'vision_model.encoder.layers.1.self_attn.k_proj.weight', 'vision_model.encoder.layers.11.self_attn.out_proj.bias', 'vision_model.encoder.layers.12.self_attn.out_proj.weight', 'vision_model.encoder.layers.20.mlp.fc2.weight', 'vision_model.encoder.layers.9.mlp.fc2.weight', 'vision_model.encoder.layers.23.mlp.fc2.weight', 'vision_model.encoder.layers.5.self_attn.q_proj.weight', 'vision_model.encoder.layers.0.self_attn.v_proj.bias', 'vision_model.encoder.layers.4.layer_norm1.bias', 'vision_model.encoder.layers.17.mlp.fc1.bias', 'vision_model.encoder.layers.20.mlp.fc1.weight', 'vision_model.encoder.layers.5.mlp.fc2.weight', 'vision_model.encoder.layers.23.self_attn.q_proj.bias', 'vision_model.encoder.layers.11.layer_norm1.weight', 'vision_model.encoder.layers.1.mlp.fc1.bias', 'vision_model.encoder.layers.10.self_attn.k_proj.weight', 'vision_model.encoder.layers.1.self_attn.v_proj.weight', 'vision_model.encoder.layers.0.self_attn.q_proj.weight', 'vision_model.encoder.layers.23.self_attn.out_proj.bias', 'vision_model.encoder.layers.22.layer_norm1.bias', 'vision_model.encoder.layers.14.layer_norm2.weight', 'vision_model.encoder.layers.15.self_attn.k_proj.bias', 'vision_model.encoder.layers.13.layer_norm2.weight', 'vision_model.encoder.layers.9.layer_norm1.bias', 'vision_model.encoder.layers.20.self_attn.q_proj.weight', 'vision_model.encoder.layers.6.mlp.fc1.bias', 'vision_model.encoder.layers.9.self_attn.k_proj.weight', 'vision_model.encoder.layers.17.layer_norm2.weight', 'vision_model.encoder.layers.18.self_attn.v_proj.bias', 'vision_model.encoder.layers.4.self_attn.v_proj.bias', 'vision_model.encoder.layers.3.self_attn.v_proj.weight', 'vision_model.encoder.layers.9.self_attn.out_proj.bias', 'vision_model.encoder.layers.19.self_attn.v_proj.weight', 'vision_model.encoder.layers.9.mlp.fc1.bias', 'vision_model.encoder.layers.1.layer_norm2.weight', 'vision_model.encoder.layers.16.self_attn.out_proj.weight', 'vision_model.encoder.layers.19.self_attn.q_proj.bias', 'vision_model.encoder.layers.0.layer_norm2.bias', 'vision_model.encoder.layers.5.self_attn.out_proj.weight', 'vision_model.encoder.layers.15.self_attn.out_proj.bias', 'vision_model.encoder.layers.12.layer_norm2.bias', 'vision_model.encoder.layers.9.layer_norm2.bias', 'vision_model.encoder.layers.1.layer_norm1.bias', 'vision_model.encoder.layers.22.mlp.fc1.bias', 'vision_model.encoder.layers.14.mlp.fc1.weight', 'vision_model.encoder.layers.13.mlp.fc1.weight', 'vision_model.encoder.layers.5.mlp.fc1.weight', 'vision_model.encoder.layers.10.self_attn.v_proj.weight', 'visual_projection.weight', 'vision_model.encoder.layers.1.mlp.fc2.weight', 'vision_model.post_layernorm.bias', 'vision_model.encoder.layers.3.self_attn.out_proj.weight', 'vision_model.embeddings.class_embedding', 'vision_model.encoder.layers.5.self_attn.v_proj.bias', 'vision_model.encoder.layers.18.layer_norm2.weight', 'vision_model.encoder.layers.0.layer_norm1.bias', 'vision_model.encoder.layers.1.self_attn.v_proj.bias', 'vision_model.encoder.layers.22.self_attn.v_proj.bias', 'vision_model.encoder.layers.23.self_attn.v_proj.weight', 'vision_model.encoder.layers.12.mlp.fc1.weight', 'vision_model.encoder.layers.19.mlp.fc1.bias', 'vision_model.encoder.layers.22.self_attn.out_proj.weight', 'vision_model.encoder.layers.5.self_attn.k_proj.weight', 'vision_model.encoder.layers.12.self_attn.v_proj.weight', 'vision_model.encoder.layers.1.layer_norm1.weight', 'vision_model.encoder.layers.4.self_attn.q_proj.weight', 'vision_model.encoder.layers.12.self_attn.q_proj.weight', 'vision_model.encoder.layers.9.layer_norm1.weight', 'vision_model.encoder.layers.15.mlp.fc2.bias', 'vision_model.encoder.layers.16.mlp.fc2.bias', 'vision_model.encoder.layers.14.mlp.fc2.bias', 'vision_model.encoder.layers.19.self_attn.v_proj.bias', 'vision_model.encoder.layers.2.self_attn.q_proj.bias', 'vision_model.encoder.layers.5.self_attn.k_proj.bias', 'vision_model.encoder.layers.12.self_attn.k_proj.weight', 'vision_model.encoder.layers.19.self_attn.out_proj.weight', 'vision_model.encoder.layers.19.self_attn.out_proj.bias', 'vision_model.encoder.layers.4.layer_norm2.weight', 'vision_model.encoder.layers.14.mlp.fc2.weight', 'vision_model.encoder.layers.12.mlp.fc2.bias', 'vision_model.post_layernorm.weight', 'vision_model.encoder.layers.0.mlp.fc2.weight', 'vision_model.encoder.layers.14.self_attn.k_proj.bias', 'vision_model.encoder.layers.1.mlp.fc1.weight', 'vision_model.encoder.layers.22.layer_norm1.weight', 'vision_model.encoder.layers.17.mlp.fc1.weight', 'vision_model.encoder.layers.9.mlp.fc1.weight', 'logit_scale', 'vision_model.encoder.layers.12.layer_norm2.weight', 'vision_model.encoder.layers.9.self_attn.out_proj.weight', 'vision_model.encoder.layers.11.layer_norm1.bias', 'vision_model.encoder.layers.16.mlp.fc1.weight', 'vision_model.encoder.layers.18.self_attn.q_proj.bias', 'vision_model.encoder.layers.23.layer_norm2.bias', 'vision_model.encoder.layers.17.self_attn.k_proj.bias', 'vision_model.encoder.layers.18.mlp.fc1.weight']\n- This IS expected if you are initializing CLIPTextModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n- This IS NOT expected if you are initializing CLIPTextModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n/src/sample.py:354: DeprecationWarning: ANTIALIAS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.\n mask_image = mask_image.resize((input_image.shape[3],input_image.shape[2]), Image.ANTIALIAS)\n\n 0%| | 0/500 [00:00<?, ?it/s]\n 0%| | 1/500 [00:00<05:47, 1.44it/s]\n 0%| | 2/500 [00:01<04:35, 1.80it/s]\n 1%| | 3/500 [00:01<04:13, 1.96it/s]\n 1%| | 4/500 [00:01<02:55, 2.83it/s]\n 1%| | 5/500 [00:01<02:12, 3.74it/s]\n 1%| | 6/500 [00:01<01:46, 4.65it/s]\n 1%|▏ | 7/500 [00:02<01:29, 5.49it/s]\n 2%|▏ | 8/500 [00:02<01:19, 6.23it/s]\n 2%|▏ | 9/500 [00:02<01:11, 6.83it/s]\n 2%|▏ | 10/500 [00:02<01:06, 7.34it/s]\n 2%|▏ | 11/500 [00:02<01:03, 7.73it/s]\n 2%|▏ | 12/500 [00:02<01:00, 8.03it/s]\n 3%|▎ | 13/500 [00:02<00:59, 8.24it/s]\n 3%|▎ | 14/500 [00:02<00:57, 8.40it/s]\n 3%|▎ | 15/500 [00:02<00:56, 8.51it/s]\n 3%|▎ | 16/500 [00:03<00:56, 8.59it/s]\n 3%|▎ | 17/500 [00:03<00:55, 8.65it/s]\n 4%|▎ | 18/500 [00:03<00:55, 8.69it/s]\n 4%|▍ | 19/500 [00:03<00:55, 8.69it/s]\n 4%|▍ | 20/500 [00:03<00:55, 8.70it/s]\n 4%|▍ | 21/500 [00:03<00:54, 8.73it/s]\n 4%|▍ | 22/500 [00:03<00:54, 8.75it/s]\n 5%|▍ | 23/500 [00:03<00:54, 8.76it/s]\n 5%|▍ | 24/500 [00:04<00:54, 8.78it/s]\n 5%|▌ | 25/500 [00:04<00:53, 8.80it/s]\n 5%|▌ | 26/500 [00:04<01:26, 5.48it/s]\n 5%|▌ | 27/500 [00:04<01:16, 6.17it/s]\n 6%|▌ | 28/500 [00:04<01:09, 6.77it/s]\n 6%|▌ | 29/500 [00:04<01:04, 7.28it/s]\n 6%|▌ | 30/500 [00:04<01:01, 7.68it/s]\n 6%|▌ | 31/500 [00:05<00:58, 7.99it/s]\n 6%|▋ | 32/500 [00:05<00:56, 8.21it/s]\n 7%|▋ | 33/500 [00:05<00:55, 8.39it/s]\n 7%|▋ | 34/500 [00:05<00:54, 8.51it/s]\n 7%|▋ | 35/500 [00:05<00:54, 8.60it/s]\n 7%|▋ | 36/500 [00:05<00:53, 8.65it/s]\n 7%|▋ | 37/500 [00:05<00:53, 8.70it/s]\n 8%|▊ | 38/500 [00:05<00:53, 8.69it/s]\n 8%|▊ | 39/500 [00:05<00:52, 8.70it/s]\n 8%|▊ | 40/500 [00:06<00:52, 8.73it/s]\n 8%|▊ | 41/500 [00:06<00:52, 8.76it/s]\n 8%|▊ | 42/500 [00:06<00:52, 8.76it/s]\n 9%|▊ | 43/500 [00:06<00:52, 8.77it/s]\n 9%|▉ | 44/500 [00:06<00:52, 8.77it/s]\n 9%|▉ | 45/500 [00:06<00:51, 8.76it/s]\n 9%|▉ | 46/500 [00:06<00:51, 8.78it/s]\n 9%|▉ | 47/500 [00:06<00:51, 8.80it/s]\n 10%|▉ | 48/500 [00:06<00:51, 8.74it/s]\n 10%|▉ | 49/500 [00:07<00:51, 8.74it/s]\n 10%|█ | 50/500 [00:07<00:51, 8.75it/s]\n 10%|█ | 51/500 [00:07<01:21, 5.54it/s]\n 10%|█ | 52/500 [00:07<01:12, 6.22it/s]\n 11%|█ | 53/500 [00:07<01:05, 6.81it/s]\n 11%|█ | 54/500 [00:07<01:01, 7.30it/s]\n 11%|█ | 55/500 [00:07<00:57, 7.70it/s]\n 11%|█ | 56/500 [00:08<00:55, 7.98it/s]\n 11%|█▏ | 57/500 [00:08<00:54, 8.20it/s]\n 12%|█▏ | 58/500 [00:08<00:52, 8.39it/s]\n 12%|█▏ | 59/500 [00:08<00:51, 8.49it/s]\n 12%|█▏ | 60/500 [00:08<00:51, 8.59it/s]\n 12%|█▏ | 61/500 [00:08<00:50, 8.65it/s]\n 12%|█▏ | 62/500 [00:08<00:50, 8.70it/s]\n 13%|█▎ | 63/500 [00:08<00:50, 8.74it/s]\n 13%|█▎ | 64/500 [00:09<00:49, 8.75it/s]\n 13%|█▎ | 65/500 [00:09<00:49, 8.77it/s]\n 13%|█▎ | 66/500 [00:09<00:49, 8.78it/s]\n 13%|█▎ | 67/500 [00:09<00:49, 8.75it/s]\n 14%|█▎ | 68/500 [00:09<00:49, 8.75it/s]\n 14%|█▍ | 69/500 [00:09<00:49, 8.75it/s]\n 14%|█▍ | 70/500 [00:09<00:49, 8.75it/s]\n 14%|█▍ | 71/500 [00:09<00:49, 8.75it/s]\n 14%|█▍ | 72/500 [00:09<00:48, 8.77it/s]\n 15%|█▍ | 73/500 [00:10<00:48, 8.79it/s]\n 15%|█▍ | 74/500 [00:10<00:48, 8.80it/s]\n 15%|█▌ | 75/500 [00:10<00:48, 8.78it/s]\n 15%|█▌ | 76/500 [00:10<01:16, 5.53it/s]\n 15%|█▌ | 77/500 [00:10<01:08, 6.21it/s]\n 16%|█▌ | 78/500 [00:10<01:01, 6.81it/s]\n 16%|█▌ | 79/500 [00:10<00:57, 7.31it/s]\n 16%|█▌ | 80/500 [00:11<00:54, 7.71it/s]\n 16%|█▌ | 81/500 [00:11<00:52, 8.00it/s]\n 16%|█▋ | 82/500 [00:11<00:50, 8.22it/s]\n 17%|█▋ | 83/500 [00:11<00:49, 8.37it/s]\n 17%|█▋ | 84/500 [00:11<00:49, 8.49it/s]\n 17%|█▋ | 85/500 [00:11<00:48, 8.56it/s]\n 17%|█▋ | 86/500 [00:11<00:48, 8.61it/s]\n 17%|█▋ | 87/500 [00:11<00:47, 8.65it/s]\n 18%|█▊ | 88/500 [00:11<00:47, 8.69it/s]\n 18%|█▊ | 89/500 [00:12<00:47, 8.71it/s]\n 18%|█▊ | 90/500 [00:12<00:46, 8.74it/s]\n 18%|█▊ | 91/500 [00:12<00:46, 8.74it/s]\n 18%|█▊ | 92/500 [00:12<00:46, 8.75it/s]\n 19%|█▊ | 93/500 [00:12<00:46, 8.75it/s]\n 19%|█▉ | 94/500 [00:12<00:46, 8.76it/s]\n 19%|█▉ | 95/500 [00:12<00:46, 8.74it/s]\n 19%|█▉ | 96/500 [00:12<00:46, 8.75it/s]\n 19%|█▉ | 97/500 [00:12<00:46, 8.76it/s]\n 20%|█▉ | 98/500 [00:13<00:45, 8.78it/s]\n 20%|█▉ | 99/500 [00:13<00:45, 8.80it/s]\n 20%|██ | 100/500 [00:13<00:45, 8.79it/s]\n 20%|██ | 101/500 [00:13<01:11, 5.56it/s]\n 20%|██ | 102/500 [00:13<01:05, 6.12it/s]\n 21%|██ | 103/500 [00:13<00:59, 6.72it/s]\n 21%|██ | 104/500 [00:14<00:54, 7.23it/s]\n 21%|██ | 105/500 [00:14<00:51, 7.65it/s]\n 21%|██ | 106/500 [00:14<00:49, 7.94it/s]\n 21%|██▏ | 107/500 [00:14<00:48, 8.18it/s]\n 22%|██▏ | 108/500 [00:14<00:46, 8.35it/s]\n 22%|██▏ | 109/500 [00:14<00:46, 8.46it/s]\n 22%|██▏ | 110/500 [00:14<00:45, 8.55it/s]\n 22%|██▏ | 111/500 [00:14<00:45, 8.60it/s]\n 22%|██▏ | 112/500 [00:14<00:44, 8.64it/s]\n 23%|██▎ | 113/500 [00:15<00:44, 8.66it/s]\n 23%|██▎ | 114/500 [00:15<00:44, 8.69it/s]\n 23%|██▎ | 115/500 [00:15<00:44, 8.72it/s]\n 23%|██▎ | 116/500 [00:15<00:43, 8.73it/s]\n 23%|██▎ | 117/500 [00:15<00:43, 8.74it/s]\n 24%|██▎ | 118/500 [00:15<00:43, 8.76it/s]\n 24%|██▍ | 119/500 [00:15<00:43, 8.77it/s]\n 24%|██▍ | 120/500 [00:15<00:44, 8.51it/s]\n 24%|██▍ | 121/500 [00:15<00:44, 8.59it/s]\n 24%|██▍ | 122/500 [00:16<00:43, 8.66it/s]\n 25%|██▍ | 123/500 [00:16<00:43, 8.72it/s]\n 25%|██▍ | 124/500 [00:16<00:42, 8.75it/s]\n 25%|██▌ | 125/500 [00:16<00:42, 8.76it/s]\n 25%|██▌ | 126/500 [00:16<01:06, 5.62it/s]\n 25%|██▌ | 127/500 [00:16<00:59, 6.30it/s]\n 26%|██▌ | 128/500 [00:16<00:54, 6.88it/s]\n 26%|██▌ | 129/500 [00:17<00:50, 7.32it/s]\n 26%|██▌ | 130/500 [00:17<00:48, 7.70it/s]\n 26%|██▌ | 131/500 [00:17<00:46, 7.99it/s]\n 26%|██▋ | 132/500 [00:17<00:44, 8.21it/s]\n 27%|██▋ | 133/500 [00:17<00:43, 8.36it/s]\n 27%|██▋ | 134/500 [00:17<00:43, 8.48it/s]\n 27%|██▋ | 135/500 [00:17<00:42, 8.56it/s]\n 27%|██▋ | 136/500 [00:17<00:42, 8.62it/s]\n 27%|██▋ | 137/500 [00:18<00:41, 8.67it/s]\n 28%|██▊ | 138/500 [00:18<00:41, 8.70it/s]\n 28%|██▊ | 139/500 [00:18<00:41, 8.72it/s]\n 28%|██▊ | 140/500 [00:18<00:41, 8.74it/s]\n 28%|██▊ | 141/500 [00:18<00:41, 8.74it/s]\n 28%|██▊ | 142/500 [00:18<00:40, 8.76it/s]\n 29%|██▊ | 143/500 [00:18<00:40, 8.75it/s]\n 29%|██▉ | 144/500 [00:18<00:40, 8.76it/s]\n 29%|██▉ | 145/500 [00:18<00:40, 8.76it/s]\n 29%|██▉ | 146/500 [00:19<00:40, 8.78it/s]\n 29%|██▉ | 147/500 [00:19<00:40, 8.78it/s]\n 30%|██▉ | 148/500 [00:19<00:40, 8.77it/s]\n 30%|██▉ | 149/500 [00:19<00:40, 8.76it/s]\n 30%|███ | 150/500 [00:19<00:39, 8.77it/s]\n 30%|███ | 151/500 [00:19<01:01, 5.69it/s]\n 30%|███ | 152/500 [00:19<00:54, 6.36it/s]\n 31%|███ | 153/500 [00:20<00:50, 6.92it/s]\n 31%|███ | 154/500 [00:20<00:46, 7.39it/s]\n 31%|███ | 155/500 [00:20<00:44, 7.74it/s]\n 31%|███ | 156/500 [00:20<00:42, 8.02it/s]\n 31%|███▏ | 157/500 [00:20<00:41, 8.23it/s]\n 32%|███▏ | 158/500 [00:20<00:40, 8.41it/s]\n 32%|███▏ | 159/500 [00:20<00:39, 8.53it/s]\n 32%|███▏ | 160/500 [00:20<00:39, 8.60it/s]\n 32%|███▏ | 161/500 [00:20<00:39, 8.64it/s]\n 32%|███▏ | 162/500 [00:21<00:38, 8.69it/s]\n 33%|███▎ | 163/500 [00:21<00:38, 8.72it/s]\n 33%|███▎ | 164/500 [00:21<00:38, 8.73it/s]\n 33%|███▎ | 165/500 [00:21<00:38, 8.74it/s]\n 33%|███▎ | 166/500 [00:21<00:38, 8.75it/s]\n 33%|███▎ | 167/500 [00:21<00:37, 8.77it/s]\n 34%|███▎ | 168/500 [00:21<00:37, 8.79it/s]\n 34%|███▍ | 169/500 [00:21<00:37, 8.78it/s]\n 34%|███▍ | 170/500 [00:21<00:37, 8.78it/s]\n 34%|███▍ | 171/500 [00:22<00:37, 8.78it/s]\n 34%|███▍ | 172/500 [00:22<00:37, 8.77it/s]\n 35%|███▍ | 173/500 [00:22<00:37, 8.76it/s]\n 35%|███▍ | 174/500 [00:22<00:37, 8.76it/s]\n 35%|███▌ | 175/500 [00:22<00:37, 8.76it/s]\n 35%|███▌ | 176/500 [00:22<00:57, 5.64it/s]\n 35%|███▌ | 177/500 [00:22<00:51, 6.22it/s]\n 36%|███▌ | 178/500 [00:23<00:47, 6.81it/s]\n 36%|███▌ | 179/500 [00:23<00:44, 7.28it/s]\n 36%|███▌ | 180/500 [00:23<00:41, 7.68it/s]\n 36%|███▌ | 181/500 [00:23<00:39, 7.99it/s]\n 36%|███▋ | 182/500 [00:23<00:38, 8.21it/s]\n 37%|███▋ | 183/500 [00:23<00:37, 8.38it/s]\n 37%|███▋ | 184/500 [00:23<00:37, 8.49it/s]\n 37%|███▋ | 185/500 [00:23<00:36, 8.56it/s]\n 37%|███▋ | 186/500 [00:24<00:36, 8.63it/s]\n 37%|███▋ | 187/500 [00:24<00:36, 8.65it/s]\n 38%|███▊ | 188/500 [00:24<00:35, 8.68it/s]\n 38%|███▊ | 189/500 [00:24<00:35, 8.71it/s]\n 38%|███▊ | 190/500 [00:24<00:35, 8.75it/s]\n 38%|███▊ | 191/500 [00:24<00:35, 8.77it/s]\n 38%|███▊ | 192/500 [00:24<00:35, 8.79it/s]\n 39%|███▊ | 193/500 [00:24<00:34, 8.78it/s]\n 39%|███▉ | 194/500 [00:24<00:34, 8.77it/s]\n 39%|███▉ | 195/500 [00:25<00:34, 8.76it/s]\n 39%|███▉ | 196/500 [00:25<00:34, 8.77it/s]\n 39%|███▉ | 197/500 [00:25<00:34, 8.77it/s]\n 40%|███▉ | 198/500 [00:25<00:34, 8.76it/s]\n 40%|███▉ | 199/500 [00:25<00:34, 8.78it/s]\n 40%|████ | 200/500 [00:25<00:34, 8.78it/s]\n 40%|████ | 201/500 [00:25<00:55, 5.35it/s]\n 40%|████ | 202/500 [00:26<00:49, 6.05it/s]\n 41%|████ | 203/500 [00:26<00:44, 6.68it/s]\n 41%|████ | 204/500 [00:26<00:41, 7.21it/s]\n 41%|████ | 205/500 [00:26<00:38, 7.63it/s]\n 41%|████ | 206/500 [00:26<00:36, 7.96it/s]\n 41%|████▏ | 207/500 [00:26<00:35, 8.20it/s]\n 42%|████▏ | 208/500 [00:26<00:34, 8.38it/s]\n 42%|████▏ | 209/500 [00:26<00:34, 8.51it/s]\n 42%|████▏ | 210/500 [00:26<00:33, 8.61it/s]\n 42%|████▏ | 211/500 [00:27<00:33, 8.67it/s]\n 42%|████▏ | 212/500 [00:27<00:33, 8.72it/s]\n 43%|████▎ | 213/500 [00:27<00:32, 8.75it/s]\n 43%|████▎ | 214/500 [00:27<00:32, 8.78it/s]\n 43%|████▎ | 215/500 [00:27<00:32, 8.80it/s]\n 43%|████▎ | 216/500 [00:27<00:32, 8.81it/s]\n 43%|████▎ | 217/500 [00:27<00:32, 8.83it/s]\n 44%|████▎ | 218/500 [00:27<00:31, 8.84it/s]\n 44%|████▍ | 219/500 [00:28<00:31, 8.84it/s]\n 44%|████▍ | 220/500 [00:28<00:31, 8.85it/s]\n 44%|████▍ | 221/500 [00:28<00:31, 8.85it/s]\n 44%|████▍ | 222/500 [00:28<00:31, 8.85it/s]\n 45%|████▍ | 223/500 [00:28<00:31, 8.85it/s]\n 45%|████▍ | 224/500 [00:28<00:31, 8.85it/s]\n 45%|████▌ | 225/500 [00:28<00:31, 8.85it/s]\n 45%|████▌ | 226/500 [00:28<00:46, 5.89it/s]\n 45%|████▌ | 227/500 [00:29<00:41, 6.54it/s]\n 46%|████▌ | 228/500 [00:29<00:38, 7.09it/s]\n 46%|████▌ | 229/500 [00:29<00:35, 7.55it/s]\n 46%|████▌ | 230/500 [00:29<00:34, 7.90it/s]\n 46%|████▌ | 231/500 [00:29<00:32, 8.15it/s]\n 46%|████▋ | 232/500 [00:29<00:32, 8.35it/s]\n 47%|████▋ | 233/500 [00:29<00:31, 8.50it/s]\n 47%|████▋ | 234/500 [00:29<00:30, 8.60it/s]\n 47%|████▋ | 235/500 [00:30<00:30, 8.67it/s]\n 47%|████▋ | 236/500 [00:30<00:30, 8.72it/s]\n 47%|████▋ | 237/500 [00:30<00:30, 8.75it/s]\n 48%|████▊ | 238/500 [00:30<00:29, 8.76it/s]\n 48%|████▊ | 239/500 [00:30<00:29, 8.78it/s]\n 48%|████▊ | 240/500 [00:30<00:29, 8.80it/s]\n 48%|████▊ | 241/500 [00:30<00:29, 8.81it/s]\n 48%|████▊ | 242/500 [00:30<00:29, 8.83it/s]\n 49%|████▊ | 243/500 [00:30<00:29, 8.84it/s]\n 49%|████▉ | 244/500 [00:31<00:28, 8.84it/s]\n 49%|████▉ | 245/500 [00:31<00:28, 8.84it/s]\n 49%|████▉ | 246/500 [00:31<00:28, 8.83it/s]\n 49%|████▉ | 247/500 [00:31<00:28, 8.83it/s]\n 50%|████▉ | 248/500 [00:31<00:28, 8.83it/s]\n 50%|████▉ | 249/500 [00:31<00:28, 8.83it/s]\n 50%|█████ | 250/500 [00:31<00:28, 8.84it/s]\n 50%|█████ | 251/500 [00:32<00:41, 5.95it/s]\n 50%|█████ | 252/500 [00:32<00:37, 6.59it/s]\n 51%|█████ | 253/500 [00:32<00:34, 7.13it/s]\n 51%|█████ | 254/500 [00:32<00:32, 7.57it/s]\n 51%|█████ | 255/500 [00:32<00:30, 7.91it/s]\n 51%|█████ | 256/500 [00:32<00:29, 8.17it/s]\n 51%|█████▏ | 257/500 [00:32<00:29, 8.36it/s]\n 52%|█████▏ | 258/500 [00:32<00:28, 8.49it/s]\n 52%|█████▏ | 259/500 [00:32<00:28, 8.59it/s]\n 52%|█████▏ | 260/500 [00:33<00:27, 8.67it/s]\n 52%|█████▏ | 261/500 [00:33<00:27, 8.71it/s]\n 52%|█████▏ | 262/500 [00:33<00:27, 8.74it/s]\n 53%|█████▎ | 263/500 [00:33<00:27, 8.76it/s]\n 53%|█████▎ | 264/500 [00:33<00:26, 8.78it/s]\n 53%|█████▎ | 265/500 [00:33<00:26, 8.79it/s]\n 53%|█████▎ | 266/500 [00:33<00:26, 8.80it/s]\n 53%|█████▎ | 267/500 [00:33<00:26, 8.81it/s]\n 54%|█████▎ | 268/500 [00:33<00:26, 8.81it/s]\n 54%|█████▍ | 269/500 [00:34<00:26, 8.82it/s]\n 54%|█████▍ | 270/500 [00:34<00:26, 8.82it/s]\n 54%|█████▍ | 271/500 [00:34<00:25, 8.83it/s]\n 54%|█████▍ | 272/500 [00:34<00:25, 8.84it/s]\n 55%|█████▍ | 273/500 [00:34<00:25, 8.83it/s]\n 55%|█████▍ | 274/500 [00:34<00:25, 8.83it/s]\n 55%|█████▌ | 275/500 [00:34<00:25, 8.84it/s]\n 55%|█████▌ | 276/500 [00:35<00:42, 5.26it/s]\n 55%|█████▌ | 277/500 [00:35<00:37, 5.97it/s]\n 56%|█████▌ | 278/500 [00:35<00:33, 6.62it/s]\n 56%|█████▌ | 279/500 [00:35<00:30, 7.15it/s]\n 56%|█████▌ | 280/500 [00:35<00:29, 7.58it/s]\n 56%|█████▌ | 281/500 [00:35<00:27, 7.92it/s]\n 56%|█████▋ | 282/500 [00:35<00:26, 8.17it/s]\n 57%|█████▋ | 283/500 [00:35<00:25, 8.36it/s]\n 57%|█████▋ | 284/500 [00:35<00:25, 8.49it/s]\n 57%|█████▋ | 285/500 [00:36<00:25, 8.59it/s]\n 57%|█████▋ | 286/500 [00:36<00:24, 8.66it/s]\n 57%|█████▋ | 287/500 [00:36<00:24, 8.72it/s]\n 58%|█████▊ | 288/500 [00:36<00:24, 8.75it/s]\n 58%|█████▊ | 289/500 [00:36<00:24, 8.77it/s]\n 58%|█████▊ | 290/500 [00:36<00:23, 8.80it/s]\n 58%|█████▊ | 291/500 [00:36<00:23, 8.81it/s]\n 58%|█████▊ | 292/500 [00:36<00:23, 8.81it/s]\n 59%|█████▊ | 293/500 [00:37<00:23, 8.82it/s]\n 59%|█████▉ | 294/500 [00:37<00:23, 8.82it/s]\n 59%|█████▉ | 295/500 [00:37<00:23, 8.81it/s]\n 59%|█████▉ | 296/500 [00:37<00:23, 8.81it/s]\n 59%|█████▉ | 297/500 [00:37<00:23, 8.82it/s]\n 60%|█████▉ | 298/500 [00:37<00:22, 8.81it/s]\n 60%|█████▉ | 299/500 [00:37<00:22, 8.80it/s]\n 60%|██████ | 300/500 [00:37<00:22, 8.81it/s]\n 60%|██████ | 301/500 [00:38<00:39, 5.00it/s]\n 60%|██████ | 302/500 [00:38<00:34, 5.73it/s]\n 61%|██████ | 303/500 [00:38<00:30, 6.41it/s]\n 61%|██████ | 304/500 [00:38<00:28, 6.99it/s]\n 61%|██████ | 305/500 [00:38<00:26, 7.46it/s]\n 61%|██████ | 306/500 [00:38<00:24, 7.83it/s]\n 61%|██████▏ | 307/500 [00:38<00:23, 8.11it/s]\n 62%|██████▏ | 308/500 [00:39<00:23, 8.32it/s]\n 62%|██████▏ | 309/500 [00:39<00:22, 8.47it/s]\n 62%|██████▏ | 310/500 [00:39<00:22, 8.58it/s]\n 62%|██████▏ | 311/500 [00:39<00:21, 8.65it/s]\n 62%|██████▏ | 312/500 [00:39<00:21, 8.71it/s]\n 63%|██████▎ | 313/500 [00:39<00:21, 8.75it/s]\n 63%|██████▎ | 314/500 [00:39<00:21, 8.77it/s]\n 63%|██████▎ | 315/500 [00:39<00:21, 8.79it/s]\n 63%|██████▎ | 316/500 [00:39<00:20, 8.81it/s]\n 63%|██████▎ | 317/500 [00:40<00:20, 8.82it/s]\n 64%|██████▎ | 318/500 [00:40<00:20, 8.83it/s]\n 64%|██████▍ | 319/500 [00:40<00:20, 8.84it/s]\n 64%|██████▍ | 320/500 [00:40<00:20, 8.85it/s]\n 64%|██████▍ | 321/500 [00:40<00:20, 8.85it/s]\n 64%|██████▍ | 322/500 [00:40<00:20, 8.85it/s]\n 65%|██████▍ | 323/500 [00:40<00:19, 8.85it/s]\n 65%|██████▍ | 324/500 [00:40<00:19, 8.85it/s]\n 65%|██████▌ | 325/500 [00:40<00:19, 8.85it/s]\n 65%|██████▌ | 326/500 [00:41<00:36, 4.73it/s]\n 65%|██████▌ | 327/500 [00:41<00:31, 5.49it/s]\n 66%|██████▌ | 328/500 [00:41<00:27, 6.20it/s]\n 66%|██████▌ | 329/500 [00:41<00:25, 6.80it/s]\n 66%|██████▌ | 330/500 [00:41<00:23, 7.31it/s]\n 66%|██████▌ | 331/500 [00:41<00:21, 7.71it/s]\n 66%|██████▋ | 332/500 [00:42<00:20, 8.01it/s]\n 67%|██████▋ | 333/500 [00:42<00:20, 8.24it/s]\n 67%|██████▋ | 334/500 [00:42<00:19, 8.41it/s]\n 67%|██████▋ | 335/500 [00:42<00:19, 8.54it/s]\n 67%|██████▋ | 336/500 [00:42<00:19, 8.63it/s]\n 67%|██████▋ | 337/500 [00:42<00:18, 8.69it/s]\n 68%|██████▊ | 338/500 [00:42<00:18, 8.73it/s]\n 68%|██████▊ | 339/500 [00:42<00:18, 8.77it/s]\n 68%|██████▊ | 340/500 [00:42<00:18, 8.79it/s]\n 68%|██████▊ | 341/500 [00:43<00:18, 8.80it/s]\n 68%|██████▊ | 342/500 [00:43<00:17, 8.81it/s]\n 69%|██████▊ | 343/500 [00:43<00:17, 8.82it/s]\n 69%|██████▉ | 344/500 [00:43<00:17, 8.83it/s]\n 69%|██████▉ | 345/500 [00:43<00:17, 8.84it/s]\n 69%|██████▉ | 346/500 [00:43<00:17, 8.84it/s]\n 69%|██████▉ | 347/500 [00:43<00:17, 8.84it/s]\n 70%|██████▉ | 348/500 [00:43<00:17, 8.84it/s]\n 70%|██████▉ | 349/500 [00:43<00:17, 8.84it/s]\n 70%|███████ | 350/500 [00:44<00:16, 8.84it/s]\n 70%|███████ | 351/500 [00:44<00:30, 4.93it/s]\n 70%|███████ | 352/500 [00:44<00:26, 5.67it/s]\n 71%|███████ | 353/500 [00:44<00:23, 6.36it/s]\n 71%|███████ | 354/500 [00:44<00:21, 6.94it/s]\n 71%|███████ | 355/500 [00:44<00:19, 7.42it/s]\n 71%|███████ | 356/500 [00:45<00:18, 7.80it/s]\n 71%|███████▏ | 357/500 [00:45<00:17, 8.08it/s]\n 72%|███████▏ | 358/500 [00:45<00:17, 8.29it/s]\n 72%|███████▏ | 359/500 [00:45<00:16, 8.45it/s]\n 72%|███████▏ | 360/500 [00:45<00:16, 8.56it/s]\n 72%|███████▏ | 361/500 [00:45<00:16, 8.65it/s]\n 72%|███████▏ | 362/500 [00:45<00:15, 8.70it/s]\n 73%|███████▎ | 363/500 [00:45<00:15, 8.73it/s]\n 73%|███████▎ | 364/500 [00:45<00:15, 8.76it/s]\n 73%|███████▎ | 365/500 [00:46<00:15, 8.79it/s]\n 73%|███████▎ | 366/500 [00:46<00:15, 8.80it/s]\n 73%|███████▎ | 367/500 [00:46<00:15, 8.81it/s]\n 74%|███████▎ | 368/500 [00:46<00:14, 8.82it/s]\n 74%|███████▍ | 369/500 [00:46<00:14, 8.83it/s]\n 74%|███████▍ | 370/500 [00:46<00:14, 8.83it/s]\n 74%|███████▍ | 371/500 [00:46<00:14, 8.83it/s]\n 74%|███████▍ | 372/500 [00:46<00:14, 8.83it/s]\n 75%|███████▍ | 373/500 [00:46<00:14, 8.82it/s]\n 75%|███████▍ | 374/500 [00:47<00:14, 8.83it/s]\n 75%|███████▌ | 375/500 [00:47<00:14, 8.83it/s]\n 75%|███████▌ | 376/500 [00:47<00:25, 4.90it/s]\n 75%|███████▌ | 377/500 [00:47<00:21, 5.65it/s]\n 76%|███████▌ | 378/500 [00:47<00:19, 6.33it/s]\n 76%|███████▌ | 379/500 [00:47<00:17, 6.92it/s]\n 76%|███████▌ | 380/500 [00:48<00:16, 7.41it/s]\n 76%|███████▌ | 381/500 [00:48<00:15, 7.79it/s]\n 76%|███████▋ | 382/500 [00:48<00:14, 8.08it/s]\n 77%|███████▋ | 383/500 [00:48<00:14, 8.29it/s]\n 77%|███████▋ | 384/500 [00:48<00:13, 8.41it/s]\n 77%|███████▋ | 385/500 [00:48<00:13, 8.54it/s]\n 77%|███████▋ | 386/500 [00:48<00:13, 8.63it/s]\n 77%|███████▋ | 387/500 [00:48<00:12, 8.69it/s]\n 78%|███████▊ | 388/500 [00:48<00:12, 8.74it/s]\n 78%|███████▊ | 389/500 [00:49<00:12, 8.77it/s]\n 78%|███████▊ | 390/500 [00:49<00:12, 8.80it/s]\n 78%|███████▊ | 391/500 [00:49<00:12, 8.82it/s]\n 78%|███████▊ | 392/500 [00:49<00:12, 8.84it/s]\n 79%|███████▊ | 393/500 [00:49<00:12, 8.84it/s]\n 79%|███████▉ | 394/500 [00:49<00:11, 8.85it/s]\n 79%|███████▉ | 395/500 [00:49<00:11, 8.86it/s]\n 79%|███████▉ | 396/500 [00:49<00:11, 8.86it/s]\n 79%|███████▉ | 397/500 [00:50<00:11, 8.86it/s]\n 80%|███████▉ | 398/500 [00:50<00:11, 8.86it/s]\n 80%|███████▉ | 399/500 [00:50<00:11, 8.85it/s]\n 80%|████████ | 400/500 [00:50<00:11, 8.85it/s]\n 80%|████████ | 401/500 [00:50<00:16, 6.16it/s]\n 80%|████████ | 402/500 [00:50<00:14, 6.77it/s]\n 81%|████████ | 403/500 [00:50<00:13, 7.29it/s]\n 81%|████████ | 404/500 [00:50<00:12, 7.70it/s]\n 81%|████████ | 405/500 [00:51<00:11, 8.02it/s]\n 81%|████████ | 406/500 [00:51<00:11, 8.25it/s]\n 81%|████████▏ | 407/500 [00:51<00:11, 8.42it/s]\n 82%|████████▏ | 408/500 [00:51<00:10, 8.55it/s]\n 82%|████████▏ | 409/500 [00:51<00:10, 8.63it/s]\n 82%|████████▏ | 410/500 [00:51<00:10, 8.69it/s]\n 82%|████████▏ | 411/500 [00:51<00:10, 8.74it/s]\n 82%|████████▏ | 412/500 [00:51<00:10, 8.78it/s]\n 83%|████████▎ | 413/500 [00:51<00:09, 8.80it/s]\n 83%|████████▎ | 414/500 [00:52<00:09, 8.82it/s]\n 83%|████████▎ | 415/500 [00:52<00:09, 8.83it/s]\n 83%|████████▎ | 416/500 [00:52<00:09, 8.84it/s]\n 83%|████████▎ | 417/500 [00:52<00:09, 8.85it/s]\n 84%|████████▎ | 418/500 [00:52<00:09, 8.85it/s]\n 84%|████████▍ | 419/500 [00:52<00:09, 8.86it/s]\n 84%|████████▍ | 420/500 [00:52<00:09, 8.86it/s]\n 84%|████████▍ | 421/500 [00:52<00:08, 8.86it/s]\n 84%|████████▍ | 422/500 [00:52<00:08, 8.84it/s]\n 85%|████████▍ | 423/500 [00:53<00:08, 8.84it/s]\n 85%|████████▍ | 424/500 [00:53<00:08, 8.84it/s]\n 85%|████████▌ | 425/500 [00:53<00:08, 8.84it/s]\n 85%|████████▌ | 426/500 [00:53<00:13, 5.46it/s]\n 85%|████████▌ | 427/500 [00:53<00:11, 6.16it/s]\n 86%|████████▌ | 428/500 [00:53<00:10, 6.77it/s]\n 86%|████████▌ | 429/500 [00:54<00:09, 7.29it/s]\n 86%|████████▌ | 430/500 [00:54<00:09, 7.69it/s]\n 86%|████████▌ | 431/500 [00:54<00:08, 8.01it/s]\n 86%|████████▋ | 432/500 [00:54<00:08, 8.24it/s]\n 87%|████████▋ | 433/500 [00:54<00:07, 8.41it/s]\n 87%|████████▋ | 434/500 [00:54<00:07, 8.53it/s]\n 87%|████████▋ | 435/500 [00:54<00:07, 8.62it/s]\n 87%|████████▋ | 436/500 [00:54<00:07, 8.68it/s]\n 87%|████████▋ | 437/500 [00:54<00:07, 8.73it/s]\n 88%|████████▊ | 438/500 [00:55<00:07, 8.77it/s]\n 88%|████████▊ | 439/500 [00:55<00:06, 8.79it/s]\n 88%|████████▊ | 440/500 [00:55<00:06, 8.80it/s]\n 88%|████████▊ | 441/500 [00:55<00:06, 8.80it/s]\n 88%|████████▊ | 442/500 [00:55<00:06, 8.80it/s]\n 89%|████████▊ | 443/500 [00:55<00:06, 8.81it/s]\n 89%|████████▉ | 444/500 [00:55<00:06, 8.81it/s]\n 89%|████████▉ | 445/500 [00:55<00:06, 8.80it/s]\n 89%|████████▉ | 446/500 [00:55<00:06, 8.82it/s]\n 89%|████████▉ | 447/500 [00:56<00:06, 8.83it/s]\n 90%|████████▉ | 448/500 [00:56<00:05, 8.84it/s]\n 90%|████████▉ | 449/500 [00:56<00:05, 8.85it/s]\n 90%|█████████ | 450/500 [00:56<00:05, 8.86it/s]\n 90%|█████████ | 451/500 [00:56<00:07, 6.21it/s]\n 90%|█████████ | 452/500 [00:56<00:07, 6.81it/s]\n 91%|█████████ | 453/500 [00:56<00:06, 7.32it/s]\n 91%|█████████ | 454/500 [00:57<00:05, 7.73it/s]\n 91%|█████████ | 455/500 [00:57<00:05, 8.03it/s]\n 91%|█████████ | 456/500 [00:57<00:05, 8.26it/s]\n 91%|█████████▏| 457/500 [00:57<00:05, 8.43it/s]\n 92%|█████████▏| 458/500 [00:57<00:04, 8.55it/s]\n 92%|█████████▏| 459/500 [00:57<00:04, 8.64it/s]\n 92%|█████████▏| 460/500 [00:57<00:04, 8.71it/s]\n 92%|█████████▏| 461/500 [00:57<00:04, 8.75it/s]\n 92%|█████████▏| 462/500 [00:57<00:04, 8.78it/s]\n 93%|█████████▎| 463/500 [00:58<00:04, 8.81it/s]\n 93%|█████████▎| 464/500 [00:58<00:04, 8.82it/s]\n 93%|█████████▎| 465/500 [00:58<00:03, 8.82it/s]\n 93%|█████████▎| 466/500 [00:58<00:03, 8.82it/s]\n 93%|█████████▎| 467/500 [00:58<00:03, 8.81it/s]\n 94%|█████████▎| 468/500 [00:58<00:03, 8.83it/s]\n 94%|█████████▍| 469/500 [00:58<00:03, 8.83it/s]\n 94%|█████████▍| 470/500 [00:58<00:03, 8.83it/s]\n 94%|█████████▍| 471/500 [00:58<00:03, 8.83it/s]\n 94%|█████████▍| 472/500 [00:59<00:03, 8.83it/s]\n 95%|█████████▍| 473/500 [00:59<00:03, 8.84it/s]\n 95%|█████████▍| 474/500 [00:59<00:02, 8.85it/s]\n 95%|█████████▌| 475/500 [00:59<00:02, 8.85it/s]\n 95%|█████████▌| 476/500 [00:59<00:03, 6.22it/s]\n 95%|█████████▌| 477/500 [00:59<00:03, 6.82it/s]\n 96%|█████████▌| 478/500 [00:59<00:03, 7.32it/s]\n 96%|█████████▌| 479/500 [00:59<00:02, 7.72it/s]\n 96%|█████████▌| 480/500 [01:00<00:02, 8.02it/s]\n 96%|█████████▌| 481/500 [01:00<00:02, 8.25it/s]\n 96%|█████████▋| 482/500 [01:00<00:02, 8.43it/s]\n 97%|█████████▋| 483/500 [01:00<00:01, 8.55it/s]\n 97%|█████████▋| 484/500 [01:00<00:01, 8.64it/s]\n 97%|█████████▋| 485/500 [01:00<00:01, 8.71it/s]\n 97%|█████████▋| 486/500 [01:00<00:01, 8.75it/s]\n 97%|█████████▋| 487/500 [01:00<00:01, 8.78it/s]\n 98%|█████████▊| 488/500 [01:01<00:01, 8.81it/s]\n 98%|█████████▊| 489/500 [01:01<00:01, 8.83it/s]\n 98%|█████████▊| 490/500 [01:01<00:01, 8.84it/s]\n 98%|█████████▊| 491/500 [01:01<00:01, 8.85it/s]\n 98%|█████████▊| 492/500 [01:01<00:00, 8.84it/s]\n 99%|█████████▊| 493/500 [01:01<00:00, 8.84it/s]\n 99%|█████████▉| 494/500 [01:01<00:00, 8.84it/s]\n 99%|█████████▉| 495/500 [01:01<00:00, 8.83it/s]\n 99%|█████████▉| 496/500 [01:01<00:00, 8.83it/s]\n 99%|█████████▉| 497/500 [01:02<00:00, 8.84it/s]\n100%|█████████▉| 498/500 [01:02<00:00, 8.84it/s]\n100%|█████████▉| 499/500 [01:02<00:00, 8.84it/s]\n100%|██████████| 500/500 [01:02<00:00, 8.84it/s]\n100%|██████████| 500/500 [01:02<00:00, 8.02it/s]", "metrics": { "predict_time": 87.166102, "total_time": 87.442241 }, "output": [ "https://replicate.delivery/mgxm/9143aab6-0adf-4c5b-a58c-e38166a48c58/00000.png" ], "started_at": "2022-10-10T19:34:29.243111Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/thh6qyqtmjbd5adxy7w5s3pfhy", "cancel": "https://api.replicate.com/v1/predictions/thh6qyqtmjbd5adxy7w5s3pfhy/cancel" }, "version": "760f4043f4f53f4bb5e9b3d1f9268030ae514638e77732916344f1dd4b305607" }
Generated in$ /root/.pyenv/versions/3.10.7/bin/python sample.py --model_path inpaint.pt --edit /tmp/tmpc_o91y0t205032562_345087143808969_4674423480430035886_n.png --mask /tmp/tmpvkqeu1cpface_mask.png --steps 500 --text Jon snow from the game of thrones --num_batches 1 Using device: cuda:0 making attention of type 'vanilla' with 512 in_channels Working with z of shape (1, 4, 32, 32) = 4096 dimensions. making attention of type 'vanilla' with 512 in_channels Some weights of the model checkpoint at openai/clip-vit-large-patch14 were not used when initializing CLIPTextModel: ['vision_model.encoder.layers.19.self_attn.k_proj.bias', 'vision_model.encoder.layers.21.layer_norm1.weight', 'vision_model.encoder.layers.0.self_attn.out_proj.bias', 'vision_model.encoder.layers.14.layer_norm1.bias', 'vision_model.encoder.layers.21.mlp.fc2.weight', 'vision_model.encoder.layers.3.mlp.fc1.bias', 'vision_model.encoder.layers.11.mlp.fc1.weight', 'vision_model.encoder.layers.3.self_attn.v_proj.bias', 'vision_model.encoder.layers.10.mlp.fc2.weight', 'vision_model.encoder.layers.8.self_attn.q_proj.bias', 'vision_model.encoder.layers.6.layer_norm1.bias', 'vision_model.encoder.layers.18.self_attn.k_proj.bias', 'vision_model.encoder.layers.8.layer_norm2.bias', 'vision_model.encoder.layers.20.mlp.fc1.bias', 'vision_model.encoder.layers.2.layer_norm1.bias', 'vision_model.encoder.layers.17.self_attn.v_proj.bias', 'vision_model.encoder.layers.1.self_attn.q_proj.bias', 'vision_model.encoder.layers.8.mlp.fc1.weight', 'vision_model.encoder.layers.13.layer_norm1.bias', 'vision_model.encoder.layers.21.self_attn.q_proj.weight', 'vision_model.encoder.layers.13.self_attn.k_proj.bias', 'vision_model.encoder.layers.10.self_attn.v_proj.bias', 'vision_model.encoder.layers.6.layer_norm2.weight', 'vision_model.encoder.layers.11.layer_norm2.weight', 'vision_model.encoder.layers.18.mlp.fc2.weight', 'vision_model.encoder.layers.8.layer_norm1.bias', 'vision_model.encoder.layers.4.mlp.fc2.weight', 'vision_model.encoder.layers.2.self_attn.out_proj.weight', 'vision_model.encoder.layers.8.mlp.fc1.bias', 'vision_model.encoder.layers.11.mlp.fc2.bias', 'vision_model.encoder.layers.17.layer_norm1.bias', 'vision_model.encoder.layers.2.layer_norm2.weight', 'vision_model.embeddings.position_ids', 'vision_model.encoder.layers.2.mlp.fc1.weight', 'vision_model.encoder.layers.20.self_attn.v_proj.bias', 'vision_model.encoder.layers.17.layer_norm2.bias', 'vision_model.encoder.layers.4.self_attn.out_proj.weight', 'vision_model.encoder.layers.4.self_attn.v_proj.weight', 'vision_model.encoder.layers.17.self_attn.q_proj.weight', 'vision_model.encoder.layers.20.self_attn.v_proj.weight', 'vision_model.encoder.layers.7.mlp.fc2.weight', 'vision_model.encoder.layers.3.layer_norm1.weight', 'vision_model.encoder.layers.22.self_attn.v_proj.weight', 'vision_model.encoder.layers.21.layer_norm1.bias', 'vision_model.encoder.layers.2.mlp.fc2.bias', 'vision_model.encoder.layers.4.self_attn.q_proj.bias', 'vision_model.encoder.layers.6.self_attn.k_proj.weight', 'vision_model.encoder.layers.6.layer_norm2.bias', 'vision_model.encoder.layers.11.mlp.fc2.weight', 'vision_model.encoder.layers.15.mlp.fc1.bias', 'vision_model.encoder.layers.15.layer_norm2.weight', 'vision_model.encoder.layers.4.self_attn.k_proj.weight', 'vision_model.encoder.layers.9.self_attn.v_proj.weight', 'vision_model.encoder.layers.16.self_attn.q_proj.weight', 'vision_model.encoder.layers.10.layer_norm1.bias', 'vision_model.encoder.layers.9.self_attn.k_proj.bias', 'vision_model.encoder.layers.7.self_attn.q_proj.weight', 'vision_model.encoder.layers.13.self_attn.q_proj.bias', 'vision_model.encoder.layers.5.layer_norm2.bias', 'vision_model.encoder.layers.15.self_attn.q_proj.weight', 'vision_model.encoder.layers.15.mlp.fc1.weight', 'vision_model.encoder.layers.21.self_attn.out_proj.weight', 'vision_model.encoder.layers.13.self_attn.q_proj.weight', 'vision_model.encoder.layers.19.self_attn.q_proj.weight', 'vision_model.encoder.layers.17.self_attn.out_proj.weight', 'vision_model.encoder.layers.10.self_attn.out_proj.bias', 'vision_model.encoder.layers.19.mlp.fc2.weight', 'vision_model.encoder.layers.13.self_attn.out_proj.bias', 'vision_model.encoder.layers.16.mlp.fc2.weight', 'vision_model.encoder.layers.3.mlp.fc1.weight', 'vision_model.encoder.layers.4.mlp.fc1.bias', 'vision_model.encoder.layers.0.mlp.fc2.bias', 'vision_model.encoder.layers.21.mlp.fc2.bias', 'vision_model.encoder.layers.18.layer_norm2.bias', 'vision_model.encoder.layers.23.mlp.fc2.bias', 'vision_model.encoder.layers.8.mlp.fc2.bias', 'vision_model.encoder.layers.21.self_attn.k_proj.weight', 'vision_model.encoder.layers.7.mlp.fc1.bias', 'vision_model.encoder.layers.19.layer_norm1.weight', 'vision_model.encoder.layers.0.layer_norm1.weight', 'vision_model.encoder.layers.4.mlp.fc1.weight', 'vision_model.encoder.layers.16.self_attn.q_proj.bias', 'vision_model.encoder.layers.1.layer_norm2.bias', 'vision_model.encoder.layers.20.layer_norm2.bias', 'vision_model.encoder.layers.12.self_attn.k_proj.bias', 'vision_model.encoder.layers.4.layer_norm1.weight', 'vision_model.encoder.layers.20.self_attn.q_proj.bias', 'vision_model.encoder.layers.6.self_attn.q_proj.bias', 'vision_model.encoder.layers.3.layer_norm2.weight', 'vision_model.encoder.layers.4.self_attn.k_proj.bias', 'vision_model.encoder.layers.5.self_attn.out_proj.bias', 'vision_model.encoder.layers.10.mlp.fc1.weight', 'vision_model.encoder.layers.17.self_attn.out_proj.bias', 'vision_model.encoder.layers.5.layer_norm1.weight', 'vision_model.encoder.layers.7.mlp.fc1.weight', 'vision_model.encoder.layers.2.self_attn.q_proj.weight', 'vision_model.encoder.layers.7.layer_norm2.bias', 'vision_model.encoder.layers.0.mlp.fc1.bias', 'vision_model.encoder.layers.8.self_attn.v_proj.weight', 'text_projection.weight', 'vision_model.encoder.layers.6.mlp.fc1.weight', 'vision_model.encoder.layers.20.layer_norm1.weight', 'vision_model.encoder.layers.21.self_attn.v_proj.weight', 'vision_model.encoder.layers.8.self_attn.k_proj.weight', 'vision_model.encoder.layers.13.self_attn.v_proj.bias', 'vision_model.encoder.layers.8.self_attn.out_proj.weight', 'vision_model.encoder.layers.13.self_attn.k_proj.weight', 'vision_model.encoder.layers.8.self_attn.out_proj.bias', 'vision_model.encoder.layers.12.layer_norm1.bias', 'vision_model.encoder.layers.7.self_attn.out_proj.bias', 'vision_model.encoder.layers.20.layer_norm1.bias', 'vision_model.encoder.layers.15.self_attn.k_proj.weight', 'vision_model.encoder.layers.22.mlp.fc1.weight', 'vision_model.encoder.layers.11.self_attn.q_proj.weight', 'vision_model.encoder.layers.1.self_attn.k_proj.bias', 'vision_model.encoder.layers.14.self_attn.k_proj.weight', 'vision_model.encoder.layers.22.self_attn.k_proj.bias', 'vision_model.encoder.layers.3.self_attn.q_proj.bias', 'vision_model.encoder.layers.12.mlp.fc1.bias', 'vision_model.encoder.layers.8.layer_norm2.weight', 'vision_model.encoder.layers.19.self_attn.k_proj.weight', 'vision_model.encoder.layers.17.layer_norm1.weight', 'vision_model.encoder.layers.17.self_attn.k_proj.weight', 'vision_model.encoder.layers.13.layer_norm1.weight', 'vision_model.encoder.layers.22.self_attn.out_proj.bias', 'vision_model.encoder.layers.8.self_attn.k_proj.bias', 'vision_model.encoder.layers.10.self_attn.k_proj.bias', 'vision_model.encoder.layers.18.self_attn.v_proj.weight', 'vision_model.encoder.layers.18.self_attn.out_proj.bias', 'vision_model.encoder.layers.15.layer_norm1.weight', 'vision_model.encoder.layers.13.mlp.fc2.bias', 'vision_model.encoder.layers.23.layer_norm1.bias', 'vision_model.encoder.layers.7.self_attn.q_proj.bias', 'vision_model.encoder.layers.18.layer_norm1.bias', 'vision_model.encoder.layers.23.mlp.fc1.weight', 'vision_model.encoder.layers.16.self_attn.v_proj.weight', 'vision_model.encoder.layers.20.self_attn.k_proj.weight', 'vision_model.encoder.layers.11.self_attn.v_proj.bias', 'vision_model.encoder.layers.19.mlp.fc2.bias', 'vision_model.encoder.layers.13.mlp.fc1.bias', 'vision_model.encoder.layers.3.self_attn.out_proj.bias', 'vision_model.encoder.layers.3.mlp.fc2.bias', 'vision_model.encoder.layers.2.self_attn.v_proj.weight', 'vision_model.encoder.layers.5.mlp.fc1.bias', 'vision_model.encoder.layers.5.mlp.fc2.bias', 'vision_model.encoder.layers.1.mlp.fc2.bias', 'vision_model.encoder.layers.19.layer_norm2.bias', 'vision_model.encoder.layers.15.layer_norm1.bias', 'vision_model.encoder.layers.16.self_attn.k_proj.bias', 'vision_model.encoder.layers.3.self_attn.k_proj.weight', 'vision_model.encoder.layers.3.layer_norm2.bias', 'vision_model.encoder.layers.18.mlp.fc1.bias', 'vision_model.encoder.layers.7.layer_norm2.weight', 'vision_model.encoder.layers.2.self_attn.v_proj.bias', 'vision_model.encoder.layers.3.self_attn.k_proj.bias', 'vision_model.encoder.layers.0.self_attn.v_proj.weight', 'vision_model.encoder.layers.0.self_attn.q_proj.bias', 'vision_model.encoder.layers.12.self_attn.v_proj.bias', 'vision_model.encoder.layers.14.layer_norm1.weight', 'vision_model.encoder.layers.4.layer_norm2.bias', 'vision_model.encoder.layers.20.self_attn.out_proj.bias', 'vision_model.encoder.layers.12.self_attn.out_proj.bias', 'vision_model.encoder.layers.6.mlp.fc2.weight', 'vision_model.encoder.layers.21.self_attn.out_proj.bias', 'vision_model.encoder.layers.22.mlp.fc2.bias', 'vision_model.encoder.layers.18.mlp.fc2.bias', 'vision_model.embeddings.patch_embedding.weight', 'vision_model.encoder.layers.9.self_attn.v_proj.bias', 'vision_model.encoder.layers.13.self_attn.v_proj.weight', 'vision_model.encoder.layers.9.layer_norm2.weight', 'vision_model.encoder.layers.10.layer_norm2.bias', 'vision_model.encoder.layers.22.layer_norm2.bias', 'vision_model.encoder.layers.22.layer_norm2.weight', 'vision_model.encoder.layers.0.self_attn.k_proj.bias', 'vision_model.encoder.layers.0.self_attn.k_proj.weight', 'vision_model.encoder.layers.7.self_attn.v_proj.weight', 'vision_model.encoder.layers.3.self_attn.q_proj.weight', 'vision_model.encoder.layers.16.self_attn.v_proj.bias', 'vision_model.encoder.layers.23.self_attn.out_proj.weight', 'vision_model.encoder.layers.10.self_attn.out_proj.weight', 'vision_model.encoder.layers.14.self_attn.v_proj.bias', 'vision_model.encoder.layers.4.mlp.fc2.bias', 'vision_model.encoder.layers.11.self_attn.v_proj.weight', 'vision_model.encoder.layers.12.mlp.fc2.weight', 'vision_model.encoder.layers.7.self_attn.v_proj.bias', 'vision_model.encoder.layers.1.self_attn.q_proj.weight', 'vision_model.encoder.layers.19.layer_norm2.weight', 'vision_model.encoder.layers.21.layer_norm2.bias', 'vision_model.encoder.layers.2.self_attn.k_proj.weight', 'vision_model.encoder.layers.18.self_attn.k_proj.weight', 'vision_model.encoder.layers.13.self_attn.out_proj.weight', 'vision_model.encoder.layers.21.self_attn.q_proj.bias', 'vision_model.encoder.layers.20.self_attn.out_proj.weight', 'vision_model.encoder.layers.16.self_attn.k_proj.weight', 'vision_model.encoder.layers.6.self_attn.v_proj.weight', 'vision_model.encoder.layers.11.self_attn.out_proj.weight', 'vision_model.encoder.layers.2.layer_norm1.weight', 'vision_model.encoder.layers.7.layer_norm1.bias', 'vision_model.encoder.layers.14.self_attn.v_proj.weight', 'vision_model.encoder.layers.16.layer_norm1.bias', 'vision_model.encoder.layers.15.layer_norm2.bias', 'vision_model.encoder.layers.16.mlp.fc1.bias', 'vision_model.encoder.layers.20.mlp.fc2.bias', 'vision_model.encoder.layers.23.self_attn.v_proj.bias', 'vision_model.encoder.layers.3.mlp.fc2.weight', 'vision_model.encoder.layers.23.layer_norm2.weight', 'vision_model.encoder.layers.20.self_attn.k_proj.bias', 'vision_model.encoder.layers.6.layer_norm1.weight', 'vision_model.encoder.layers.1.self_attn.out_proj.bias', 'vision_model.encoder.layers.6.mlp.fc2.bias', 'vision_model.encoder.layers.22.self_attn.q_proj.bias', 'vision_model.encoder.layers.9.mlp.fc2.bias', 'vision_model.encoder.layers.7.mlp.fc2.bias', 'vision_model.encoder.layers.23.layer_norm1.weight', 'vision_model.encoder.layers.6.self_attn.v_proj.bias', 'vision_model.encoder.layers.4.self_attn.out_proj.bias', 'vision_model.encoder.layers.21.layer_norm2.weight', 'vision_model.encoder.layers.2.mlp.fc2.weight', 'vision_model.encoder.layers.0.self_attn.out_proj.weight', 'vision_model.encoder.layers.6.self_attn.k_proj.bias', 'vision_model.encoder.layers.22.mlp.fc2.weight', 'vision_model.embeddings.position_embedding.weight', 'vision_model.encoder.layers.15.mlp.fc2.weight', 'vision_model.encoder.layers.3.layer_norm1.bias', 'vision_model.encoder.layers.5.self_attn.v_proj.weight', 'vision_model.encoder.layers.10.mlp.fc1.bias', 'vision_model.encoder.layers.2.layer_norm2.bias', 'vision_model.encoder.layers.16.self_attn.out_proj.bias', 'vision_model.encoder.layers.21.mlp.fc1.bias', 'vision_model.encoder.layers.6.self_attn.out_proj.weight', 'vision_model.encoder.layers.6.self_attn.q_proj.weight', 'vision_model.encoder.layers.5.layer_norm1.bias', 'vision_model.encoder.layers.10.layer_norm1.weight', 'vision_model.encoder.layers.13.layer_norm2.bias', 'vision_model.encoder.layers.23.self_attn.q_proj.weight', 'vision_model.encoder.layers.7.self_attn.out_proj.weight', 'vision_model.encoder.layers.11.self_attn.q_proj.bias', 'vision_model.encoder.layers.5.layer_norm2.weight', 'vision_model.encoder.layers.16.layer_norm2.bias', 'vision_model.encoder.layers.16.layer_norm2.weight', 'vision_model.encoder.layers.10.self_attn.q_proj.bias', 'vision_model.encoder.layers.0.layer_norm2.weight', 'vision_model.encoder.layers.12.self_attn.q_proj.bias', 'vision_model.encoder.layers.11.self_attn.k_proj.bias', 'vision_model.encoder.layers.7.layer_norm1.weight', 'vision_model.encoder.layers.7.self_attn.k_proj.bias', 'vision_model.encoder.layers.11.layer_norm2.bias', 'vision_model.encoder.layers.21.self_attn.k_proj.bias', 'vision_model.encoder.layers.21.self_attn.v_proj.bias', 'vision_model.encoder.layers.9.self_attn.q_proj.bias', 'vision_model.encoder.layers.15.self_attn.v_proj.weight', 'vision_model.encoder.layers.10.self_attn.q_proj.weight', 'vision_model.encoder.layers.6.self_attn.out_proj.bias', 'vision_model.encoder.layers.20.layer_norm2.weight', 'vision_model.encoder.layers.2.self_attn.k_proj.bias', 'vision_model.pre_layrnorm.weight', 'vision_model.encoder.layers.18.self_attn.out_proj.weight', 'vision_model.encoder.layers.19.mlp.fc1.weight', 'vision_model.encoder.layers.13.mlp.fc2.weight', 'vision_model.encoder.layers.22.self_attn.k_proj.weight', 'vision_model.encoder.layers.17.mlp.fc2.bias', 'vision_model.encoder.layers.23.mlp.fc1.bias', 'vision_model.encoder.layers.7.self_attn.k_proj.weight', 'vision_model.encoder.layers.11.mlp.fc1.bias', 'vision_model.encoder.layers.10.layer_norm2.weight', 'vision_model.encoder.layers.21.mlp.fc1.weight', 'vision_model.encoder.layers.14.self_attn.q_proj.bias', 'vision_model.encoder.layers.5.self_attn.q_proj.bias', 'vision_model.encoder.layers.1.self_attn.out_proj.weight', 'vision_model.encoder.layers.14.mlp.fc1.bias', 'vision_model.encoder.layers.17.self_attn.q_proj.bias', 'vision_model.encoder.layers.14.self_attn.q_proj.weight', 'vision_model.encoder.layers.12.layer_norm1.weight', 'vision_model.encoder.layers.18.self_attn.q_proj.weight', 'vision_model.encoder.layers.15.self_attn.v_proj.bias', 'vision_model.encoder.layers.2.mlp.fc1.bias', 'vision_model.pre_layrnorm.bias', 'vision_model.encoder.layers.23.self_attn.k_proj.weight', 'vision_model.encoder.layers.14.self_attn.out_proj.weight', 'vision_model.encoder.layers.8.self_attn.q_proj.weight', 'vision_model.encoder.layers.10.mlp.fc2.bias', 'vision_model.encoder.layers.17.mlp.fc2.weight', 'vision_model.encoder.layers.8.layer_norm1.weight', 'vision_model.encoder.layers.11.self_attn.k_proj.weight', 'vision_model.encoder.layers.15.self_attn.out_proj.weight', 'vision_model.encoder.layers.8.mlp.fc2.weight', 'vision_model.encoder.layers.19.layer_norm1.bias', 'vision_model.encoder.layers.8.self_attn.v_proj.bias', 'vision_model.encoder.layers.22.self_attn.q_proj.weight', 'vision_model.encoder.layers.23.self_attn.k_proj.bias', 'vision_model.encoder.layers.0.mlp.fc1.weight', 'vision_model.encoder.layers.16.layer_norm1.weight', 'vision_model.encoder.layers.18.layer_norm1.weight', 'vision_model.encoder.layers.2.self_attn.out_proj.bias', 'vision_model.encoder.layers.9.self_attn.q_proj.weight', 'vision_model.encoder.layers.15.self_attn.q_proj.bias', 'vision_model.encoder.layers.17.self_attn.v_proj.weight', 'vision_model.encoder.layers.14.layer_norm2.bias', 'vision_model.encoder.layers.14.self_attn.out_proj.bias', 'vision_model.encoder.layers.1.self_attn.k_proj.weight', 'vision_model.encoder.layers.11.self_attn.out_proj.bias', 'vision_model.encoder.layers.12.self_attn.out_proj.weight', 'vision_model.encoder.layers.20.mlp.fc2.weight', 'vision_model.encoder.layers.9.mlp.fc2.weight', 'vision_model.encoder.layers.23.mlp.fc2.weight', 'vision_model.encoder.layers.5.self_attn.q_proj.weight', 'vision_model.encoder.layers.0.self_attn.v_proj.bias', 'vision_model.encoder.layers.4.layer_norm1.bias', 'vision_model.encoder.layers.17.mlp.fc1.bias', 'vision_model.encoder.layers.20.mlp.fc1.weight', 'vision_model.encoder.layers.5.mlp.fc2.weight', 'vision_model.encoder.layers.23.self_attn.q_proj.bias', 'vision_model.encoder.layers.11.layer_norm1.weight', 'vision_model.encoder.layers.1.mlp.fc1.bias', 'vision_model.encoder.layers.10.self_attn.k_proj.weight', 'vision_model.encoder.layers.1.self_attn.v_proj.weight', 'vision_model.encoder.layers.0.self_attn.q_proj.weight', 'vision_model.encoder.layers.23.self_attn.out_proj.bias', 'vision_model.encoder.layers.22.layer_norm1.bias', 'vision_model.encoder.layers.14.layer_norm2.weight', 'vision_model.encoder.layers.15.self_attn.k_proj.bias', 'vision_model.encoder.layers.13.layer_norm2.weight', 'vision_model.encoder.layers.9.layer_norm1.bias', 'vision_model.encoder.layers.20.self_attn.q_proj.weight', 'vision_model.encoder.layers.6.mlp.fc1.bias', 'vision_model.encoder.layers.9.self_attn.k_proj.weight', 'vision_model.encoder.layers.17.layer_norm2.weight', 'vision_model.encoder.layers.18.self_attn.v_proj.bias', 'vision_model.encoder.layers.4.self_attn.v_proj.bias', 'vision_model.encoder.layers.3.self_attn.v_proj.weight', 'vision_model.encoder.layers.9.self_attn.out_proj.bias', 'vision_model.encoder.layers.19.self_attn.v_proj.weight', 'vision_model.encoder.layers.9.mlp.fc1.bias', 'vision_model.encoder.layers.1.layer_norm2.weight', 'vision_model.encoder.layers.16.self_attn.out_proj.weight', 'vision_model.encoder.layers.19.self_attn.q_proj.bias', 'vision_model.encoder.layers.0.layer_norm2.bias', 'vision_model.encoder.layers.5.self_attn.out_proj.weight', 'vision_model.encoder.layers.15.self_attn.out_proj.bias', 'vision_model.encoder.layers.12.layer_norm2.bias', 'vision_model.encoder.layers.9.layer_norm2.bias', 'vision_model.encoder.layers.1.layer_norm1.bias', 'vision_model.encoder.layers.22.mlp.fc1.bias', 'vision_model.encoder.layers.14.mlp.fc1.weight', 'vision_model.encoder.layers.13.mlp.fc1.weight', 'vision_model.encoder.layers.5.mlp.fc1.weight', 'vision_model.encoder.layers.10.self_attn.v_proj.weight', 'visual_projection.weight', 'vision_model.encoder.layers.1.mlp.fc2.weight', 'vision_model.post_layernorm.bias', 'vision_model.encoder.layers.3.self_attn.out_proj.weight', 'vision_model.embeddings.class_embedding', 'vision_model.encoder.layers.5.self_attn.v_proj.bias', 'vision_model.encoder.layers.18.layer_norm2.weight', 'vision_model.encoder.layers.0.layer_norm1.bias', 'vision_model.encoder.layers.1.self_attn.v_proj.bias', 'vision_model.encoder.layers.22.self_attn.v_proj.bias', 'vision_model.encoder.layers.23.self_attn.v_proj.weight', 'vision_model.encoder.layers.12.mlp.fc1.weight', 'vision_model.encoder.layers.19.mlp.fc1.bias', 'vision_model.encoder.layers.22.self_attn.out_proj.weight', 'vision_model.encoder.layers.5.self_attn.k_proj.weight', 'vision_model.encoder.layers.12.self_attn.v_proj.weight', 'vision_model.encoder.layers.1.layer_norm1.weight', 'vision_model.encoder.layers.4.self_attn.q_proj.weight', 'vision_model.encoder.layers.12.self_attn.q_proj.weight', 'vision_model.encoder.layers.9.layer_norm1.weight', 'vision_model.encoder.layers.15.mlp.fc2.bias', 'vision_model.encoder.layers.16.mlp.fc2.bias', 'vision_model.encoder.layers.14.mlp.fc2.bias', 'vision_model.encoder.layers.19.self_attn.v_proj.bias', 'vision_model.encoder.layers.2.self_attn.q_proj.bias', 'vision_model.encoder.layers.5.self_attn.k_proj.bias', 'vision_model.encoder.layers.12.self_attn.k_proj.weight', 'vision_model.encoder.layers.19.self_attn.out_proj.weight', 'vision_model.encoder.layers.19.self_attn.out_proj.bias', 'vision_model.encoder.layers.4.layer_norm2.weight', 'vision_model.encoder.layers.14.mlp.fc2.weight', 'vision_model.encoder.layers.12.mlp.fc2.bias', 'vision_model.post_layernorm.weight', 'vision_model.encoder.layers.0.mlp.fc2.weight', 'vision_model.encoder.layers.14.self_attn.k_proj.bias', 'vision_model.encoder.layers.1.mlp.fc1.weight', 'vision_model.encoder.layers.22.layer_norm1.weight', 'vision_model.encoder.layers.17.mlp.fc1.weight', 'vision_model.encoder.layers.9.mlp.fc1.weight', 'logit_scale', 'vision_model.encoder.layers.12.layer_norm2.weight', 'vision_model.encoder.layers.9.self_attn.out_proj.weight', 'vision_model.encoder.layers.11.layer_norm1.bias', 'vision_model.encoder.layers.16.mlp.fc1.weight', 'vision_model.encoder.layers.18.self_attn.q_proj.bias', 'vision_model.encoder.layers.23.layer_norm2.bias', 'vision_model.encoder.layers.17.self_attn.k_proj.bias', 'vision_model.encoder.layers.18.mlp.fc1.weight'] - This IS expected if you are initializing CLIPTextModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model). - This IS NOT expected if you are initializing CLIPTextModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). /src/sample.py:354: DeprecationWarning: ANTIALIAS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead. mask_image = mask_image.resize((input_image.shape[3],input_image.shape[2]), Image.ANTIALIAS) 0%| | 0/500 [00:00<?, ?it/s] 0%| | 1/500 [00:00<05:47, 1.44it/s] 0%| | 2/500 [00:01<04:35, 1.80it/s] 1%| | 3/500 [00:01<04:13, 1.96it/s] 1%| | 4/500 [00:01<02:55, 2.83it/s] 1%| | 5/500 [00:01<02:12, 3.74it/s] 1%| | 6/500 [00:01<01:46, 4.65it/s] 1%|▏ | 7/500 [00:02<01:29, 5.49it/s] 2%|▏ | 8/500 [00:02<01:19, 6.23it/s] 2%|▏ | 9/500 [00:02<01:11, 6.83it/s] 2%|▏ | 10/500 [00:02<01:06, 7.34it/s] 2%|▏ | 11/500 [00:02<01:03, 7.73it/s] 2%|▏ | 12/500 [00:02<01:00, 8.03it/s] 3%|▎ | 13/500 [00:02<00:59, 8.24it/s] 3%|▎ | 14/500 [00:02<00:57, 8.40it/s] 3%|▎ | 15/500 [00:02<00:56, 8.51it/s] 3%|▎ | 16/500 [00:03<00:56, 8.59it/s] 3%|▎ | 17/500 [00:03<00:55, 8.65it/s] 4%|▎ | 18/500 [00:03<00:55, 8.69it/s] 4%|▍ | 19/500 [00:03<00:55, 8.69it/s] 4%|▍ | 20/500 [00:03<00:55, 8.70it/s] 4%|▍ | 21/500 [00:03<00:54, 8.73it/s] 4%|▍ | 22/500 [00:03<00:54, 8.75it/s] 5%|▍ | 23/500 [00:03<00:54, 8.76it/s] 5%|▍ | 24/500 [00:04<00:54, 8.78it/s] 5%|▌ | 25/500 [00:04<00:53, 8.80it/s] 5%|▌ | 26/500 [00:04<01:26, 5.48it/s] 5%|▌ | 27/500 [00:04<01:16, 6.17it/s] 6%|▌ | 28/500 [00:04<01:09, 6.77it/s] 6%|▌ | 29/500 [00:04<01:04, 7.28it/s] 6%|▌ | 30/500 [00:04<01:01, 7.68it/s] 6%|▌ | 31/500 [00:05<00:58, 7.99it/s] 6%|▋ | 32/500 [00:05<00:56, 8.21it/s] 7%|▋ | 33/500 [00:05<00:55, 8.39it/s] 7%|▋ | 34/500 [00:05<00:54, 8.51it/s] 7%|▋ | 35/500 [00:05<00:54, 8.60it/s] 7%|▋ | 36/500 [00:05<00:53, 8.65it/s] 7%|▋ | 37/500 [00:05<00:53, 8.70it/s] 8%|▊ | 38/500 [00:05<00:53, 8.69it/s] 8%|▊ | 39/500 [00:05<00:52, 8.70it/s] 8%|▊ | 40/500 [00:06<00:52, 8.73it/s] 8%|▊ | 41/500 [00:06<00:52, 8.76it/s] 8%|▊ | 42/500 [00:06<00:52, 8.76it/s] 9%|▊ | 43/500 [00:06<00:52, 8.77it/s] 9%|▉ | 44/500 [00:06<00:52, 8.77it/s] 9%|▉ | 45/500 [00:06<00:51, 8.76it/s] 9%|▉ | 46/500 [00:06<00:51, 8.78it/s] 9%|▉ | 47/500 [00:06<00:51, 8.80it/s] 10%|▉ | 48/500 [00:06<00:51, 8.74it/s] 10%|▉ | 49/500 [00:07<00:51, 8.74it/s] 10%|█ | 50/500 [00:07<00:51, 8.75it/s] 10%|█ | 51/500 [00:07<01:21, 5.54it/s] 10%|█ | 52/500 [00:07<01:12, 6.22it/s] 11%|█ | 53/500 [00:07<01:05, 6.81it/s] 11%|█ | 54/500 [00:07<01:01, 7.30it/s] 11%|█ | 55/500 [00:07<00:57, 7.70it/s] 11%|█ | 56/500 [00:08<00:55, 7.98it/s] 11%|█▏ | 57/500 [00:08<00:54, 8.20it/s] 12%|█▏ | 58/500 [00:08<00:52, 8.39it/s] 12%|█▏ | 59/500 [00:08<00:51, 8.49it/s] 12%|█▏ | 60/500 [00:08<00:51, 8.59it/s] 12%|█▏ | 61/500 [00:08<00:50, 8.65it/s] 12%|█▏ | 62/500 [00:08<00:50, 8.70it/s] 13%|█▎ | 63/500 [00:08<00:50, 8.74it/s] 13%|█▎ | 64/500 [00:09<00:49, 8.75it/s] 13%|█▎ | 65/500 [00:09<00:49, 8.77it/s] 13%|█▎ | 66/500 [00:09<00:49, 8.78it/s] 13%|█▎ | 67/500 [00:09<00:49, 8.75it/s] 14%|█▎ | 68/500 [00:09<00:49, 8.75it/s] 14%|█▍ | 69/500 [00:09<00:49, 8.75it/s] 14%|█▍ | 70/500 [00:09<00:49, 8.75it/s] 14%|█▍ | 71/500 [00:09<00:49, 8.75it/s] 14%|█▍ | 72/500 [00:09<00:48, 8.77it/s] 15%|█▍ | 73/500 [00:10<00:48, 8.79it/s] 15%|█▍ | 74/500 [00:10<00:48, 8.80it/s] 15%|█▌ | 75/500 [00:10<00:48, 8.78it/s] 15%|█▌ | 76/500 [00:10<01:16, 5.53it/s] 15%|█▌ | 77/500 [00:10<01:08, 6.21it/s] 16%|█▌ | 78/500 [00:10<01:01, 6.81it/s] 16%|█▌ | 79/500 [00:10<00:57, 7.31it/s] 16%|█▌ | 80/500 [00:11<00:54, 7.71it/s] 16%|█▌ | 81/500 [00:11<00:52, 8.00it/s] 16%|█▋ | 82/500 [00:11<00:50, 8.22it/s] 17%|█▋ | 83/500 [00:11<00:49, 8.37it/s] 17%|█▋ | 84/500 [00:11<00:49, 8.49it/s] 17%|█▋ | 85/500 [00:11<00:48, 8.56it/s] 17%|█▋ | 86/500 [00:11<00:48, 8.61it/s] 17%|█▋ | 87/500 [00:11<00:47, 8.65it/s] 18%|█▊ | 88/500 [00:11<00:47, 8.69it/s] 18%|█▊ | 89/500 [00:12<00:47, 8.71it/s] 18%|█▊ | 90/500 [00:12<00:46, 8.74it/s] 18%|█▊ | 91/500 [00:12<00:46, 8.74it/s] 18%|█▊ | 92/500 [00:12<00:46, 8.75it/s] 19%|█▊ | 93/500 [00:12<00:46, 8.75it/s] 19%|█▉ | 94/500 [00:12<00:46, 8.76it/s] 19%|█▉ | 95/500 [00:12<00:46, 8.74it/s] 19%|█▉ | 96/500 [00:12<00:46, 8.75it/s] 19%|█▉ | 97/500 [00:12<00:46, 8.76it/s] 20%|█▉ | 98/500 [00:13<00:45, 8.78it/s] 20%|█▉ | 99/500 [00:13<00:45, 8.80it/s] 20%|██ | 100/500 [00:13<00:45, 8.79it/s] 20%|██ | 101/500 [00:13<01:11, 5.56it/s] 20%|██ | 102/500 [00:13<01:05, 6.12it/s] 21%|██ | 103/500 [00:13<00:59, 6.72it/s] 21%|██ | 104/500 [00:14<00:54, 7.23it/s] 21%|██ | 105/500 [00:14<00:51, 7.65it/s] 21%|██ | 106/500 [00:14<00:49, 7.94it/s] 21%|██▏ | 107/500 [00:14<00:48, 8.18it/s] 22%|██▏ | 108/500 [00:14<00:46, 8.35it/s] 22%|██▏ | 109/500 [00:14<00:46, 8.46it/s] 22%|██▏ | 110/500 [00:14<00:45, 8.55it/s] 22%|██▏ | 111/500 [00:14<00:45, 8.60it/s] 22%|██▏ | 112/500 [00:14<00:44, 8.64it/s] 23%|██▎ | 113/500 [00:15<00:44, 8.66it/s] 23%|██▎ | 114/500 [00:15<00:44, 8.69it/s] 23%|██▎ | 115/500 [00:15<00:44, 8.72it/s] 23%|██▎ | 116/500 [00:15<00:43, 8.73it/s] 23%|██▎ | 117/500 [00:15<00:43, 8.74it/s] 24%|██▎ | 118/500 [00:15<00:43, 8.76it/s] 24%|██▍ | 119/500 [00:15<00:43, 8.77it/s] 24%|██▍ | 120/500 [00:15<00:44, 8.51it/s] 24%|██▍ | 121/500 [00:15<00:44, 8.59it/s] 24%|██▍ | 122/500 [00:16<00:43, 8.66it/s] 25%|██▍ | 123/500 [00:16<00:43, 8.72it/s] 25%|██▍ | 124/500 [00:16<00:42, 8.75it/s] 25%|██▌ | 125/500 [00:16<00:42, 8.76it/s] 25%|██▌ | 126/500 [00:16<01:06, 5.62it/s] 25%|██▌ | 127/500 [00:16<00:59, 6.30it/s] 26%|██▌ | 128/500 [00:16<00:54, 6.88it/s] 26%|██▌ | 129/500 [00:17<00:50, 7.32it/s] 26%|██▌ | 130/500 [00:17<00:48, 7.70it/s] 26%|██▌ | 131/500 [00:17<00:46, 7.99it/s] 26%|██▋ | 132/500 [00:17<00:44, 8.21it/s] 27%|██▋ | 133/500 [00:17<00:43, 8.36it/s] 27%|██▋ | 134/500 [00:17<00:43, 8.48it/s] 27%|██▋ | 135/500 [00:17<00:42, 8.56it/s] 27%|██▋ | 136/500 [00:17<00:42, 8.62it/s] 27%|██▋ | 137/500 [00:18<00:41, 8.67it/s] 28%|██▊ | 138/500 [00:18<00:41, 8.70it/s] 28%|██▊ | 139/500 [00:18<00:41, 8.72it/s] 28%|██▊ | 140/500 [00:18<00:41, 8.74it/s] 28%|██▊ | 141/500 [00:18<00:41, 8.74it/s] 28%|██▊ | 142/500 [00:18<00:40, 8.76it/s] 29%|██▊ | 143/500 [00:18<00:40, 8.75it/s] 29%|██▉ | 144/500 [00:18<00:40, 8.76it/s] 29%|██▉ | 145/500 [00:18<00:40, 8.76it/s] 29%|██▉ | 146/500 [00:19<00:40, 8.78it/s] 29%|██▉ | 147/500 [00:19<00:40, 8.78it/s] 30%|██▉ | 148/500 [00:19<00:40, 8.77it/s] 30%|██▉ | 149/500 [00:19<00:40, 8.76it/s] 30%|███ | 150/500 [00:19<00:39, 8.77it/s] 30%|███ | 151/500 [00:19<01:01, 5.69it/s] 30%|███ | 152/500 [00:19<00:54, 6.36it/s] 31%|███ | 153/500 [00:20<00:50, 6.92it/s] 31%|███ | 154/500 [00:20<00:46, 7.39it/s] 31%|███ | 155/500 [00:20<00:44, 7.74it/s] 31%|███ | 156/500 [00:20<00:42, 8.02it/s] 31%|███▏ | 157/500 [00:20<00:41, 8.23it/s] 32%|███▏ | 158/500 [00:20<00:40, 8.41it/s] 32%|███▏ | 159/500 [00:20<00:39, 8.53it/s] 32%|███▏ | 160/500 [00:20<00:39, 8.60it/s] 32%|███▏ | 161/500 [00:20<00:39, 8.64it/s] 32%|███▏ | 162/500 [00:21<00:38, 8.69it/s] 33%|███▎ | 163/500 [00:21<00:38, 8.72it/s] 33%|███▎ | 164/500 [00:21<00:38, 8.73it/s] 33%|███▎ | 165/500 [00:21<00:38, 8.74it/s] 33%|███▎ | 166/500 [00:21<00:38, 8.75it/s] 33%|███▎ | 167/500 [00:21<00:37, 8.77it/s] 34%|███▎ | 168/500 [00:21<00:37, 8.79it/s] 34%|███▍ | 169/500 [00:21<00:37, 8.78it/s] 34%|███▍ | 170/500 [00:21<00:37, 8.78it/s] 34%|███▍ | 171/500 [00:22<00:37, 8.78it/s] 34%|███▍ | 172/500 [00:22<00:37, 8.77it/s] 35%|███▍ | 173/500 [00:22<00:37, 8.76it/s] 35%|███▍ | 174/500 [00:22<00:37, 8.76it/s] 35%|███▌ | 175/500 [00:22<00:37, 8.76it/s] 35%|███▌ | 176/500 [00:22<00:57, 5.64it/s] 35%|███▌ | 177/500 [00:22<00:51, 6.22it/s] 36%|███▌ | 178/500 [00:23<00:47, 6.81it/s] 36%|███▌ | 179/500 [00:23<00:44, 7.28it/s] 36%|███▌ | 180/500 [00:23<00:41, 7.68it/s] 36%|███▌ | 181/500 [00:23<00:39, 7.99it/s] 36%|███▋ | 182/500 [00:23<00:38, 8.21it/s] 37%|███▋ | 183/500 [00:23<00:37, 8.38it/s] 37%|███▋ | 184/500 [00:23<00:37, 8.49it/s] 37%|███▋ | 185/500 [00:23<00:36, 8.56it/s] 37%|███▋ | 186/500 [00:24<00:36, 8.63it/s] 37%|███▋ | 187/500 [00:24<00:36, 8.65it/s] 38%|███▊ | 188/500 [00:24<00:35, 8.68it/s] 38%|███▊ | 189/500 [00:24<00:35, 8.71it/s] 38%|███▊ | 190/500 [00:24<00:35, 8.75it/s] 38%|███▊ | 191/500 [00:24<00:35, 8.77it/s] 38%|███▊ | 192/500 [00:24<00:35, 8.79it/s] 39%|███▊ | 193/500 [00:24<00:34, 8.78it/s] 39%|███▉ | 194/500 [00:24<00:34, 8.77it/s] 39%|███▉ | 195/500 [00:25<00:34, 8.76it/s] 39%|███▉ | 196/500 [00:25<00:34, 8.77it/s] 39%|███▉ | 197/500 [00:25<00:34, 8.77it/s] 40%|███▉ | 198/500 [00:25<00:34, 8.76it/s] 40%|███▉ | 199/500 [00:25<00:34, 8.78it/s] 40%|████ | 200/500 [00:25<00:34, 8.78it/s] 40%|████ | 201/500 [00:25<00:55, 5.35it/s] 40%|████ | 202/500 [00:26<00:49, 6.05it/s] 41%|████ | 203/500 [00:26<00:44, 6.68it/s] 41%|████ | 204/500 [00:26<00:41, 7.21it/s] 41%|████ | 205/500 [00:26<00:38, 7.63it/s] 41%|████ | 206/500 [00:26<00:36, 7.96it/s] 41%|████▏ | 207/500 [00:26<00:35, 8.20it/s] 42%|████▏ | 208/500 [00:26<00:34, 8.38it/s] 42%|████▏ | 209/500 [00:26<00:34, 8.51it/s] 42%|████▏ | 210/500 [00:26<00:33, 8.61it/s] 42%|████▏ | 211/500 [00:27<00:33, 8.67it/s] 42%|████▏ | 212/500 [00:27<00:33, 8.72it/s] 43%|████▎ | 213/500 [00:27<00:32, 8.75it/s] 43%|████▎ | 214/500 [00:27<00:32, 8.78it/s] 43%|████▎ | 215/500 [00:27<00:32, 8.80it/s] 43%|████▎ | 216/500 [00:27<00:32, 8.81it/s] 43%|████▎ | 217/500 [00:27<00:32, 8.83it/s] 44%|████▎ | 218/500 [00:27<00:31, 8.84it/s] 44%|████▍ | 219/500 [00:28<00:31, 8.84it/s] 44%|████▍ | 220/500 [00:28<00:31, 8.85it/s] 44%|████▍ | 221/500 [00:28<00:31, 8.85it/s] 44%|████▍ | 222/500 [00:28<00:31, 8.85it/s] 45%|████▍ | 223/500 [00:28<00:31, 8.85it/s] 45%|████▍ | 224/500 [00:28<00:31, 8.85it/s] 45%|████▌ | 225/500 [00:28<00:31, 8.85it/s] 45%|████▌ | 226/500 [00:28<00:46, 5.89it/s] 45%|████▌ | 227/500 [00:29<00:41, 6.54it/s] 46%|████▌ | 228/500 [00:29<00:38, 7.09it/s] 46%|████▌ | 229/500 [00:29<00:35, 7.55it/s] 46%|████▌ | 230/500 [00:29<00:34, 7.90it/s] 46%|████▌ | 231/500 [00:29<00:32, 8.15it/s] 46%|████▋ | 232/500 [00:29<00:32, 8.35it/s] 47%|████▋ | 233/500 [00:29<00:31, 8.50it/s] 47%|████▋ | 234/500 [00:29<00:30, 8.60it/s] 47%|████▋ | 235/500 [00:30<00:30, 8.67it/s] 47%|████▋ | 236/500 [00:30<00:30, 8.72it/s] 47%|████▋ | 237/500 [00:30<00:30, 8.75it/s] 48%|████▊ | 238/500 [00:30<00:29, 8.76it/s] 48%|████▊ | 239/500 [00:30<00:29, 8.78it/s] 48%|████▊ | 240/500 [00:30<00:29, 8.80it/s] 48%|████▊ | 241/500 [00:30<00:29, 8.81it/s] 48%|████▊ | 242/500 [00:30<00:29, 8.83it/s] 49%|████▊ | 243/500 [00:30<00:29, 8.84it/s] 49%|████▉ | 244/500 [00:31<00:28, 8.84it/s] 49%|████▉ | 245/500 [00:31<00:28, 8.84it/s] 49%|████▉ | 246/500 [00:31<00:28, 8.83it/s] 49%|████▉ | 247/500 [00:31<00:28, 8.83it/s] 50%|████▉ | 248/500 [00:31<00:28, 8.83it/s] 50%|████▉ | 249/500 [00:31<00:28, 8.83it/s] 50%|█████ | 250/500 [00:31<00:28, 8.84it/s] 50%|█████ | 251/500 [00:32<00:41, 5.95it/s] 50%|█████ | 252/500 [00:32<00:37, 6.59it/s] 51%|█████ | 253/500 [00:32<00:34, 7.13it/s] 51%|█████ | 254/500 [00:32<00:32, 7.57it/s] 51%|█████ | 255/500 [00:32<00:30, 7.91it/s] 51%|█████ | 256/500 [00:32<00:29, 8.17it/s] 51%|█████▏ | 257/500 [00:32<00:29, 8.36it/s] 52%|█████▏ | 258/500 [00:32<00:28, 8.49it/s] 52%|█████▏ | 259/500 [00:32<00:28, 8.59it/s] 52%|█████▏ | 260/500 [00:33<00:27, 8.67it/s] 52%|█████▏ | 261/500 [00:33<00:27, 8.71it/s] 52%|█████▏ | 262/500 [00:33<00:27, 8.74it/s] 53%|█████▎ | 263/500 [00:33<00:27, 8.76it/s] 53%|█████▎ | 264/500 [00:33<00:26, 8.78it/s] 53%|█████▎ | 265/500 [00:33<00:26, 8.79it/s] 53%|█████▎ | 266/500 [00:33<00:26, 8.80it/s] 53%|█████▎ | 267/500 [00:33<00:26, 8.81it/s] 54%|█████▎ | 268/500 [00:33<00:26, 8.81it/s] 54%|█████▍ | 269/500 [00:34<00:26, 8.82it/s] 54%|█████▍ | 270/500 [00:34<00:26, 8.82it/s] 54%|█████▍ | 271/500 [00:34<00:25, 8.83it/s] 54%|█████▍ | 272/500 [00:34<00:25, 8.84it/s] 55%|█████▍ | 273/500 [00:34<00:25, 8.83it/s] 55%|█████▍ | 274/500 [00:34<00:25, 8.83it/s] 55%|█████▌ | 275/500 [00:34<00:25, 8.84it/s] 55%|█████▌ | 276/500 [00:35<00:42, 5.26it/s] 55%|█████▌ | 277/500 [00:35<00:37, 5.97it/s] 56%|█████▌ | 278/500 [00:35<00:33, 6.62it/s] 56%|█████▌ | 279/500 [00:35<00:30, 7.15it/s] 56%|█████▌ | 280/500 [00:35<00:29, 7.58it/s] 56%|█████▌ | 281/500 [00:35<00:27, 7.92it/s] 56%|█████▋ | 282/500 [00:35<00:26, 8.17it/s] 57%|█████▋ | 283/500 [00:35<00:25, 8.36it/s] 57%|█████▋ | 284/500 [00:35<00:25, 8.49it/s] 57%|█████▋ | 285/500 [00:36<00:25, 8.59it/s] 57%|█████▋ | 286/500 [00:36<00:24, 8.66it/s] 57%|█████▋ | 287/500 [00:36<00:24, 8.72it/s] 58%|█████▊ | 288/500 [00:36<00:24, 8.75it/s] 58%|█████▊ | 289/500 [00:36<00:24, 8.77it/s] 58%|█████▊ | 290/500 [00:36<00:23, 8.80it/s] 58%|█████▊ | 291/500 [00:36<00:23, 8.81it/s] 58%|█████▊ | 292/500 [00:36<00:23, 8.81it/s] 59%|█████▊ | 293/500 [00:37<00:23, 8.82it/s] 59%|█████▉ | 294/500 [00:37<00:23, 8.82it/s] 59%|█████▉ | 295/500 [00:37<00:23, 8.81it/s] 59%|█████▉ | 296/500 [00:37<00:23, 8.81it/s] 59%|█████▉ | 297/500 [00:37<00:23, 8.82it/s] 60%|█████▉ | 298/500 [00:37<00:22, 8.81it/s] 60%|█████▉ | 299/500 [00:37<00:22, 8.80it/s] 60%|██████ | 300/500 [00:37<00:22, 8.81it/s] 60%|██████ | 301/500 [00:38<00:39, 5.00it/s] 60%|██████ | 302/500 [00:38<00:34, 5.73it/s] 61%|██████ | 303/500 [00:38<00:30, 6.41it/s] 61%|██████ | 304/500 [00:38<00:28, 6.99it/s] 61%|██████ | 305/500 [00:38<00:26, 7.46it/s] 61%|██████ | 306/500 [00:38<00:24, 7.83it/s] 61%|██████▏ | 307/500 [00:38<00:23, 8.11it/s] 62%|██████▏ | 308/500 [00:39<00:23, 8.32it/s] 62%|██████▏ | 309/500 [00:39<00:22, 8.47it/s] 62%|██████▏ | 310/500 [00:39<00:22, 8.58it/s] 62%|██████▏ | 311/500 [00:39<00:21, 8.65it/s] 62%|██████▏ | 312/500 [00:39<00:21, 8.71it/s] 63%|██████▎ | 313/500 [00:39<00:21, 8.75it/s] 63%|██████▎ | 314/500 [00:39<00:21, 8.77it/s] 63%|██████▎ | 315/500 [00:39<00:21, 8.79it/s] 63%|██████▎ | 316/500 [00:39<00:20, 8.81it/s] 63%|██████▎ | 317/500 [00:40<00:20, 8.82it/s] 64%|██████▎ | 318/500 [00:40<00:20, 8.83it/s] 64%|██████▍ | 319/500 [00:40<00:20, 8.84it/s] 64%|██████▍ | 320/500 [00:40<00:20, 8.85it/s] 64%|██████▍ | 321/500 [00:40<00:20, 8.85it/s] 64%|██████▍ | 322/500 [00:40<00:20, 8.85it/s] 65%|██████▍ | 323/500 [00:40<00:19, 8.85it/s] 65%|██████▍ | 324/500 [00:40<00:19, 8.85it/s] 65%|██████▌ | 325/500 [00:40<00:19, 8.85it/s] 65%|██████▌ | 326/500 [00:41<00:36, 4.73it/s] 65%|██████▌ | 327/500 [00:41<00:31, 5.49it/s] 66%|██████▌ | 328/500 [00:41<00:27, 6.20it/s] 66%|██████▌ | 329/500 [00:41<00:25, 6.80it/s] 66%|██████▌ | 330/500 [00:41<00:23, 7.31it/s] 66%|██████▌ | 331/500 [00:41<00:21, 7.71it/s] 66%|██████▋ | 332/500 [00:42<00:20, 8.01it/s] 67%|██████▋ | 333/500 [00:42<00:20, 8.24it/s] 67%|██████▋ | 334/500 [00:42<00:19, 8.41it/s] 67%|██████▋ | 335/500 [00:42<00:19, 8.54it/s] 67%|██████▋ | 336/500 [00:42<00:19, 8.63it/s] 67%|██████▋ | 337/500 [00:42<00:18, 8.69it/s] 68%|██████▊ | 338/500 [00:42<00:18, 8.73it/s] 68%|██████▊ | 339/500 [00:42<00:18, 8.77it/s] 68%|██████▊ | 340/500 [00:42<00:18, 8.79it/s] 68%|██████▊ | 341/500 [00:43<00:18, 8.80it/s] 68%|██████▊ | 342/500 [00:43<00:17, 8.81it/s] 69%|██████▊ | 343/500 [00:43<00:17, 8.82it/s] 69%|██████▉ | 344/500 [00:43<00:17, 8.83it/s] 69%|██████▉ | 345/500 [00:43<00:17, 8.84it/s] 69%|██████▉ | 346/500 [00:43<00:17, 8.84it/s] 69%|██████▉ | 347/500 [00:43<00:17, 8.84it/s] 70%|██████▉ | 348/500 [00:43<00:17, 8.84it/s] 70%|██████▉ | 349/500 [00:43<00:17, 8.84it/s] 70%|███████ | 350/500 [00:44<00:16, 8.84it/s] 70%|███████ | 351/500 [00:44<00:30, 4.93it/s] 70%|███████ | 352/500 [00:44<00:26, 5.67it/s] 71%|███████ | 353/500 [00:44<00:23, 6.36it/s] 71%|███████ | 354/500 [00:44<00:21, 6.94it/s] 71%|███████ | 355/500 [00:44<00:19, 7.42it/s] 71%|███████ | 356/500 [00:45<00:18, 7.80it/s] 71%|███████▏ | 357/500 [00:45<00:17, 8.08it/s] 72%|███████▏ | 358/500 [00:45<00:17, 8.29it/s] 72%|███████▏ | 359/500 [00:45<00:16, 8.45it/s] 72%|███████▏ | 360/500 [00:45<00:16, 8.56it/s] 72%|███████▏ | 361/500 [00:45<00:16, 8.65it/s] 72%|███████▏ | 362/500 [00:45<00:15, 8.70it/s] 73%|███████▎ | 363/500 [00:45<00:15, 8.73it/s] 73%|███████▎ | 364/500 [00:45<00:15, 8.76it/s] 73%|███████▎ | 365/500 [00:46<00:15, 8.79it/s] 73%|███████▎ | 366/500 [00:46<00:15, 8.80it/s] 73%|███████▎ | 367/500 [00:46<00:15, 8.81it/s] 74%|███████▎ | 368/500 [00:46<00:14, 8.82it/s] 74%|███████▍ | 369/500 [00:46<00:14, 8.83it/s] 74%|███████▍ | 370/500 [00:46<00:14, 8.83it/s] 74%|███████▍ | 371/500 [00:46<00:14, 8.83it/s] 74%|███████▍ | 372/500 [00:46<00:14, 8.83it/s] 75%|███████▍ | 373/500 [00:46<00:14, 8.82it/s] 75%|███████▍ | 374/500 [00:47<00:14, 8.83it/s] 75%|███████▌ | 375/500 [00:47<00:14, 8.83it/s] 75%|███████▌ | 376/500 [00:47<00:25, 4.90it/s] 75%|███████▌ | 377/500 [00:47<00:21, 5.65it/s] 76%|███████▌ | 378/500 [00:47<00:19, 6.33it/s] 76%|███████▌ | 379/500 [00:47<00:17, 6.92it/s] 76%|███████▌ | 380/500 [00:48<00:16, 7.41it/s] 76%|███████▌ | 381/500 [00:48<00:15, 7.79it/s] 76%|███████▋ | 382/500 [00:48<00:14, 8.08it/s] 77%|███████▋ | 383/500 [00:48<00:14, 8.29it/s] 77%|███████▋ | 384/500 [00:48<00:13, 8.41it/s] 77%|███████▋ | 385/500 [00:48<00:13, 8.54it/s] 77%|███████▋ | 386/500 [00:48<00:13, 8.63it/s] 77%|███████▋ | 387/500 [00:48<00:12, 8.69it/s] 78%|███████▊ | 388/500 [00:48<00:12, 8.74it/s] 78%|███████▊ | 389/500 [00:49<00:12, 8.77it/s] 78%|███████▊ | 390/500 [00:49<00:12, 8.80it/s] 78%|███████▊ | 391/500 [00:49<00:12, 8.82it/s] 78%|███████▊ | 392/500 [00:49<00:12, 8.84it/s] 79%|███████▊ | 393/500 [00:49<00:12, 8.84it/s] 79%|███████▉ | 394/500 [00:49<00:11, 8.85it/s] 79%|███████▉ | 395/500 [00:49<00:11, 8.86it/s] 79%|███████▉ | 396/500 [00:49<00:11, 8.86it/s] 79%|███████▉ | 397/500 [00:50<00:11, 8.86it/s] 80%|███████▉ | 398/500 [00:50<00:11, 8.86it/s] 80%|███████▉ | 399/500 [00:50<00:11, 8.85it/s] 80%|████████ | 400/500 [00:50<00:11, 8.85it/s] 80%|████████ | 401/500 [00:50<00:16, 6.16it/s] 80%|████████ | 402/500 [00:50<00:14, 6.77it/s] 81%|████████ | 403/500 [00:50<00:13, 7.29it/s] 81%|████████ | 404/500 [00:50<00:12, 7.70it/s] 81%|████████ | 405/500 [00:51<00:11, 8.02it/s] 81%|████████ | 406/500 [00:51<00:11, 8.25it/s] 81%|████████▏ | 407/500 [00:51<00:11, 8.42it/s] 82%|████████▏ | 408/500 [00:51<00:10, 8.55it/s] 82%|████████▏ | 409/500 [00:51<00:10, 8.63it/s] 82%|████████▏ | 410/500 [00:51<00:10, 8.69it/s] 82%|████████▏ | 411/500 [00:51<00:10, 8.74it/s] 82%|████████▏ | 412/500 [00:51<00:10, 8.78it/s] 83%|████████▎ | 413/500 [00:51<00:09, 8.80it/s] 83%|████████▎ | 414/500 [00:52<00:09, 8.82it/s] 83%|████████▎ | 415/500 [00:52<00:09, 8.83it/s] 83%|████████▎ | 416/500 [00:52<00:09, 8.84it/s] 83%|████████▎ | 417/500 [00:52<00:09, 8.85it/s] 84%|████████▎ | 418/500 [00:52<00:09, 8.85it/s] 84%|████████▍ | 419/500 [00:52<00:09, 8.86it/s] 84%|████████▍ | 420/500 [00:52<00:09, 8.86it/s] 84%|████████▍ | 421/500 [00:52<00:08, 8.86it/s] 84%|████████▍ | 422/500 [00:52<00:08, 8.84it/s] 85%|████████▍ | 423/500 [00:53<00:08, 8.84it/s] 85%|████████▍ | 424/500 [00:53<00:08, 8.84it/s] 85%|████████▌ | 425/500 [00:53<00:08, 8.84it/s] 85%|████████▌ | 426/500 [00:53<00:13, 5.46it/s] 85%|████████▌ | 427/500 [00:53<00:11, 6.16it/s] 86%|████████▌ | 428/500 [00:53<00:10, 6.77it/s] 86%|████████▌ | 429/500 [00:54<00:09, 7.29it/s] 86%|████████▌ | 430/500 [00:54<00:09, 7.69it/s] 86%|████████▌ | 431/500 [00:54<00:08, 8.01it/s] 86%|████████▋ | 432/500 [00:54<00:08, 8.24it/s] 87%|████████▋ | 433/500 [00:54<00:07, 8.41it/s] 87%|████████▋ | 434/500 [00:54<00:07, 8.53it/s] 87%|████████▋ | 435/500 [00:54<00:07, 8.62it/s] 87%|████████▋ | 436/500 [00:54<00:07, 8.68it/s] 87%|████████▋ | 437/500 [00:54<00:07, 8.73it/s] 88%|████████▊ | 438/500 [00:55<00:07, 8.77it/s] 88%|████████▊ | 439/500 [00:55<00:06, 8.79it/s] 88%|████████▊ | 440/500 [00:55<00:06, 8.80it/s] 88%|████████▊ | 441/500 [00:55<00:06, 8.80it/s] 88%|████████▊ | 442/500 [00:55<00:06, 8.80it/s] 89%|████████▊ | 443/500 [00:55<00:06, 8.81it/s] 89%|████████▉ | 444/500 [00:55<00:06, 8.81it/s] 89%|████████▉ | 445/500 [00:55<00:06, 8.80it/s] 89%|████████▉ | 446/500 [00:55<00:06, 8.82it/s] 89%|████████▉ | 447/500 [00:56<00:06, 8.83it/s] 90%|████████▉ | 448/500 [00:56<00:05, 8.84it/s] 90%|████████▉ | 449/500 [00:56<00:05, 8.85it/s] 90%|█████████ | 450/500 [00:56<00:05, 8.86it/s] 90%|█████████ | 451/500 [00:56<00:07, 6.21it/s] 90%|█████████ | 452/500 [00:56<00:07, 6.81it/s] 91%|█████████ | 453/500 [00:56<00:06, 7.32it/s] 91%|█████████ | 454/500 [00:57<00:05, 7.73it/s] 91%|█████████ | 455/500 [00:57<00:05, 8.03it/s] 91%|█████████ | 456/500 [00:57<00:05, 8.26it/s] 91%|█████████▏| 457/500 [00:57<00:05, 8.43it/s] 92%|█████████▏| 458/500 [00:57<00:04, 8.55it/s] 92%|█████████▏| 459/500 [00:57<00:04, 8.64it/s] 92%|█████████▏| 460/500 [00:57<00:04, 8.71it/s] 92%|█████████▏| 461/500 [00:57<00:04, 8.75it/s] 92%|█████████▏| 462/500 [00:57<00:04, 8.78it/s] 93%|█████████▎| 463/500 [00:58<00:04, 8.81it/s] 93%|█████████▎| 464/500 [00:58<00:04, 8.82it/s] 93%|█████████▎| 465/500 [00:58<00:03, 8.82it/s] 93%|█████████▎| 466/500 [00:58<00:03, 8.82it/s] 93%|█████████▎| 467/500 [00:58<00:03, 8.81it/s] 94%|█████████▎| 468/500 [00:58<00:03, 8.83it/s] 94%|█████████▍| 469/500 [00:58<00:03, 8.83it/s] 94%|█████████▍| 470/500 [00:58<00:03, 8.83it/s] 94%|█████████▍| 471/500 [00:58<00:03, 8.83it/s] 94%|█████████▍| 472/500 [00:59<00:03, 8.83it/s] 95%|█████████▍| 473/500 [00:59<00:03, 8.84it/s] 95%|█████████▍| 474/500 [00:59<00:02, 8.85it/s] 95%|█████████▌| 475/500 [00:59<00:02, 8.85it/s] 95%|█████████▌| 476/500 [00:59<00:03, 6.22it/s] 95%|█████████▌| 477/500 [00:59<00:03, 6.82it/s] 96%|█████████▌| 478/500 [00:59<00:03, 7.32it/s] 96%|█████████▌| 479/500 [00:59<00:02, 7.72it/s] 96%|█████████▌| 480/500 [01:00<00:02, 8.02it/s] 96%|█████████▌| 481/500 [01:00<00:02, 8.25it/s] 96%|█████████▋| 482/500 [01:00<00:02, 8.43it/s] 97%|█████████▋| 483/500 [01:00<00:01, 8.55it/s] 97%|█████████▋| 484/500 [01:00<00:01, 8.64it/s] 97%|█████████▋| 485/500 [01:00<00:01, 8.71it/s] 97%|█████████▋| 486/500 [01:00<00:01, 8.75it/s] 97%|█████████▋| 487/500 [01:00<00:01, 8.78it/s] 98%|█████████▊| 488/500 [01:01<00:01, 8.81it/s] 98%|█████████▊| 489/500 [01:01<00:01, 8.83it/s] 98%|█████████▊| 490/500 [01:01<00:01, 8.84it/s] 98%|█████████▊| 491/500 [01:01<00:01, 8.85it/s] 98%|█████████▊| 492/500 [01:01<00:00, 8.84it/s] 99%|█████████▊| 493/500 [01:01<00:00, 8.84it/s] 99%|█████████▉| 494/500 [01:01<00:00, 8.84it/s] 99%|█████████▉| 495/500 [01:01<00:00, 8.83it/s] 99%|█████████▉| 496/500 [01:01<00:00, 8.83it/s] 99%|█████████▉| 497/500 [01:02<00:00, 8.84it/s] 100%|█████████▉| 498/500 [01:02<00:00, 8.84it/s] 100%|█████████▉| 499/500 [01:02<00:00, 8.84it/s] 100%|██████████| 500/500 [01:02<00:00, 8.84it/s] 100%|██████████| 500/500 [01:02<00:00, 8.02it/s]
Prediction
devxpy/glid-3-xl-stable:7d6a340eInput
- fp32
- true
- prompt
- Jon snow from the game of thrones
- num_outputs
- 1
- skip_timesteps
- 50
- num_inference_steps
- "100"
{ "fp32": true, "prompt": "Jon snow from the game of thrones", "init_image": "https://replicate.delivery/mgxm/a5f6ab5d-713a-441e-ac98-fac49c74c3b3/205032562_345087143808969_4674423480430035886_n.png", "num_outputs": 1, "skip_timesteps": 50, "num_inference_steps": "100" }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run devxpy/glid-3-xl-stable using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "devxpy/glid-3-xl-stable:7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7", { input: { prompt: "Jon snow from the game of thrones", init_image: "https://replicate.delivery/mgxm/a5f6ab5d-713a-441e-ac98-fac49c74c3b3/205032562_345087143808969_4674423480430035886_n.png", num_outputs: 1, skip_timesteps: 50, num_inference_steps: "100" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run devxpy/glid-3-xl-stable using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "devxpy/glid-3-xl-stable:7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7", input={ "prompt": "Jon snow from the game of thrones", "init_image": "https://replicate.delivery/mgxm/a5f6ab5d-713a-441e-ac98-fac49c74c3b3/205032562_345087143808969_4674423480430035886_n.png", "num_outputs": 1, "skip_timesteps": 50, "num_inference_steps": "100" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run devxpy/glid-3-xl-stable using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7", "input": { "prompt": "Jon snow from the game of thrones", "init_image": "https://replicate.delivery/mgxm/a5f6ab5d-713a-441e-ac98-fac49c74c3b3/205032562_345087143808969_4674423480430035886_n.png", "num_outputs": 1, "skip_timesteps": 50, "num_inference_steps": "100" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/devxpy/glid-3-xl-stable@sha256:7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7 \ -i 'prompt="Jon snow from the game of thrones"' \ -i 'init_image="https://replicate.delivery/mgxm/a5f6ab5d-713a-441e-ac98-fac49c74c3b3/205032562_345087143808969_4674423480430035886_n.png"' \ -i 'num_outputs=1' \ -i 'skip_timesteps=50' \ -i 'num_inference_steps="100"'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/devxpy/glid-3-xl-stable@sha256:7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "prompt": "Jon snow from the game of thrones", "init_image": "https://replicate.delivery/mgxm/a5f6ab5d-713a-441e-ac98-fac49c74c3b3/205032562_345087143808969_4674423480430035886_n.png", "num_outputs": 1, "skip_timesteps": 50, "num_inference_steps": "100" } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2022-10-12T19:13:28.053574Z", "created_at": "2022-10-12T19:13:19.441602Z", "data_removed": false, "error": null, "id": "ymcrh3qlzrepri4btsdtlufjua", "input": { "fp32": true, "prompt": "Jon snow from the game of thrones", "init_image": "https://replicate.delivery/mgxm/a5f6ab5d-713a-441e-ac98-fac49c74c3b3/205032562_345087143808969_4674423480430035886_n.png", "num_outputs": 1, "skip_timesteps": 50, "num_inference_steps": "100" }, "logs": "Using device: cuda:0\n\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:33, 1.47it/s]\n 4%|▍ | 2/50 [00:01<00:26, 1.83it/s]\n 6%|▌ | 3/50 [00:01<00:23, 1.99it/s]\n 8%|▊ | 4/50 [00:01<00:16, 2.87it/s]\n 10%|█ | 5/50 [00:01<00:11, 3.79it/s]\n 12%|█▏ | 6/50 [00:01<00:09, 4.71it/s]\n 14%|█▍ | 7/50 [00:02<00:07, 5.56it/s]\n 16%|█▌ | 8/50 [00:02<00:06, 6.30it/s]\n 18%|█▊ | 9/50 [00:02<00:05, 6.92it/s]\n 20%|██ | 10/50 [00:02<00:05, 7.42it/s]\n 22%|██▏ | 11/50 [00:02<00:05, 7.80it/s]\n 24%|██▍ | 12/50 [00:02<00:04, 8.08it/s]\n 26%|██▌ | 13/50 [00:02<00:04, 8.30it/s]\n 28%|██▊ | 14/50 [00:02<00:04, 8.45it/s]\n 30%|███ | 15/50 [00:02<00:04, 8.56it/s]\n 32%|███▏ | 16/50 [00:03<00:03, 8.65it/s]\n 34%|███▍ | 17/50 [00:03<00:03, 8.70it/s]\n 36%|███▌ | 18/50 [00:03<00:03, 8.74it/s]\n 38%|███▊ | 19/50 [00:03<00:03, 8.76it/s]\n 40%|████ | 20/50 [00:03<00:03, 8.77it/s]\n 42%|████▏ | 21/50 [00:03<00:05, 5.78it/s]\n 44%|████▍ | 22/50 [00:03<00:04, 6.43it/s]\n 46%|████▌ | 23/50 [00:04<00:03, 7.00it/s]\n 48%|████▊ | 24/50 [00:04<00:03, 7.46it/s]\n 50%|█████ | 25/50 [00:04<00:03, 7.82it/s]\n 52%|█████▏ | 26/50 [00:04<00:02, 8.09it/s]\n 54%|█████▍ | 27/50 [00:04<00:02, 8.29it/s]\n 56%|█████▌ | 28/50 [00:04<00:02, 8.43it/s]\n 58%|█████▊ | 29/50 [00:04<00:02, 8.53it/s]\n 60%|██████ | 30/50 [00:04<00:02, 8.62it/s]\n 62%|██████▏ | 31/50 [00:04<00:02, 8.68it/s]\n 64%|██████▍ | 32/50 [00:05<00:02, 8.73it/s]\n 66%|██████▌ | 33/50 [00:05<00:01, 8.76it/s]\n 68%|██████▊ | 34/50 [00:05<00:01, 8.78it/s]\n 70%|███████ | 35/50 [00:05<00:01, 8.79it/s]\n 72%|███████▏ | 36/50 [00:05<00:01, 8.80it/s]\n 74%|███████▍ | 37/50 [00:05<00:01, 8.80it/s]\n 76%|███████▌ | 38/50 [00:05<00:01, 8.80it/s]\n 78%|███████▊ | 39/50 [00:05<00:01, 8.80it/s]\n 80%|████████ | 40/50 [00:05<00:01, 8.78it/s]\n 82%|████████▏ | 41/50 [00:06<00:01, 5.91it/s]\n 84%|████████▍ | 42/50 [00:06<00:01, 6.55it/s]\n 86%|████████▌ | 43/50 [00:06<00:00, 7.10it/s]\n 88%|████████▊ | 44/50 [00:06<00:00, 7.55it/s]\n 90%|█████████ | 45/50 [00:06<00:00, 7.89it/s]\n 92%|█████████▏| 46/50 [00:06<00:00, 8.15it/s]\n 94%|█████████▍| 47/50 [00:06<00:00, 8.34it/s]\n 96%|█████████▌| 48/50 [00:07<00:00, 8.48it/s]\n 98%|█████████▊| 49/50 [00:07<00:00, 8.57it/s]\n100%|██████████| 50/50 [00:07<00:00, 8.65it/s]\n100%|██████████| 50/50 [00:07<00:00, 6.85it/s]", "metrics": { "predict_time": 8.385183, "total_time": 8.611972 }, "output": [ "https://replicate.delivery/mgxm/c4264c25-682b-4f33-8625-3f14f546e1e0/00000.png" ], "started_at": "2022-10-12T19:13:19.668391Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ymcrh3qlzrepri4btsdtlufjua", "cancel": "https://api.replicate.com/v1/predictions/ymcrh3qlzrepri4btsdtlufjua/cancel" }, "version": "773fe7b990c57d29570b2d6fc71a0f460b129c8c950b5e1b1b9c881581387c98" }
Generated inUsing device: cuda:0 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:33, 1.47it/s] 4%|▍ | 2/50 [00:01<00:26, 1.83it/s] 6%|▌ | 3/50 [00:01<00:23, 1.99it/s] 8%|▊ | 4/50 [00:01<00:16, 2.87it/s] 10%|█ | 5/50 [00:01<00:11, 3.79it/s] 12%|█▏ | 6/50 [00:01<00:09, 4.71it/s] 14%|█▍ | 7/50 [00:02<00:07, 5.56it/s] 16%|█▌ | 8/50 [00:02<00:06, 6.30it/s] 18%|█▊ | 9/50 [00:02<00:05, 6.92it/s] 20%|██ | 10/50 [00:02<00:05, 7.42it/s] 22%|██▏ | 11/50 [00:02<00:05, 7.80it/s] 24%|██▍ | 12/50 [00:02<00:04, 8.08it/s] 26%|██▌ | 13/50 [00:02<00:04, 8.30it/s] 28%|██▊ | 14/50 [00:02<00:04, 8.45it/s] 30%|███ | 15/50 [00:02<00:04, 8.56it/s] 32%|███▏ | 16/50 [00:03<00:03, 8.65it/s] 34%|███▍ | 17/50 [00:03<00:03, 8.70it/s] 36%|███▌ | 18/50 [00:03<00:03, 8.74it/s] 38%|███▊ | 19/50 [00:03<00:03, 8.76it/s] 40%|████ | 20/50 [00:03<00:03, 8.77it/s] 42%|████▏ | 21/50 [00:03<00:05, 5.78it/s] 44%|████▍ | 22/50 [00:03<00:04, 6.43it/s] 46%|████▌ | 23/50 [00:04<00:03, 7.00it/s] 48%|████▊ | 24/50 [00:04<00:03, 7.46it/s] 50%|█████ | 25/50 [00:04<00:03, 7.82it/s] 52%|█████▏ | 26/50 [00:04<00:02, 8.09it/s] 54%|█████▍ | 27/50 [00:04<00:02, 8.29it/s] 56%|█████▌ | 28/50 [00:04<00:02, 8.43it/s] 58%|█████▊ | 29/50 [00:04<00:02, 8.53it/s] 60%|██████ | 30/50 [00:04<00:02, 8.62it/s] 62%|██████▏ | 31/50 [00:04<00:02, 8.68it/s] 64%|██████▍ | 32/50 [00:05<00:02, 8.73it/s] 66%|██████▌ | 33/50 [00:05<00:01, 8.76it/s] 68%|██████▊ | 34/50 [00:05<00:01, 8.78it/s] 70%|███████ | 35/50 [00:05<00:01, 8.79it/s] 72%|███████▏ | 36/50 [00:05<00:01, 8.80it/s] 74%|███████▍ | 37/50 [00:05<00:01, 8.80it/s] 76%|███████▌ | 38/50 [00:05<00:01, 8.80it/s] 78%|███████▊ | 39/50 [00:05<00:01, 8.80it/s] 80%|████████ | 40/50 [00:05<00:01, 8.78it/s] 82%|████████▏ | 41/50 [00:06<00:01, 5.91it/s] 84%|████████▍ | 42/50 [00:06<00:01, 6.55it/s] 86%|████████▌ | 43/50 [00:06<00:00, 7.10it/s] 88%|████████▊ | 44/50 [00:06<00:00, 7.55it/s] 90%|█████████ | 45/50 [00:06<00:00, 7.89it/s] 92%|█████████▏| 46/50 [00:06<00:00, 8.15it/s] 94%|█████████▍| 47/50 [00:06<00:00, 8.34it/s] 96%|█████████▌| 48/50 [00:07<00:00, 8.48it/s] 98%|█████████▊| 49/50 [00:07<00:00, 8.57it/s] 100%|██████████| 50/50 [00:07<00:00, 8.65it/s] 100%|██████████| 50/50 [00:07<00:00, 6.85it/s]
Prediction
devxpy/glid-3-xl-stable:7d6a340eIDefgpyuzn6ravdij3yl42rxkk2aStatusSucceededSourceWebHardware–Total durationCreatedInput
{ "fp32": true, "mask": "https://replicate.delivery/mgxm/e2dfe2c5-7578-421e-ab55-ae9b553243ec/face_mask.png", "prompt": "eiffel tower in paris", "outpaint": "wider", "edit_image": "https://replicate.delivery/mgxm/8a83b0ca-2ea7-4095-8057-499f35a085d8/205032562_345087143808969_4674423480430035886_n.png", "num_outputs": 1, "num_inference_steps": "200" }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run devxpy/glid-3-xl-stable using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "devxpy/glid-3-xl-stable:7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7", { input: { mask: "https://replicate.delivery/mgxm/e2dfe2c5-7578-421e-ab55-ae9b553243ec/face_mask.png", prompt: "eiffel tower in paris", outpaint: "wider", edit_image: "https://replicate.delivery/mgxm/8a83b0ca-2ea7-4095-8057-499f35a085d8/205032562_345087143808969_4674423480430035886_n.png", num_outputs: 1, num_inference_steps: "200" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run devxpy/glid-3-xl-stable using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "devxpy/glid-3-xl-stable:7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7", input={ "mask": "https://replicate.delivery/mgxm/e2dfe2c5-7578-421e-ab55-ae9b553243ec/face_mask.png", "prompt": "eiffel tower in paris", "outpaint": "wider", "edit_image": "https://replicate.delivery/mgxm/8a83b0ca-2ea7-4095-8057-499f35a085d8/205032562_345087143808969_4674423480430035886_n.png", "num_outputs": 1, "num_inference_steps": "200" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run devxpy/glid-3-xl-stable using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7", "input": { "mask": "https://replicate.delivery/mgxm/e2dfe2c5-7578-421e-ab55-ae9b553243ec/face_mask.png", "prompt": "eiffel tower in paris", "outpaint": "wider", "edit_image": "https://replicate.delivery/mgxm/8a83b0ca-2ea7-4095-8057-499f35a085d8/205032562_345087143808969_4674423480430035886_n.png", "num_outputs": 1, "num_inference_steps": "200" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/devxpy/glid-3-xl-stable@sha256:7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7 \ -i 'mask="https://replicate.delivery/mgxm/e2dfe2c5-7578-421e-ab55-ae9b553243ec/face_mask.png"' \ -i 'prompt="eiffel tower in paris"' \ -i 'outpaint="wider"' \ -i 'edit_image="https://replicate.delivery/mgxm/8a83b0ca-2ea7-4095-8057-499f35a085d8/205032562_345087143808969_4674423480430035886_n.png"' \ -i 'num_outputs=1' \ -i 'num_inference_steps="200"'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/devxpy/glid-3-xl-stable@sha256:7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mask": "https://replicate.delivery/mgxm/e2dfe2c5-7578-421e-ab55-ae9b553243ec/face_mask.png", "prompt": "eiffel tower in paris", "outpaint": "wider", "edit_image": "https://replicate.delivery/mgxm/8a83b0ca-2ea7-4095-8057-499f35a085d8/205032562_345087143808969_4674423480430035886_n.png", "num_outputs": 1, "num_inference_steps": "200" } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2022-10-12T19:45:06.507696Z", "created_at": "2022-10-12T19:43:09.581398Z", "data_removed": false, "error": null, "id": "efgpyuzn6ravdij3yl42rxkk2a", "input": { "fp32": true, "mask": "https://replicate.delivery/mgxm/e2dfe2c5-7578-421e-ab55-ae9b553243ec/face_mask.png", "prompt": "eiffel tower in paris", "outpaint": "wider", "edit_image": "https://replicate.delivery/mgxm/8a83b0ca-2ea7-4095-8057-499f35a085d8/205032562_345087143808969_4674423480430035886_n.png", "num_outputs": 1, "num_inference_steps": "200" }, "logs": "Using device: cuda:0\n\n 0%| | 0/200 [00:00<?, ?it/s]\n 0%| | 1/200 [00:00<02:25, 1.36it/s]\n 1%| | 2/200 [00:01<01:52, 1.76it/s]\n 2%|▏ | 3/200 [00:01<01:41, 1.94it/s]\n 2%|▏ | 4/200 [00:01<01:09, 2.81it/s]\n 2%|▎ | 5/200 [00:01<00:52, 3.72it/s]\n 3%|▎ | 6/200 [00:01<00:41, 4.63it/s]\n 4%|▎ | 7/200 [00:02<00:35, 5.48it/s]\n 4%|▍ | 8/200 [00:02<00:30, 6.23it/s]\n 4%|▍ | 9/200 [00:02<00:27, 6.86it/s]\n 5%|▌ | 10/200 [00:02<00:25, 7.37it/s]\n 6%|▌ | 11/200 [00:02<00:24, 7.77it/s]\n 6%|▌ | 12/200 [00:02<00:23, 8.07it/s]\n 6%|▋ | 13/200 [00:02<00:22, 8.29it/s]\n 7%|▋ | 14/200 [00:02<00:22, 8.44it/s]\n 8%|▊ | 15/200 [00:02<00:21, 8.55it/s]\n 8%|▊ | 16/200 [00:03<00:21, 8.64it/s]\n 8%|▊ | 17/200 [00:03<00:21, 8.70it/s]\n 9%|▉ | 18/200 [00:03<00:20, 8.73it/s]\n 10%|▉ | 19/200 [00:03<00:20, 8.74it/s]\n 10%|█ | 20/200 [00:03<00:20, 8.77it/s]\n 10%|█ | 21/200 [00:03<00:20, 8.78it/s]\n 11%|█ | 22/200 [00:03<00:20, 8.80it/s]\n 12%|█▏ | 23/200 [00:03<00:20, 8.81it/s]\n 12%|█▏ | 24/200 [00:04<00:19, 8.81it/s]\n 12%|█▎ | 25/200 [00:04<00:19, 8.81it/s]\n 13%|█▎ | 26/200 [00:04<00:33, 5.20it/s]\n 14%|█▎ | 27/200 [00:04<00:29, 5.93it/s]\n 14%|█▍ | 28/200 [00:04<00:26, 6.57it/s]\n 14%|█▍ | 29/200 [00:04<00:24, 7.11it/s]\n 15%|█▌ | 30/200 [00:04<00:22, 7.55it/s]\n 16%|█▌ | 31/200 [00:05<00:21, 7.89it/s]\n 16%|█▌ | 32/200 [00:05<00:20, 8.15it/s]\n 16%|█▋ | 33/200 [00:05<00:20, 8.34it/s]\n 17%|█▋ | 34/200 [00:05<00:19, 8.48it/s]\n 18%|█▊ | 35/200 [00:05<00:19, 8.58it/s]\n 18%|█▊ | 36/200 [00:05<00:18, 8.65it/s]\n 18%|█▊ | 37/200 [00:05<00:18, 8.71it/s]\n 19%|█▉ | 38/200 [00:05<00:18, 8.74it/s]\n 20%|█▉ | 39/200 [00:05<00:18, 8.76it/s]\n 20%|██ | 40/200 [00:06<00:18, 8.78it/s]\n 20%|██ | 41/200 [00:06<00:18, 8.79it/s]\n 21%|██ | 42/200 [00:06<00:17, 8.80it/s]\n 22%|██▏ | 43/200 [00:06<00:17, 8.81it/s]\n 22%|██▏ | 44/200 [00:06<00:17, 8.81it/s]\n 22%|██▎ | 45/200 [00:06<00:17, 8.81it/s]\n 23%|██▎ | 46/200 [00:06<00:17, 8.82it/s]\n 24%|██▎ | 47/200 [00:06<00:17, 8.82it/s]\n 24%|██▍ | 48/200 [00:07<00:17, 8.82it/s]\n 24%|██▍ | 49/200 [00:07<00:17, 8.83it/s]\n 25%|██▌ | 50/200 [00:07<00:16, 8.83it/s]\n 26%|██▌ | 51/200 [00:07<00:28, 5.22it/s]\n 26%|██▌ | 52/200 [00:07<00:24, 5.94it/s]\n 26%|██▋ | 53/200 [00:07<00:22, 6.59it/s]\n 27%|██▋ | 54/200 [00:07<00:20, 7.13it/s]\n 28%|██▊ | 55/200 [00:08<00:19, 7.56it/s]\n 28%|██▊ | 56/200 [00:08<00:18, 7.90it/s]\n 28%|██▊ | 57/200 [00:08<00:17, 8.15it/s]\n 29%|██▉ | 58/200 [00:08<00:17, 8.35it/s]\n 30%|██▉ | 59/200 [00:08<00:16, 8.49it/s]\n 30%|███ | 60/200 [00:08<00:16, 8.58it/s]\n 30%|███ | 61/200 [00:08<00:16, 8.66it/s]\n 31%|███ | 62/200 [00:08<00:15, 8.71it/s]\n 32%|███▏ | 63/200 [00:08<00:15, 8.74it/s]\n 32%|███▏ | 64/200 [00:09<00:15, 8.77it/s]\n 32%|███▎ | 65/200 [00:09<00:15, 8.79it/s]\n 33%|███▎ | 66/200 [00:09<00:15, 8.80it/s]\n 34%|███▎ | 67/200 [00:09<00:15, 8.81it/s]\n 34%|███▍ | 68/200 [00:09<00:14, 8.82it/s]\n 34%|███▍ | 69/200 [00:09<00:14, 8.82it/s]\n 35%|███▌ | 70/200 [00:09<00:14, 8.83it/s]\n 36%|███▌ | 71/200 [00:09<00:14, 8.83it/s]\n 36%|███▌ | 72/200 [00:09<00:14, 8.83it/s]\n 36%|███▋ | 73/200 [00:10<00:14, 8.83it/s]\n 37%|███▋ | 74/200 [00:10<00:14, 8.83it/s]\n 38%|███▊ | 75/200 [00:10<00:14, 8.83it/s]\n 38%|███▊ | 76/200 [00:10<00:23, 5.22it/s]\n 38%|███▊ | 77/200 [00:10<00:20, 5.94it/s]\n 39%|███▉ | 78/200 [00:10<00:18, 6.59it/s]\n 40%|███▉ | 79/200 [00:11<00:16, 7.13it/s]\n 40%|████ | 80/200 [00:11<00:15, 7.57it/s]\n 40%|████ | 81/200 [00:11<00:15, 7.91it/s]\n 41%|████ | 82/200 [00:11<00:14, 8.15it/s]\n 42%|████▏ | 83/200 [00:11<00:14, 8.34it/s]\n 42%|████▏ | 84/200 [00:11<00:13, 8.48it/s]\n 42%|████▎ | 85/200 [00:11<00:13, 8.58it/s]\n 43%|████▎ | 86/200 [00:11<00:13, 8.65it/s]\n 44%|████▎ | 87/200 [00:11<00:12, 8.71it/s]\n 44%|████▍ | 88/200 [00:12<00:12, 8.74it/s]\n 44%|████▍ | 89/200 [00:12<00:12, 8.77it/s]\n 45%|████▌ | 90/200 [00:12<00:12, 8.79it/s]\n 46%|████▌ | 91/200 [00:12<00:12, 8.79it/s]\n 46%|████▌ | 92/200 [00:12<00:12, 8.80it/s]\n 46%|████▋ | 93/200 [00:12<00:12, 8.81it/s]\n 47%|████▋ | 94/200 [00:12<00:12, 8.82it/s]\n 48%|████▊ | 95/200 [00:12<00:11, 8.82it/s]\n 48%|████▊ | 96/200 [00:12<00:11, 8.82it/s]\n 48%|████▊ | 97/200 [00:13<00:11, 8.83it/s]\n 49%|████▉ | 98/200 [00:13<00:11, 8.82it/s]\n 50%|████▉ | 99/200 [00:13<00:11, 8.81it/s]\n 50%|█████ | 100/200 [00:13<00:11, 8.82it/s]\n 50%|█████ | 101/200 [00:13<00:18, 5.28it/s]\n 51%|█████ | 102/200 [00:13<00:16, 6.00it/s]\n 52%|█████▏ | 103/200 [00:14<00:14, 6.64it/s]\n 52%|█████▏ | 104/200 [00:14<00:13, 7.17it/s]\n 52%|█████▎ | 105/200 [00:14<00:12, 7.60it/s]\n 53%|█████▎ | 106/200 [00:14<00:11, 7.92it/s]\n 54%|█████▎ | 107/200 [00:14<00:11, 8.16it/s]\n 54%|█████▍ | 108/200 [00:14<00:11, 8.33it/s]\n 55%|█████▍ | 109/200 [00:14<00:10, 8.46it/s]\n 55%|█████▌ | 110/200 [00:14<00:10, 8.55it/s]\n 56%|█████▌ | 111/200 [00:14<00:10, 8.62it/s]\n 56%|█████▌ | 112/200 [00:15<00:10, 8.67it/s]\n 56%|█████▋ | 113/200 [00:15<00:09, 8.72it/s]\n 57%|█████▋ | 114/200 [00:15<00:09, 8.74it/s]\n 57%|█████▊ | 115/200 [00:15<00:09, 8.76it/s]\n 58%|█████▊ | 116/200 [00:15<00:09, 8.78it/s]\n 58%|█████▊ | 117/200 [00:15<00:09, 8.80it/s]\n 59%|█████▉ | 118/200 [00:15<00:09, 8.81it/s]\n 60%|█████▉ | 119/200 [00:15<00:09, 8.82it/s]\n 60%|██████ | 120/200 [00:15<00:09, 8.82it/s]\n 60%|██████ | 121/200 [00:16<00:08, 8.82it/s]\n 61%|██████ | 122/200 [00:16<00:08, 8.82it/s]\n 62%|██████▏ | 123/200 [00:16<00:08, 8.81it/s]\n 62%|██████▏ | 124/200 [00:16<00:08, 8.79it/s]\n 62%|██████▎ | 125/200 [00:16<00:08, 8.79it/s]\n 63%|██████▎ | 126/200 [00:16<00:13, 5.32it/s]\n 64%|██████▎ | 127/200 [00:16<00:12, 6.03it/s]\n 64%|██████▍ | 128/200 [00:17<00:10, 6.67it/s]\n 64%|██████▍ | 129/200 [00:17<00:09, 7.20it/s]\n 65%|██████▌ | 130/200 [00:17<00:09, 7.62it/s]\n 66%|██████▌ | 131/200 [00:17<00:08, 7.95it/s]\n 66%|██████▌ | 132/200 [00:17<00:08, 8.20it/s]\n 66%|██████▋ | 133/200 [00:17<00:07, 8.38it/s]\n 67%|██████▋ | 134/200 [00:17<00:07, 8.51it/s]\n 68%|██████▊ | 135/200 [00:17<00:07, 8.60it/s]\n 68%|██████▊ | 136/200 [00:18<00:07, 8.65it/s]\n 68%|██████▊ | 137/200 [00:18<00:07, 8.69it/s]\n 69%|██████▉ | 138/200 [00:18<00:07, 8.74it/s]\n 70%|██████▉ | 139/200 [00:18<00:06, 8.76it/s]\n 70%|███████ | 140/200 [00:18<00:06, 8.77it/s]\n 70%|███████ | 141/200 [00:18<00:06, 8.79it/s]\n 71%|███████ | 142/200 [00:18<00:06, 8.78it/s]\n 72%|███████▏ | 143/200 [00:18<00:06, 8.79it/s]\n 72%|███████▏ | 144/200 [00:18<00:06, 8.80it/s]\n 72%|███████▎ | 145/200 [00:19<00:06, 8.80it/s]\n 73%|███████▎ | 146/200 [00:19<00:06, 8.81it/s]\n 74%|███████▎ | 147/200 [00:19<00:06, 8.82it/s]\n 74%|███████▍ | 148/200 [00:19<00:05, 8.82it/s]\n 74%|███████▍ | 149/200 [00:19<00:05, 8.82it/s]\n 75%|███████▌ | 150/200 [00:19<00:05, 8.80it/s]\n 76%|███████▌ | 151/200 [00:19<00:09, 5.35it/s]\n 76%|███████▌ | 152/200 [00:20<00:07, 6.05it/s]\n 76%|███████▋ | 153/200 [00:20<00:07, 6.68it/s]\n 77%|███████▋ | 154/200 [00:20<00:06, 7.20it/s]\n 78%|███████▊ | 155/200 [00:20<00:05, 7.63it/s]\n 78%|███████▊ | 156/200 [00:20<00:05, 7.96it/s]\n 78%|███████▊ | 157/200 [00:20<00:05, 8.20it/s]\n 79%|███████▉ | 158/200 [00:20<00:05, 8.39it/s]\n 80%|███████▉ | 159/200 [00:20<00:04, 8.52it/s]\n 80%|████████ | 160/200 [00:20<00:04, 8.61it/s]\n 80%|████████ | 161/200 [00:21<00:04, 8.67it/s]\n 81%|████████ | 162/200 [00:21<00:04, 8.70it/s]\n 82%|████████▏ | 163/200 [00:21<00:04, 8.74it/s]\n 82%|████████▏ | 164/200 [00:21<00:04, 8.76it/s]\n 82%|████████▎ | 165/200 [00:21<00:03, 8.78it/s]\n 83%|████████▎ | 166/200 [00:21<00:03, 8.80it/s]\n 84%|████████▎ | 167/200 [00:21<00:03, 8.81it/s]\n 84%|████████▍ | 168/200 [00:21<00:03, 8.81it/s]\n 84%|████████▍ | 169/200 [00:21<00:03, 8.80it/s]\n 85%|████████▌ | 170/200 [00:22<00:03, 8.80it/s]\n 86%|████████▌ | 171/200 [00:22<00:03, 8.79it/s]\n 86%|████████▌ | 172/200 [00:22<00:03, 8.80it/s]\n 86%|████████▋ | 173/200 [00:22<00:03, 8.81it/s]\n 87%|████████▋ | 174/200 [00:22<00:02, 8.81it/s]\n 88%|████████▊ | 175/200 [00:22<00:02, 8.81it/s]\n 88%|████████▊ | 176/200 [00:23<00:04, 5.38it/s]\n 88%|████████▊ | 177/200 [00:23<00:03, 6.08it/s]\n 89%|████████▉ | 178/200 [00:23<00:03, 6.71it/s]\n 90%|████████▉ | 179/200 [00:23<00:02, 7.23it/s]\n 90%|█████████ | 180/200 [00:23<00:02, 7.65it/s]\n 90%|█████████ | 181/200 [00:23<00:02, 7.97it/s]\n 91%|█████████ | 182/200 [00:23<00:02, 8.21it/s]\n 92%|█████████▏| 183/200 [00:23<00:02, 8.39it/s]\n 92%|█████████▏| 184/200 [00:23<00:01, 8.53it/s]\n 92%|█████████▎| 185/200 [00:24<00:01, 8.62it/s]\n 93%|█████████▎| 186/200 [00:24<00:01, 8.69it/s]\n 94%|█████████▎| 187/200 [00:24<00:01, 8.73it/s]\n 94%|█████████▍| 188/200 [00:24<00:01, 8.77it/s]\n 94%|█████████▍| 189/200 [00:24<00:01, 8.79it/s]\n 95%|█████████▌| 190/200 [00:24<00:01, 8.81it/s]\n 96%|█████████▌| 191/200 [00:24<00:01, 8.82it/s]\n 96%|█████████▌| 192/200 [00:24<00:00, 8.82it/s]\n 96%|█████████▋| 193/200 [00:24<00:00, 8.81it/s]\n 97%|█████████▋| 194/200 [00:25<00:00, 8.80it/s]\n 98%|█████████▊| 195/200 [00:25<00:00, 8.81it/s]\n 98%|█████████▊| 196/200 [00:25<00:00, 8.82it/s]\n 98%|█████████▊| 197/200 [00:25<00:00, 8.83it/s]\n 99%|█████████▉| 198/200 [00:25<00:00, 8.83it/s]\n100%|█████████▉| 199/200 [00:25<00:00, 8.84it/s]\n100%|██████████| 200/200 [00:25<00:00, 8.84it/s]\n100%|██████████| 200/200 [00:25<00:00, 7.77it/s]\n\n 0%| | 0/200 [00:00<?, ?it/s]\n 0%| | 1/200 [00:00<02:26, 1.36it/s]\n 1%| | 2/200 [00:01<01:52, 1.76it/s]\n 2%|▏ | 3/200 [00:01<01:41, 1.95it/s]\n 2%|▏ | 4/200 [00:01<01:09, 2.81it/s]\n 2%|▎ | 5/200 [00:01<00:52, 3.73it/s]\n 3%|▎ | 6/200 [00:01<00:41, 4.64it/s]\n 4%|▎ | 7/200 [00:02<00:35, 5.49it/s]\n 4%|▍ | 8/200 [00:02<00:30, 6.24it/s]\n 4%|▍ | 9/200 [00:02<00:27, 6.88it/s]\n 5%|▌ | 10/200 [00:02<00:25, 7.38it/s]\n 6%|▌ | 11/200 [00:02<00:24, 7.77it/s]\n 6%|▌ | 12/200 [00:02<00:23, 8.06it/s]\n 6%|▋ | 13/200 [00:02<00:22, 8.28it/s]\n 7%|▋ | 14/200 [00:02<00:22, 8.44it/s]\n 8%|▊ | 15/200 [00:02<00:21, 8.56it/s]\n 8%|▊ | 16/200 [00:03<00:21, 8.64it/s]\n 8%|▊ | 17/200 [00:03<00:21, 8.70it/s]\n 9%|▉ | 18/200 [00:03<00:20, 8.74it/s]\n 10%|▉ | 19/200 [00:03<00:20, 8.77it/s]\n 10%|█ | 20/200 [00:03<00:20, 8.78it/s]\n 10%|█ | 21/200 [00:03<00:20, 8.79it/s]\n 11%|█ | 22/200 [00:03<00:20, 8.79it/s]\n 12%|█▏ | 23/200 [00:03<00:20, 8.81it/s]\n 12%|█▏ | 24/200 [00:04<00:19, 8.82it/s]\n 12%|█▎ | 25/200 [00:04<00:19, 8.82it/s]\n 13%|█▎ | 26/200 [00:04<00:34, 4.99it/s]\n 14%|█▎ | 27/200 [00:04<00:30, 5.73it/s]\n 14%|█▍ | 28/200 [00:04<00:26, 6.41it/s]\n 14%|█▍ | 29/200 [00:04<00:24, 6.98it/s]\n 15%|█▌ | 30/200 [00:04<00:22, 7.45it/s]\n 16%|█▌ | 31/200 [00:05<00:21, 7.82it/s]\n 16%|█▌ | 32/200 [00:05<00:20, 8.10it/s]\n 16%|█▋ | 33/200 [00:05<00:20, 8.31it/s]\n 17%|█▋ | 34/200 [00:05<00:19, 8.45it/s]\n 18%|█▊ | 35/200 [00:05<00:19, 8.55it/s]\n 18%|█▊ | 36/200 [00:05<00:18, 8.63it/s]\n 18%|█▊ | 37/200 [00:05<00:18, 8.69it/s]\n 19%|█▉ | 38/200 [00:05<00:18, 8.73it/s]\n 20%|█▉ | 39/200 [00:06<00:18, 8.76it/s]\n 20%|██ | 40/200 [00:06<00:18, 8.77it/s]\n 20%|██ | 41/200 [00:06<00:18, 8.77it/s]\n 21%|██ | 42/200 [00:06<00:17, 8.79it/s]\n 22%|██▏ | 43/200 [00:06<00:17, 8.81it/s]\n 22%|██▏ | 44/200 [00:06<00:17, 8.82it/s]\n 22%|██▎ | 45/200 [00:06<00:17, 8.82it/s]\n 23%|██▎ | 46/200 [00:06<00:17, 8.83it/s]\n 24%|██▎ | 47/200 [00:06<00:17, 8.83it/s]\n 24%|██▍ | 48/200 [00:07<00:17, 8.82it/s]\n 24%|██▍ | 49/200 [00:07<00:17, 8.82it/s]\n 25%|██▌ | 50/200 [00:07<00:16, 8.82it/s]\n 26%|██▌ | 51/200 [00:07<00:29, 4.97it/s]\n 26%|██▌ | 52/200 [00:07<00:25, 5.71it/s]\n 26%|██▋ | 53/200 [00:07<00:23, 6.39it/s]\n 27%|██▋ | 54/200 [00:07<00:20, 6.96it/s]\n 28%|██▊ | 55/200 [00:08<00:19, 7.43it/s]\n 28%|██▊ | 56/200 [00:08<00:18, 7.81it/s]\n 28%|██▊ | 57/200 [00:08<00:17, 8.08it/s]\n 29%|██▉ | 58/200 [00:08<00:17, 8.28it/s]\n 30%|██▉ | 59/200 [00:08<00:16, 8.44it/s]\n 30%|███ | 60/200 [00:08<00:16, 8.56it/s]\n 30%|███ | 61/200 [00:08<00:16, 8.64it/s]\n 31%|███ | 62/200 [00:08<00:15, 8.70it/s]\n 32%|███▏ | 63/200 [00:09<00:15, 8.74it/s]\n 32%|███▏ | 64/200 [00:09<00:15, 8.76it/s]\n 32%|███▎ | 65/200 [00:09<00:15, 8.79it/s]\n 33%|███▎ | 66/200 [00:09<00:15, 8.80it/s]\n 34%|███▎ | 67/200 [00:09<00:15, 8.81it/s]\n 34%|███▍ | 68/200 [00:09<00:14, 8.82it/s]\n 34%|███▍ | 69/200 [00:09<00:14, 8.83it/s]\n 35%|███▌ | 70/200 [00:09<00:14, 8.83it/s]\n 36%|███▌ | 71/200 [00:09<00:14, 8.81it/s]\n 36%|███▌ | 72/200 [00:10<00:14, 8.82it/s]\n 36%|███▋ | 73/200 [00:10<00:14, 8.82it/s]\n 37%|███▋ | 74/200 [00:10<00:14, 8.82it/s]\n 38%|███▊ | 75/200 [00:10<00:14, 8.83it/s]\n 38%|███▊ | 76/200 [00:10<00:25, 4.89it/s]\n 38%|███▊ | 77/200 [00:10<00:21, 5.64it/s]\n 39%|███▉ | 78/200 [00:11<00:19, 6.33it/s]\n 40%|███▉ | 79/200 [00:11<00:17, 6.91it/s]\n 40%|████ | 80/200 [00:11<00:16, 7.39it/s]\n 40%|████ | 81/200 [00:11<00:15, 7.77it/s]\n 41%|████ | 82/200 [00:11<00:14, 8.06it/s]\n 42%|████▏ | 83/200 [00:11<00:14, 8.28it/s]\n 42%|████▏ | 84/200 [00:11<00:13, 8.44it/s]\n 42%|████▎ | 85/200 [00:11<00:13, 8.56it/s]\n 43%|████▎ | 86/200 [00:11<00:13, 8.64it/s]\n 44%|████▎ | 87/200 [00:12<00:12, 8.70it/s]\n 44%|████▍ | 88/200 [00:12<00:12, 8.74it/s]\n 44%|████▍ | 89/200 [00:12<00:12, 8.77it/s]\n 45%|████▌ | 90/200 [00:12<00:12, 8.79it/s]\n 46%|████▌ | 91/200 [00:12<00:12, 8.81it/s]\n 46%|████▌ | 92/200 [00:12<00:12, 8.82it/s]\n 46%|████▋ | 93/200 [00:12<00:12, 8.82it/s]\n 47%|████▋ | 94/200 [00:12<00:12, 8.81it/s]\n 48%|████▊ | 95/200 [00:12<00:11, 8.81it/s]\n 48%|████▊ | 96/200 [00:13<00:11, 8.81it/s]\n 48%|████▊ | 97/200 [00:13<00:11, 8.82it/s]\n 49%|████▉ | 98/200 [00:13<00:11, 8.82it/s]\n 50%|████▉ | 99/200 [00:13<00:11, 8.81it/s]\n 50%|█████ | 100/200 [00:13<00:11, 8.82it/s]\n 50%|█████ | 101/200 [00:13<00:19, 5.00it/s]\n 51%|█████ | 102/200 [00:14<00:17, 5.74it/s]\n 52%|█████▏ | 103/200 [00:14<00:15, 6.40it/s]\n 52%|█████▏ | 104/200 [00:14<00:13, 6.98it/s]\n 52%|█████▎ | 105/200 [00:14<00:12, 7.45it/s]\n 53%|█████▎ | 106/200 [00:14<00:12, 7.82it/s]\n 54%|█████▎ | 107/200 [00:14<00:11, 8.10it/s]\n 54%|█████▍ | 108/200 [00:14<00:11, 8.31it/s]\n 55%|█████▍ | 109/200 [00:14<00:10, 8.46it/s]\n 55%|█████▌ | 110/200 [00:14<00:10, 8.57it/s]\n 56%|█████▌ | 111/200 [00:15<00:10, 8.65it/s]\n 56%|█████▌ | 112/200 [00:15<00:10, 8.70it/s]\n 56%|█████▋ | 113/200 [00:15<00:09, 8.74it/s]\n 57%|█████▋ | 114/200 [00:15<00:09, 8.77it/s]\n 57%|█████▊ | 115/200 [00:15<00:09, 8.79it/s]\n 58%|█████▊ | 116/200 [00:15<00:09, 8.81it/s]\n 58%|█████▊ | 117/200 [00:15<00:09, 8.82it/s]\n 59%|█████▉ | 118/200 [00:15<00:09, 8.83it/s]\n 60%|█████▉ | 119/200 [00:15<00:09, 8.83it/s]\n 60%|██████ | 120/200 [00:16<00:09, 8.82it/s]\n 60%|██████ | 121/200 [00:16<00:08, 8.82it/s]\n 61%|██████ | 122/200 [00:16<00:08, 8.83it/s]\n 62%|██████▏ | 123/200 [00:16<00:08, 8.83it/s]\n 62%|██████▏ | 124/200 [00:16<00:08, 8.83it/s]\n 62%|██████▎ | 125/200 [00:16<00:08, 8.83it/s]\n 63%|██████▎ | 126/200 [00:17<00:14, 5.01it/s]\n 64%|██████▎ | 127/200 [00:17<00:12, 5.75it/s]\n 64%|██████▍ | 128/200 [00:17<00:11, 6.42it/s]\n 64%|██████▍ | 129/200 [00:17<00:10, 6.99it/s]\n 65%|██████▌ | 130/200 [00:17<00:09, 7.45it/s]\n 66%|██████▌ | 131/200 [00:17<00:08, 7.82it/s]\n 66%|██████▌ | 132/200 [00:17<00:08, 8.09it/s]\n 66%|██████▋ | 133/200 [00:17<00:08, 8.30it/s]\n 67%|██████▋ | 134/200 [00:17<00:07, 8.46it/s]\n 68%|██████▊ | 135/200 [00:18<00:07, 8.57it/s]\n 68%|██████▊ | 136/200 [00:18<00:07, 8.65it/s]\n 68%|██████▊ | 137/200 [00:18<00:07, 8.70it/s]\n 69%|██████▉ | 138/200 [00:18<00:07, 8.75it/s]\n 70%|██████▉ | 139/200 [00:18<00:06, 8.78it/s]\n 70%|███████ | 140/200 [00:18<00:06, 8.80it/s]\n 70%|███████ | 141/200 [00:18<00:06, 8.81it/s]\n 71%|███████ | 142/200 [00:18<00:06, 8.81it/s]\n 72%|███████▏ | 143/200 [00:18<00:06, 8.82it/s]\n 72%|███████▏ | 144/200 [00:19<00:06, 8.82it/s]\n 72%|███████▎ | 145/200 [00:19<00:06, 8.83it/s]\n 73%|███████▎ | 146/200 [00:19<00:06, 8.83it/s]\n 74%|███████▎ | 147/200 [00:19<00:05, 8.83it/s]\n 74%|███████▍ | 148/200 [00:19<00:05, 8.83it/s]\n 74%|███████▍ | 149/200 [00:19<00:05, 8.83it/s]\n 75%|███████▌ | 150/200 [00:19<00:05, 8.84it/s]\n 76%|███████▌ | 151/200 [00:20<00:09, 5.05it/s]\n 76%|███████▌ | 152/200 [00:20<00:08, 5.78it/s]\n 76%|███████▋ | 153/200 [00:20<00:07, 6.45it/s]\n 77%|███████▋ | 154/200 [00:20<00:06, 7.01it/s]\n 78%|███████▊ | 155/200 [00:20<00:06, 7.47it/s]\n 78%|███████▊ | 156/200 [00:20<00:05, 7.83it/s]\n 78%|███████▊ | 157/200 [00:20<00:05, 8.10it/s]\n 79%|███████▉ | 158/200 [00:20<00:05, 8.28it/s]\n 80%|███████▉ | 159/200 [00:21<00:04, 8.44it/s]\n 80%|████████ | 160/200 [00:21<00:04, 8.55it/s]\n 80%|████████ | 161/200 [00:21<00:04, 8.63it/s]\n 81%|████████ | 162/200 [00:21<00:04, 8.68it/s]\n 82%|████████▏ | 163/200 [00:21<00:04, 8.72it/s]\n 82%|████████▏ | 164/200 [00:21<00:04, 8.74it/s]\n 82%|████████▎ | 165/200 [00:21<00:04, 8.74it/s]\n 83%|████████▎ | 166/200 [00:21<00:03, 8.77it/s]\n 84%|████████▎ | 167/200 [00:21<00:03, 8.79it/s]\n 84%|████████▍ | 168/200 [00:22<00:03, 8.81it/s]\n 84%|████████▍ | 169/200 [00:22<00:03, 8.82it/s]\n 85%|████████▌ | 170/200 [00:22<00:03, 8.82it/s]\n 86%|████████▌ | 171/200 [00:22<00:03, 8.83it/s]\n 86%|████████▌ | 172/200 [00:22<00:03, 8.83it/s]\n 86%|████████▋ | 173/200 [00:22<00:03, 8.83it/s]\n 87%|████████▋ | 174/200 [00:22<00:02, 8.84it/s]\n 88%|████████▊ | 175/200 [00:22<00:02, 8.84it/s]\n 88%|████████▊ | 176/200 [00:23<00:04, 5.04it/s]\n 88%|████████▊ | 177/200 [00:23<00:03, 5.78it/s]\n 89%|████████▉ | 178/200 [00:23<00:03, 6.44it/s]\n 90%|████████▉ | 179/200 [00:23<00:02, 7.01it/s]\n 90%|█████████ | 180/200 [00:23<00:02, 7.47it/s]\n 90%|█████████ | 181/200 [00:23<00:02, 7.84it/s]\n 91%|█████████ | 182/200 [00:23<00:02, 8.12it/s]\n 92%|█████████▏| 183/200 [00:24<00:02, 8.32it/s]\n 92%|█████████▏| 184/200 [00:24<00:01, 8.47it/s]\n 92%|█████████▎| 185/200 [00:24<00:01, 8.58it/s]\n 93%|█████████▎| 186/200 [00:24<00:01, 8.66it/s]\n 94%|█████████▎| 187/200 [00:24<00:01, 8.71it/s]\n 94%|█████████▍| 188/200 [00:24<00:01, 8.75it/s]\n 94%|█████████▍| 189/200 [00:24<00:01, 8.77it/s]\n 95%|█████████▌| 190/200 [00:24<00:01, 8.79it/s]\n 96%|█████████▌| 191/200 [00:24<00:01, 8.81it/s]\n 96%|█████████▌| 192/200 [00:25<00:00, 8.81it/s]\n 96%|█████████▋| 193/200 [00:25<00:00, 8.81it/s]\n 97%|█████████▋| 194/200 [00:25<00:00, 8.82it/s]\n 98%|█████████▊| 195/200 [00:25<00:00, 8.82it/s]\n 98%|█████████▊| 196/200 [00:25<00:00, 8.83it/s]\n 98%|█████████▊| 197/200 [00:25<00:00, 8.84it/s]\n 99%|█████████▉| 198/200 [00:25<00:00, 8.84it/s]\n100%|█████████▉| 199/200 [00:25<00:00, 8.84it/s]\n100%|██████████| 200/200 [00:25<00:00, 8.84it/s]\n100%|██████████| 200/200 [00:25<00:00, 7.70it/s]\n\n 0%| | 0/200 [00:00<?, ?it/s]\n 0%| | 1/200 [00:00<02:36, 1.27it/s]\n 1%| | 2/200 [00:01<01:56, 1.70it/s]\n 2%|▏ | 3/200 [00:01<01:43, 1.90it/s]\n 2%|▏ | 4/200 [00:01<01:11, 2.75it/s]\n 2%|▎ | 5/200 [00:01<00:53, 3.65it/s]\n 3%|▎ | 6/200 [00:02<00:42, 4.55it/s]\n 4%|▎ | 7/200 [00:02<00:35, 5.40it/s]\n 4%|▍ | 8/200 [00:02<00:31, 6.14it/s]\n 4%|▍ | 9/200 [00:02<00:28, 6.78it/s]\n 5%|▌ | 10/200 [00:02<00:26, 7.30it/s]\n 6%|▌ | 11/200 [00:02<00:24, 7.71it/s]\n 6%|▌ | 12/200 [00:02<00:23, 8.02it/s]\n 6%|▋ | 13/200 [00:02<00:22, 8.24it/s]\n 7%|▋ | 14/200 [00:02<00:22, 8.41it/s]\n 8%|▊ | 15/200 [00:03<00:21, 8.54it/s]\n 8%|▊ | 16/200 [00:03<00:21, 8.63it/s]\n 8%|▊ | 17/200 [00:03<00:21, 8.69it/s]\n 9%|▉ | 18/200 [00:03<00:20, 8.74it/s]\n 10%|▉ | 19/200 [00:03<00:20, 8.77it/s]\n 10%|█ | 20/200 [00:03<00:20, 8.79it/s]\n 10%|█ | 21/200 [00:03<00:20, 8.81it/s]\n 11%|█ | 22/200 [00:03<00:20, 8.82it/s]\n 12%|█▏ | 23/200 [00:03<00:20, 8.82it/s]\n 12%|█▏ | 24/200 [00:04<00:19, 8.83it/s]\n 12%|█▎ | 25/200 [00:04<00:19, 8.83it/s]\n 13%|█▎ | 26/200 [00:04<00:37, 4.69it/s]\n 14%|█▎ | 27/200 [00:04<00:31, 5.45it/s]\n 14%|█▍ | 28/200 [00:04<00:27, 6.16it/s]\n 14%|█▍ | 29/200 [00:04<00:25, 6.78it/s]\n 15%|█▌ | 30/200 [00:05<00:23, 7.27it/s]\n 16%|█▌ | 31/200 [00:05<00:21, 7.68it/s]\n 16%|█▌ | 32/200 [00:05<00:21, 8.00it/s]\n 16%|█▋ | 33/200 [00:05<00:20, 8.23it/s]\n 17%|█▋ | 34/200 [00:05<00:19, 8.40it/s]\n 18%|█▊ | 35/200 [00:05<00:19, 8.52it/s]\n 18%|█▊ | 36/200 [00:05<00:19, 8.61it/s]\n 18%|█▊ | 37/200 [00:05<00:18, 8.67it/s]\n 19%|█▉ | 38/200 [00:05<00:18, 8.72it/s]\n 20%|█▉ | 39/200 [00:06<00:18, 8.75it/s]\n 20%|██ | 40/200 [00:06<00:18, 8.77it/s]\n 20%|██ | 41/200 [00:06<00:18, 8.79it/s]\n 21%|██ | 42/200 [00:06<00:17, 8.79it/s]\n 22%|██▏ | 43/200 [00:06<00:17, 8.80it/s]\n 22%|██▏ | 44/200 [00:06<00:17, 8.81it/s]\n 22%|██▎ | 45/200 [00:06<00:17, 8.80it/s]\n 23%|██▎ | 46/200 [00:06<00:17, 8.79it/s]\n 24%|██▎ | 47/200 [00:07<00:17, 8.80it/s]\n 24%|██▍ | 48/200 [00:07<00:17, 8.81it/s]\n 24%|██▍ | 49/200 [00:07<00:17, 8.82it/s]\n 25%|██▌ | 50/200 [00:07<00:16, 8.83it/s]\n 26%|██▌ | 51/200 [00:07<00:31, 4.73it/s]\n 26%|██▌ | 52/200 [00:07<00:26, 5.49it/s]\n 26%|██▋ | 53/200 [00:08<00:23, 6.18it/s]\n 27%|██▋ | 54/200 [00:08<00:21, 6.79it/s]\n 28%|██▊ | 55/200 [00:08<00:19, 7.30it/s]\n 28%|██▊ | 56/200 [00:08<00:18, 7.70it/s]\n 28%|██▊ | 57/200 [00:08<00:17, 8.01it/s]\n 29%|██▉ | 58/200 [00:08<00:17, 8.25it/s]\n 30%|██▉ | 59/200 [00:08<00:16, 8.42it/s]\n 30%|███ | 60/200 [00:08<00:16, 8.54it/s]\n 30%|███ | 61/200 [00:08<00:16, 8.62it/s]\n 31%|███ | 62/200 [00:09<00:15, 8.69it/s]\n 32%|███▏ | 63/200 [00:09<00:15, 8.73it/s]\n 32%|███▏ | 64/200 [00:09<00:15, 8.76it/s]\n 32%|███▎ | 65/200 [00:09<00:15, 8.79it/s]\n 33%|███▎ | 66/200 [00:09<00:15, 8.81it/s]\n 34%|███▎ | 67/200 [00:09<00:15, 8.82it/s]\n 34%|███▍ | 68/200 [00:09<00:14, 8.83it/s]\n 34%|███▍ | 69/200 [00:09<00:14, 8.83it/s]\n 35%|███▌ | 70/200 [00:09<00:14, 8.83it/s]\n 36%|███▌ | 71/200 [00:10<00:14, 8.83it/s]\n 36%|███▌ | 72/200 [00:10<00:14, 8.84it/s]\n 36%|███▋ | 73/200 [00:10<00:14, 8.84it/s]\n 37%|███▋ | 74/200 [00:10<00:14, 8.84it/s]\n 38%|███▊ | 75/200 [00:10<00:14, 8.84it/s]\n 38%|███▊ | 76/200 [00:10<00:26, 4.73it/s]\n 38%|███▊ | 77/200 [00:11<00:22, 5.48it/s]\n 39%|███▉ | 78/200 [00:11<00:19, 6.17it/s]\n 40%|███▉ | 79/200 [00:11<00:17, 6.78it/s]\n 40%|████ | 80/200 [00:11<00:16, 7.28it/s]\n 40%|████ | 81/200 [00:11<00:15, 7.67it/s]\n 41%|████ | 82/200 [00:11<00:14, 7.98it/s]\n 42%|████▏ | 83/200 [00:11<00:14, 8.21it/s]\n 42%|████▏ | 84/200 [00:11<00:13, 8.38it/s]\n 42%|████▎ | 85/200 [00:11<00:13, 8.50it/s]\n 43%|████▎ | 86/200 [00:12<00:13, 8.59it/s]\n 44%|████▎ | 87/200 [00:12<00:13, 8.66it/s]\n 44%|████▍ | 88/200 [00:12<00:12, 8.71it/s]\n 44%|████▍ | 89/200 [00:12<00:12, 8.74it/s]\n 45%|████▌ | 90/200 [00:12<00:12, 8.75it/s]\n 46%|████▌ | 91/200 [00:12<00:12, 8.78it/s]\n 46%|████▌ | 92/200 [00:12<00:12, 8.79it/s]\n 46%|████▋ | 93/200 [00:12<00:12, 8.80it/s]\n 47%|████▋ | 94/200 [00:12<00:12, 8.80it/s]\n 48%|████▊ | 95/200 [00:13<00:11, 8.81it/s]\n 48%|████▊ | 96/200 [00:13<00:11, 8.82it/s]\n 48%|████▊ | 97/200 [00:13<00:11, 8.82it/s]\n 49%|████▉ | 98/200 [00:13<00:11, 8.83it/s]\n 50%|████▉ | 99/200 [00:13<00:11, 8.83it/s]\n 50%|█████ | 100/200 [00:13<00:11, 8.84it/s]\n 50%|█████ | 101/200 [00:14<00:21, 4.71it/s]\n 51%|█████ | 102/200 [00:14<00:17, 5.47it/s]\n 52%|█████▏ | 103/200 [00:14<00:15, 6.17it/s]\n 52%|█████▏ | 104/200 [00:14<00:14, 6.79it/s]\n 52%|█████▎ | 105/200 [00:14<00:13, 7.30it/s]\n 53%|█████▎ | 106/200 [00:14<00:12, 7.70it/s]\n 54%|█████▎ | 107/200 [00:14<00:11, 8.00it/s]\n 54%|█████▍ | 108/200 [00:14<00:11, 8.23it/s]\n 55%|█████▍ | 109/200 [00:15<00:10, 8.40it/s]\n 55%|█████▌ | 110/200 [00:15<00:10, 8.53it/s]\n 56%|█████▌ | 111/200 [00:15<00:10, 8.61it/s]\n 56%|█████▌ | 112/200 [00:15<00:10, 8.67it/s]\n 56%|█████▋ | 113/200 [00:15<00:09, 8.72it/s]\n 57%|█████▋ | 114/200 [00:15<00:09, 8.75it/s]\n 57%|█████▊ | 115/200 [00:15<00:09, 8.78it/s]\n 58%|█████▊ | 116/200 [00:15<00:09, 8.79it/s]\n 58%|█████▊ | 117/200 [00:15<00:09, 8.80it/s]\n 59%|█████▉ | 118/200 [00:16<00:09, 8.81it/s]\n 60%|█████▉ | 119/200 [00:16<00:09, 8.82it/s]\n 60%|██████ | 120/200 [00:16<00:09, 8.81it/s]\n 60%|██████ | 121/200 [00:16<00:08, 8.80it/s]\n 61%|██████ | 122/200 [00:16<00:08, 8.80it/s]\n 62%|██████▏ | 123/200 [00:16<00:08, 8.81it/s]\n 62%|██████▏ | 124/200 [00:16<00:08, 8.82it/s]\n 62%|██████▎ | 125/200 [00:16<00:08, 8.82it/s]\n 63%|██████▎ | 126/200 [00:17<00:15, 4.73it/s]\n 64%|██████▎ | 127/200 [00:17<00:13, 5.49it/s]\n 64%|██████▍ | 128/200 [00:17<00:11, 6.19it/s]\n 64%|██████▍ | 129/200 [00:17<00:10, 6.80it/s]\n 65%|██████▌ | 130/200 [00:17<00:09, 7.31it/s]\n 66%|██████▌ | 131/200 [00:17<00:08, 7.71it/s]\n 66%|██████▌ | 132/200 [00:17<00:08, 8.01it/s]\n 66%|██████▋ | 133/200 [00:18<00:08, 8.23it/s]\n 67%|██████▋ | 134/200 [00:18<00:07, 8.41it/s]\n 68%|██████▊ | 135/200 [00:18<00:07, 8.53it/s]\n 68%|██████▊ | 136/200 [00:18<00:07, 8.62it/s]\n 68%|██████▊ | 137/200 [00:18<00:07, 8.68it/s]\n 69%|██████▉ | 138/200 [00:18<00:07, 8.73it/s]\n 70%|██████▉ | 139/200 [00:18<00:06, 8.77it/s]\n 70%|███████ | 140/200 [00:18<00:06, 8.79it/s]\n 70%|███████ | 141/200 [00:18<00:06, 8.80it/s]\n 71%|███████ | 142/200 [00:19<00:06, 8.80it/s]\n 72%|███████▏ | 143/200 [00:19<00:06, 8.81it/s]\n 72%|███████▏ | 144/200 [00:19<00:06, 8.82it/s]\n 72%|███████▎ | 145/200 [00:19<00:06, 8.83it/s]\n 73%|███████▎ | 146/200 [00:19<00:06, 8.84it/s]\n 74%|███████▎ | 147/200 [00:19<00:05, 8.84it/s]\n 74%|███████▍ | 148/200 [00:19<00:05, 8.83it/s]\n 74%|███████▍ | 149/200 [00:19<00:05, 8.83it/s]\n 75%|███████▌ | 150/200 [00:19<00:05, 8.83it/s]\n 76%|███████▌ | 151/200 [00:20<00:10, 4.75it/s]\n 76%|███████▌ | 152/200 [00:20<00:08, 5.51it/s]\n 76%|███████▋ | 153/200 [00:20<00:07, 6.21it/s]\n 77%|███████▋ | 154/200 [00:20<00:06, 6.82it/s]\n 78%|███████▊ | 155/200 [00:20<00:06, 7.32it/s]\n 78%|███████▊ | 156/200 [00:21<00:05, 7.72it/s]\n 78%|███████▊ | 157/200 [00:21<00:05, 8.03it/s]\n 79%|███████▉ | 158/200 [00:21<00:05, 8.25it/s]\n 80%|███████▉ | 159/200 [00:21<00:04, 8.41it/s]\n 80%|████████ | 160/200 [00:21<00:04, 8.53it/s]\n 80%|████████ | 161/200 [00:21<00:04, 8.62it/s]\n 81%|████████ | 162/200 [00:21<00:04, 8.68it/s]\n 82%|████████▏ | 163/200 [00:21<00:04, 8.73it/s]\n 82%|████████▏ | 164/200 [00:21<00:04, 8.75it/s]\n 82%|████████▎ | 165/200 [00:22<00:03, 8.77it/s]\n 83%|████████▎ | 166/200 [00:22<00:03, 8.78it/s]\n 84%|████████▎ | 167/200 [00:22<00:03, 8.78it/s]\n 84%|████████▍ | 168/200 [00:22<00:03, 8.79it/s]\n 84%|████████▍ | 169/200 [00:22<00:03, 8.80it/s]\n 85%|████████▌ | 170/200 [00:22<00:03, 8.80it/s]\n 86%|████████▌ | 171/200 [00:22<00:03, 8.80it/s]\n 86%|████████▌ | 172/200 [00:22<00:03, 8.80it/s]\n 86%|████████▋ | 173/200 [00:22<00:03, 8.81it/s]\n 87%|████████▋ | 174/200 [00:23<00:02, 8.81it/s]\n 88%|████████▊ | 175/200 [00:23<00:02, 8.81it/s]\n 88%|████████▊ | 176/200 [00:23<00:05, 4.76it/s]\n 88%|████████▊ | 177/200 [00:23<00:04, 5.52it/s]\n 89%|████████▉ | 178/200 [00:23<00:03, 6.21it/s]\n 90%|████████▉ | 179/200 [00:23<00:03, 6.81it/s]\n 90%|█████████ | 180/200 [00:24<00:02, 7.31it/s]\n 90%|█████████ | 181/200 [00:24<00:02, 7.70it/s]\n 91%|█████████ | 182/200 [00:24<00:02, 8.01it/s]\n 92%|█████████▏| 183/200 [00:24<00:02, 8.24it/s]\n 92%|█████████▏| 184/200 [00:24<00:01, 8.41it/s]\n 92%|█████████▎| 185/200 [00:24<00:01, 8.53it/s]\n 93%|█████████▎| 186/200 [00:24<00:01, 8.61it/s]\n 94%|█████████▎| 187/200 [00:24<00:01, 8.68it/s]\n 94%|█████████▍| 188/200 [00:24<00:01, 8.72it/s]\n 94%|█████████▍| 189/200 [00:25<00:01, 8.75it/s]\n 95%|█████████▌| 190/200 [00:25<00:01, 8.78it/s]\n 96%|█████████▌| 191/200 [00:25<00:01, 8.80it/s]\n 96%|█████████▌| 192/200 [00:25<00:00, 8.81it/s]\n 96%|█████████▋| 193/200 [00:25<00:00, 8.82it/s]\n 97%|█████████▋| 194/200 [00:25<00:00, 8.83it/s]\n 98%|█████████▊| 195/200 [00:25<00:00, 8.83it/s]\n 98%|█████████▊| 196/200 [00:25<00:00, 8.83it/s]\n 98%|█████████▊| 197/200 [00:25<00:00, 8.83it/s]\n 99%|█████████▉| 198/200 [00:26<00:00, 8.84it/s]\n100%|█████████▉| 199/200 [00:26<00:00, 8.84it/s]\n100%|██████████| 200/200 [00:26<00:00, 8.84it/s]\n100%|██████████| 200/200 [00:26<00:00, 7.60it/s]", "metrics": { "predict_time": 79.998951, "total_time": 116.926298 }, "output": [ "https://replicate.delivery/mgxm/75523733-bf38-4f0c-bd51-60e9aa87a9df/00000.png" ], "started_at": "2022-10-12T19:43:46.508745Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/efgpyuzn6ravdij3yl42rxkk2a", "cancel": "https://api.replicate.com/v1/predictions/efgpyuzn6ravdij3yl42rxkk2a/cancel" }, "version": "773fe7b990c57d29570b2d6fc71a0f460b129c8c950b5e1b1b9c881581387c98" }
Generated inUsing device: cuda:0 0%| | 0/200 [00:00<?, ?it/s] 0%| | 1/200 [00:00<02:25, 1.36it/s] 1%| | 2/200 [00:01<01:52, 1.76it/s] 2%|▏ | 3/200 [00:01<01:41, 1.94it/s] 2%|▏ | 4/200 [00:01<01:09, 2.81it/s] 2%|▎ | 5/200 [00:01<00:52, 3.72it/s] 3%|▎ | 6/200 [00:01<00:41, 4.63it/s] 4%|▎ | 7/200 [00:02<00:35, 5.48it/s] 4%|▍ | 8/200 [00:02<00:30, 6.23it/s] 4%|▍ | 9/200 [00:02<00:27, 6.86it/s] 5%|▌ | 10/200 [00:02<00:25, 7.37it/s] 6%|▌ | 11/200 [00:02<00:24, 7.77it/s] 6%|▌ | 12/200 [00:02<00:23, 8.07it/s] 6%|▋ | 13/200 [00:02<00:22, 8.29it/s] 7%|▋ | 14/200 [00:02<00:22, 8.44it/s] 8%|▊ | 15/200 [00:02<00:21, 8.55it/s] 8%|▊ | 16/200 [00:03<00:21, 8.64it/s] 8%|▊ | 17/200 [00:03<00:21, 8.70it/s] 9%|▉ | 18/200 [00:03<00:20, 8.73it/s] 10%|▉ | 19/200 [00:03<00:20, 8.74it/s] 10%|█ | 20/200 [00:03<00:20, 8.77it/s] 10%|█ | 21/200 [00:03<00:20, 8.78it/s] 11%|█ | 22/200 [00:03<00:20, 8.80it/s] 12%|█▏ | 23/200 [00:03<00:20, 8.81it/s] 12%|█▏ | 24/200 [00:04<00:19, 8.81it/s] 12%|█▎ | 25/200 [00:04<00:19, 8.81it/s] 13%|█▎ | 26/200 [00:04<00:33, 5.20it/s] 14%|█▎ | 27/200 [00:04<00:29, 5.93it/s] 14%|█▍ | 28/200 [00:04<00:26, 6.57it/s] 14%|█▍ | 29/200 [00:04<00:24, 7.11it/s] 15%|█▌ | 30/200 [00:04<00:22, 7.55it/s] 16%|█▌ | 31/200 [00:05<00:21, 7.89it/s] 16%|█▌ | 32/200 [00:05<00:20, 8.15it/s] 16%|█▋ | 33/200 [00:05<00:20, 8.34it/s] 17%|█▋ | 34/200 [00:05<00:19, 8.48it/s] 18%|█▊ | 35/200 [00:05<00:19, 8.58it/s] 18%|█▊ | 36/200 [00:05<00:18, 8.65it/s] 18%|█▊ | 37/200 [00:05<00:18, 8.71it/s] 19%|█▉ | 38/200 [00:05<00:18, 8.74it/s] 20%|█▉ | 39/200 [00:05<00:18, 8.76it/s] 20%|██ | 40/200 [00:06<00:18, 8.78it/s] 20%|██ | 41/200 [00:06<00:18, 8.79it/s] 21%|██ | 42/200 [00:06<00:17, 8.80it/s] 22%|██▏ | 43/200 [00:06<00:17, 8.81it/s] 22%|██▏ | 44/200 [00:06<00:17, 8.81it/s] 22%|██▎ | 45/200 [00:06<00:17, 8.81it/s] 23%|██▎ | 46/200 [00:06<00:17, 8.82it/s] 24%|██▎ | 47/200 [00:06<00:17, 8.82it/s] 24%|██▍ | 48/200 [00:07<00:17, 8.82it/s] 24%|██▍ | 49/200 [00:07<00:17, 8.83it/s] 25%|██▌ | 50/200 [00:07<00:16, 8.83it/s] 26%|██▌ | 51/200 [00:07<00:28, 5.22it/s] 26%|██▌ | 52/200 [00:07<00:24, 5.94it/s] 26%|██▋ | 53/200 [00:07<00:22, 6.59it/s] 27%|██▋ | 54/200 [00:07<00:20, 7.13it/s] 28%|██▊ | 55/200 [00:08<00:19, 7.56it/s] 28%|██▊ | 56/200 [00:08<00:18, 7.90it/s] 28%|██▊ | 57/200 [00:08<00:17, 8.15it/s] 29%|██▉ | 58/200 [00:08<00:17, 8.35it/s] 30%|██▉ | 59/200 [00:08<00:16, 8.49it/s] 30%|███ | 60/200 [00:08<00:16, 8.58it/s] 30%|███ | 61/200 [00:08<00:16, 8.66it/s] 31%|███ | 62/200 [00:08<00:15, 8.71it/s] 32%|███▏ | 63/200 [00:08<00:15, 8.74it/s] 32%|███▏ | 64/200 [00:09<00:15, 8.77it/s] 32%|███▎ | 65/200 [00:09<00:15, 8.79it/s] 33%|███▎ | 66/200 [00:09<00:15, 8.80it/s] 34%|███▎ | 67/200 [00:09<00:15, 8.81it/s] 34%|███▍ | 68/200 [00:09<00:14, 8.82it/s] 34%|███▍ | 69/200 [00:09<00:14, 8.82it/s] 35%|███▌ | 70/200 [00:09<00:14, 8.83it/s] 36%|███▌ | 71/200 [00:09<00:14, 8.83it/s] 36%|███▌ | 72/200 [00:09<00:14, 8.83it/s] 36%|███▋ | 73/200 [00:10<00:14, 8.83it/s] 37%|███▋ | 74/200 [00:10<00:14, 8.83it/s] 38%|███▊ | 75/200 [00:10<00:14, 8.83it/s] 38%|███▊ | 76/200 [00:10<00:23, 5.22it/s] 38%|███▊ | 77/200 [00:10<00:20, 5.94it/s] 39%|███▉ | 78/200 [00:10<00:18, 6.59it/s] 40%|███▉ | 79/200 [00:11<00:16, 7.13it/s] 40%|████ | 80/200 [00:11<00:15, 7.57it/s] 40%|████ | 81/200 [00:11<00:15, 7.91it/s] 41%|████ | 82/200 [00:11<00:14, 8.15it/s] 42%|████▏ | 83/200 [00:11<00:14, 8.34it/s] 42%|████▏ | 84/200 [00:11<00:13, 8.48it/s] 42%|████▎ | 85/200 [00:11<00:13, 8.58it/s] 43%|████▎ | 86/200 [00:11<00:13, 8.65it/s] 44%|████▎ | 87/200 [00:11<00:12, 8.71it/s] 44%|████▍ | 88/200 [00:12<00:12, 8.74it/s] 44%|████▍ | 89/200 [00:12<00:12, 8.77it/s] 45%|████▌ | 90/200 [00:12<00:12, 8.79it/s] 46%|████▌ | 91/200 [00:12<00:12, 8.79it/s] 46%|████▌ | 92/200 [00:12<00:12, 8.80it/s] 46%|████▋ | 93/200 [00:12<00:12, 8.81it/s] 47%|████▋ | 94/200 [00:12<00:12, 8.82it/s] 48%|████▊ | 95/200 [00:12<00:11, 8.82it/s] 48%|████▊ | 96/200 [00:12<00:11, 8.82it/s] 48%|████▊ | 97/200 [00:13<00:11, 8.83it/s] 49%|████▉ | 98/200 [00:13<00:11, 8.82it/s] 50%|████▉ | 99/200 [00:13<00:11, 8.81it/s] 50%|█████ | 100/200 [00:13<00:11, 8.82it/s] 50%|█████ | 101/200 [00:13<00:18, 5.28it/s] 51%|█████ | 102/200 [00:13<00:16, 6.00it/s] 52%|█████▏ | 103/200 [00:14<00:14, 6.64it/s] 52%|█████▏ | 104/200 [00:14<00:13, 7.17it/s] 52%|█████▎ | 105/200 [00:14<00:12, 7.60it/s] 53%|█████▎ | 106/200 [00:14<00:11, 7.92it/s] 54%|█████▎ | 107/200 [00:14<00:11, 8.16it/s] 54%|█████▍ | 108/200 [00:14<00:11, 8.33it/s] 55%|█████▍ | 109/200 [00:14<00:10, 8.46it/s] 55%|█████▌ | 110/200 [00:14<00:10, 8.55it/s] 56%|█████▌ | 111/200 [00:14<00:10, 8.62it/s] 56%|█████▌ | 112/200 [00:15<00:10, 8.67it/s] 56%|█████▋ | 113/200 [00:15<00:09, 8.72it/s] 57%|█████▋ | 114/200 [00:15<00:09, 8.74it/s] 57%|█████▊ | 115/200 [00:15<00:09, 8.76it/s] 58%|█████▊ | 116/200 [00:15<00:09, 8.78it/s] 58%|█████▊ | 117/200 [00:15<00:09, 8.80it/s] 59%|█████▉ | 118/200 [00:15<00:09, 8.81it/s] 60%|█████▉ | 119/200 [00:15<00:09, 8.82it/s] 60%|██████ | 120/200 [00:15<00:09, 8.82it/s] 60%|██████ | 121/200 [00:16<00:08, 8.82it/s] 61%|██████ | 122/200 [00:16<00:08, 8.82it/s] 62%|██████▏ | 123/200 [00:16<00:08, 8.81it/s] 62%|██████▏ | 124/200 [00:16<00:08, 8.79it/s] 62%|██████▎ | 125/200 [00:16<00:08, 8.79it/s] 63%|██████▎ | 126/200 [00:16<00:13, 5.32it/s] 64%|██████▎ | 127/200 [00:16<00:12, 6.03it/s] 64%|██████▍ | 128/200 [00:17<00:10, 6.67it/s] 64%|██████▍ | 129/200 [00:17<00:09, 7.20it/s] 65%|██████▌ | 130/200 [00:17<00:09, 7.62it/s] 66%|██████▌ | 131/200 [00:17<00:08, 7.95it/s] 66%|██████▌ | 132/200 [00:17<00:08, 8.20it/s] 66%|██████▋ | 133/200 [00:17<00:07, 8.38it/s] 67%|██████▋ | 134/200 [00:17<00:07, 8.51it/s] 68%|██████▊ | 135/200 [00:17<00:07, 8.60it/s] 68%|██████▊ | 136/200 [00:18<00:07, 8.65it/s] 68%|██████▊ | 137/200 [00:18<00:07, 8.69it/s] 69%|██████▉ | 138/200 [00:18<00:07, 8.74it/s] 70%|██████▉ | 139/200 [00:18<00:06, 8.76it/s] 70%|███████ | 140/200 [00:18<00:06, 8.77it/s] 70%|███████ | 141/200 [00:18<00:06, 8.79it/s] 71%|███████ | 142/200 [00:18<00:06, 8.78it/s] 72%|███████▏ | 143/200 [00:18<00:06, 8.79it/s] 72%|███████▏ | 144/200 [00:18<00:06, 8.80it/s] 72%|███████▎ | 145/200 [00:19<00:06, 8.80it/s] 73%|███████▎ | 146/200 [00:19<00:06, 8.81it/s] 74%|███████▎ | 147/200 [00:19<00:06, 8.82it/s] 74%|███████▍ | 148/200 [00:19<00:05, 8.82it/s] 74%|███████▍ | 149/200 [00:19<00:05, 8.82it/s] 75%|███████▌ | 150/200 [00:19<00:05, 8.80it/s] 76%|███████▌ | 151/200 [00:19<00:09, 5.35it/s] 76%|███████▌ | 152/200 [00:20<00:07, 6.05it/s] 76%|███████▋ | 153/200 [00:20<00:07, 6.68it/s] 77%|███████▋ | 154/200 [00:20<00:06, 7.20it/s] 78%|███████▊ | 155/200 [00:20<00:05, 7.63it/s] 78%|███████▊ | 156/200 [00:20<00:05, 7.96it/s] 78%|███████▊ | 157/200 [00:20<00:05, 8.20it/s] 79%|███████▉ | 158/200 [00:20<00:05, 8.39it/s] 80%|███████▉ | 159/200 [00:20<00:04, 8.52it/s] 80%|████████ | 160/200 [00:20<00:04, 8.61it/s] 80%|████████ | 161/200 [00:21<00:04, 8.67it/s] 81%|████████ | 162/200 [00:21<00:04, 8.70it/s] 82%|████████▏ | 163/200 [00:21<00:04, 8.74it/s] 82%|████████▏ | 164/200 [00:21<00:04, 8.76it/s] 82%|████████▎ | 165/200 [00:21<00:03, 8.78it/s] 83%|████████▎ | 166/200 [00:21<00:03, 8.80it/s] 84%|████████▎ | 167/200 [00:21<00:03, 8.81it/s] 84%|████████▍ | 168/200 [00:21<00:03, 8.81it/s] 84%|████████▍ | 169/200 [00:21<00:03, 8.80it/s] 85%|████████▌ | 170/200 [00:22<00:03, 8.80it/s] 86%|████████▌ | 171/200 [00:22<00:03, 8.79it/s] 86%|████████▌ | 172/200 [00:22<00:03, 8.80it/s] 86%|████████▋ | 173/200 [00:22<00:03, 8.81it/s] 87%|████████▋ | 174/200 [00:22<00:02, 8.81it/s] 88%|████████▊ | 175/200 [00:22<00:02, 8.81it/s] 88%|████████▊ | 176/200 [00:23<00:04, 5.38it/s] 88%|████████▊ | 177/200 [00:23<00:03, 6.08it/s] 89%|████████▉ | 178/200 [00:23<00:03, 6.71it/s] 90%|████████▉ | 179/200 [00:23<00:02, 7.23it/s] 90%|█████████ | 180/200 [00:23<00:02, 7.65it/s] 90%|█████████ | 181/200 [00:23<00:02, 7.97it/s] 91%|█████████ | 182/200 [00:23<00:02, 8.21it/s] 92%|█████████▏| 183/200 [00:23<00:02, 8.39it/s] 92%|█████████▏| 184/200 [00:23<00:01, 8.53it/s] 92%|█████████▎| 185/200 [00:24<00:01, 8.62it/s] 93%|█████████▎| 186/200 [00:24<00:01, 8.69it/s] 94%|█████████▎| 187/200 [00:24<00:01, 8.73it/s] 94%|█████████▍| 188/200 [00:24<00:01, 8.77it/s] 94%|█████████▍| 189/200 [00:24<00:01, 8.79it/s] 95%|█████████▌| 190/200 [00:24<00:01, 8.81it/s] 96%|█████████▌| 191/200 [00:24<00:01, 8.82it/s] 96%|█████████▌| 192/200 [00:24<00:00, 8.82it/s] 96%|█████████▋| 193/200 [00:24<00:00, 8.81it/s] 97%|█████████▋| 194/200 [00:25<00:00, 8.80it/s] 98%|█████████▊| 195/200 [00:25<00:00, 8.81it/s] 98%|█████████▊| 196/200 [00:25<00:00, 8.82it/s] 98%|█████████▊| 197/200 [00:25<00:00, 8.83it/s] 99%|█████████▉| 198/200 [00:25<00:00, 8.83it/s] 100%|█████████▉| 199/200 [00:25<00:00, 8.84it/s] 100%|██████████| 200/200 [00:25<00:00, 8.84it/s] 100%|██████████| 200/200 [00:25<00:00, 7.77it/s] 0%| | 0/200 [00:00<?, ?it/s] 0%| | 1/200 [00:00<02:26, 1.36it/s] 1%| | 2/200 [00:01<01:52, 1.76it/s] 2%|▏ | 3/200 [00:01<01:41, 1.95it/s] 2%|▏ | 4/200 [00:01<01:09, 2.81it/s] 2%|▎ | 5/200 [00:01<00:52, 3.73it/s] 3%|▎ | 6/200 [00:01<00:41, 4.64it/s] 4%|▎ | 7/200 [00:02<00:35, 5.49it/s] 4%|▍ | 8/200 [00:02<00:30, 6.24it/s] 4%|▍ | 9/200 [00:02<00:27, 6.88it/s] 5%|▌ | 10/200 [00:02<00:25, 7.38it/s] 6%|▌ | 11/200 [00:02<00:24, 7.77it/s] 6%|▌ | 12/200 [00:02<00:23, 8.06it/s] 6%|▋ | 13/200 [00:02<00:22, 8.28it/s] 7%|▋ | 14/200 [00:02<00:22, 8.44it/s] 8%|▊ | 15/200 [00:02<00:21, 8.56it/s] 8%|▊ | 16/200 [00:03<00:21, 8.64it/s] 8%|▊ | 17/200 [00:03<00:21, 8.70it/s] 9%|▉ | 18/200 [00:03<00:20, 8.74it/s] 10%|▉ | 19/200 [00:03<00:20, 8.77it/s] 10%|█ | 20/200 [00:03<00:20, 8.78it/s] 10%|█ | 21/200 [00:03<00:20, 8.79it/s] 11%|█ | 22/200 [00:03<00:20, 8.79it/s] 12%|█▏ | 23/200 [00:03<00:20, 8.81it/s] 12%|█▏ | 24/200 [00:04<00:19, 8.82it/s] 12%|█▎ | 25/200 [00:04<00:19, 8.82it/s] 13%|█▎ | 26/200 [00:04<00:34, 4.99it/s] 14%|█▎ | 27/200 [00:04<00:30, 5.73it/s] 14%|█▍ | 28/200 [00:04<00:26, 6.41it/s] 14%|█▍ | 29/200 [00:04<00:24, 6.98it/s] 15%|█▌ | 30/200 [00:04<00:22, 7.45it/s] 16%|█▌ | 31/200 [00:05<00:21, 7.82it/s] 16%|█▌ | 32/200 [00:05<00:20, 8.10it/s] 16%|█▋ | 33/200 [00:05<00:20, 8.31it/s] 17%|█▋ | 34/200 [00:05<00:19, 8.45it/s] 18%|█▊ | 35/200 [00:05<00:19, 8.55it/s] 18%|█▊ | 36/200 [00:05<00:18, 8.63it/s] 18%|█▊ | 37/200 [00:05<00:18, 8.69it/s] 19%|█▉ | 38/200 [00:05<00:18, 8.73it/s] 20%|█▉ | 39/200 [00:06<00:18, 8.76it/s] 20%|██ | 40/200 [00:06<00:18, 8.77it/s] 20%|██ | 41/200 [00:06<00:18, 8.77it/s] 21%|██ | 42/200 [00:06<00:17, 8.79it/s] 22%|██▏ | 43/200 [00:06<00:17, 8.81it/s] 22%|██▏ | 44/200 [00:06<00:17, 8.82it/s] 22%|██▎ | 45/200 [00:06<00:17, 8.82it/s] 23%|██▎ | 46/200 [00:06<00:17, 8.83it/s] 24%|██▎ | 47/200 [00:06<00:17, 8.83it/s] 24%|██▍ | 48/200 [00:07<00:17, 8.82it/s] 24%|██▍ | 49/200 [00:07<00:17, 8.82it/s] 25%|██▌ | 50/200 [00:07<00:16, 8.82it/s] 26%|██▌ | 51/200 [00:07<00:29, 4.97it/s] 26%|██▌ | 52/200 [00:07<00:25, 5.71it/s] 26%|██▋ | 53/200 [00:07<00:23, 6.39it/s] 27%|██▋ | 54/200 [00:07<00:20, 6.96it/s] 28%|██▊ | 55/200 [00:08<00:19, 7.43it/s] 28%|██▊ | 56/200 [00:08<00:18, 7.81it/s] 28%|██▊ | 57/200 [00:08<00:17, 8.08it/s] 29%|██▉ | 58/200 [00:08<00:17, 8.28it/s] 30%|██▉ | 59/200 [00:08<00:16, 8.44it/s] 30%|███ | 60/200 [00:08<00:16, 8.56it/s] 30%|███ | 61/200 [00:08<00:16, 8.64it/s] 31%|███ | 62/200 [00:08<00:15, 8.70it/s] 32%|███▏ | 63/200 [00:09<00:15, 8.74it/s] 32%|███▏ | 64/200 [00:09<00:15, 8.76it/s] 32%|███▎ | 65/200 [00:09<00:15, 8.79it/s] 33%|███▎ | 66/200 [00:09<00:15, 8.80it/s] 34%|███▎ | 67/200 [00:09<00:15, 8.81it/s] 34%|███▍ | 68/200 [00:09<00:14, 8.82it/s] 34%|███▍ | 69/200 [00:09<00:14, 8.83it/s] 35%|███▌ | 70/200 [00:09<00:14, 8.83it/s] 36%|███▌ | 71/200 [00:09<00:14, 8.81it/s] 36%|███▌ | 72/200 [00:10<00:14, 8.82it/s] 36%|███▋ | 73/200 [00:10<00:14, 8.82it/s] 37%|███▋ | 74/200 [00:10<00:14, 8.82it/s] 38%|███▊ | 75/200 [00:10<00:14, 8.83it/s] 38%|███▊ | 76/200 [00:10<00:25, 4.89it/s] 38%|███▊ | 77/200 [00:10<00:21, 5.64it/s] 39%|███▉ | 78/200 [00:11<00:19, 6.33it/s] 40%|███▉ | 79/200 [00:11<00:17, 6.91it/s] 40%|████ | 80/200 [00:11<00:16, 7.39it/s] 40%|████ | 81/200 [00:11<00:15, 7.77it/s] 41%|████ | 82/200 [00:11<00:14, 8.06it/s] 42%|████▏ | 83/200 [00:11<00:14, 8.28it/s] 42%|████▏ | 84/200 [00:11<00:13, 8.44it/s] 42%|████▎ | 85/200 [00:11<00:13, 8.56it/s] 43%|████▎ | 86/200 [00:11<00:13, 8.64it/s] 44%|████▎ | 87/200 [00:12<00:12, 8.70it/s] 44%|████▍ | 88/200 [00:12<00:12, 8.74it/s] 44%|████▍ | 89/200 [00:12<00:12, 8.77it/s] 45%|████▌ | 90/200 [00:12<00:12, 8.79it/s] 46%|████▌ | 91/200 [00:12<00:12, 8.81it/s] 46%|████▌ | 92/200 [00:12<00:12, 8.82it/s] 46%|████▋ | 93/200 [00:12<00:12, 8.82it/s] 47%|████▋ | 94/200 [00:12<00:12, 8.81it/s] 48%|████▊ | 95/200 [00:12<00:11, 8.81it/s] 48%|████▊ | 96/200 [00:13<00:11, 8.81it/s] 48%|████▊ | 97/200 [00:13<00:11, 8.82it/s] 49%|████▉ | 98/200 [00:13<00:11, 8.82it/s] 50%|████▉ | 99/200 [00:13<00:11, 8.81it/s] 50%|█████ | 100/200 [00:13<00:11, 8.82it/s] 50%|█████ | 101/200 [00:13<00:19, 5.00it/s] 51%|█████ | 102/200 [00:14<00:17, 5.74it/s] 52%|█████▏ | 103/200 [00:14<00:15, 6.40it/s] 52%|█████▏ | 104/200 [00:14<00:13, 6.98it/s] 52%|█████▎ | 105/200 [00:14<00:12, 7.45it/s] 53%|█████▎ | 106/200 [00:14<00:12, 7.82it/s] 54%|█████▎ | 107/200 [00:14<00:11, 8.10it/s] 54%|█████▍ | 108/200 [00:14<00:11, 8.31it/s] 55%|█████▍ | 109/200 [00:14<00:10, 8.46it/s] 55%|█████▌ | 110/200 [00:14<00:10, 8.57it/s] 56%|█████▌ | 111/200 [00:15<00:10, 8.65it/s] 56%|█████▌ | 112/200 [00:15<00:10, 8.70it/s] 56%|█████▋ | 113/200 [00:15<00:09, 8.74it/s] 57%|█████▋ | 114/200 [00:15<00:09, 8.77it/s] 57%|█████▊ | 115/200 [00:15<00:09, 8.79it/s] 58%|█████▊ | 116/200 [00:15<00:09, 8.81it/s] 58%|█████▊ | 117/200 [00:15<00:09, 8.82it/s] 59%|█████▉ | 118/200 [00:15<00:09, 8.83it/s] 60%|█████▉ | 119/200 [00:15<00:09, 8.83it/s] 60%|██████ | 120/200 [00:16<00:09, 8.82it/s] 60%|██████ | 121/200 [00:16<00:08, 8.82it/s] 61%|██████ | 122/200 [00:16<00:08, 8.83it/s] 62%|██████▏ | 123/200 [00:16<00:08, 8.83it/s] 62%|██████▏ | 124/200 [00:16<00:08, 8.83it/s] 62%|██████▎ | 125/200 [00:16<00:08, 8.83it/s] 63%|██████▎ | 126/200 [00:17<00:14, 5.01it/s] 64%|██████▎ | 127/200 [00:17<00:12, 5.75it/s] 64%|██████▍ | 128/200 [00:17<00:11, 6.42it/s] 64%|██████▍ | 129/200 [00:17<00:10, 6.99it/s] 65%|██████▌ | 130/200 [00:17<00:09, 7.45it/s] 66%|██████▌ | 131/200 [00:17<00:08, 7.82it/s] 66%|██████▌ | 132/200 [00:17<00:08, 8.09it/s] 66%|██████▋ | 133/200 [00:17<00:08, 8.30it/s] 67%|██████▋ | 134/200 [00:17<00:07, 8.46it/s] 68%|██████▊ | 135/200 [00:18<00:07, 8.57it/s] 68%|██████▊ | 136/200 [00:18<00:07, 8.65it/s] 68%|██████▊ | 137/200 [00:18<00:07, 8.70it/s] 69%|██████▉ | 138/200 [00:18<00:07, 8.75it/s] 70%|██████▉ | 139/200 [00:18<00:06, 8.78it/s] 70%|███████ | 140/200 [00:18<00:06, 8.80it/s] 70%|███████ | 141/200 [00:18<00:06, 8.81it/s] 71%|███████ | 142/200 [00:18<00:06, 8.81it/s] 72%|███████▏ | 143/200 [00:18<00:06, 8.82it/s] 72%|███████▏ | 144/200 [00:19<00:06, 8.82it/s] 72%|███████▎ | 145/200 [00:19<00:06, 8.83it/s] 73%|███████▎ | 146/200 [00:19<00:06, 8.83it/s] 74%|███████▎ | 147/200 [00:19<00:05, 8.83it/s] 74%|███████▍ | 148/200 [00:19<00:05, 8.83it/s] 74%|███████▍ | 149/200 [00:19<00:05, 8.83it/s] 75%|███████▌ | 150/200 [00:19<00:05, 8.84it/s] 76%|███████▌ | 151/200 [00:20<00:09, 5.05it/s] 76%|███████▌ | 152/200 [00:20<00:08, 5.78it/s] 76%|███████▋ | 153/200 [00:20<00:07, 6.45it/s] 77%|███████▋ | 154/200 [00:20<00:06, 7.01it/s] 78%|███████▊ | 155/200 [00:20<00:06, 7.47it/s] 78%|███████▊ | 156/200 [00:20<00:05, 7.83it/s] 78%|███████▊ | 157/200 [00:20<00:05, 8.10it/s] 79%|███████▉ | 158/200 [00:20<00:05, 8.28it/s] 80%|███████▉ | 159/200 [00:21<00:04, 8.44it/s] 80%|████████ | 160/200 [00:21<00:04, 8.55it/s] 80%|████████ | 161/200 [00:21<00:04, 8.63it/s] 81%|████████ | 162/200 [00:21<00:04, 8.68it/s] 82%|████████▏ | 163/200 [00:21<00:04, 8.72it/s] 82%|████████▏ | 164/200 [00:21<00:04, 8.74it/s] 82%|████████▎ | 165/200 [00:21<00:04, 8.74it/s] 83%|████████▎ | 166/200 [00:21<00:03, 8.77it/s] 84%|████████▎ | 167/200 [00:21<00:03, 8.79it/s] 84%|████████▍ | 168/200 [00:22<00:03, 8.81it/s] 84%|████████▍ | 169/200 [00:22<00:03, 8.82it/s] 85%|████████▌ | 170/200 [00:22<00:03, 8.82it/s] 86%|████████▌ | 171/200 [00:22<00:03, 8.83it/s] 86%|████████▌ | 172/200 [00:22<00:03, 8.83it/s] 86%|████████▋ | 173/200 [00:22<00:03, 8.83it/s] 87%|████████▋ | 174/200 [00:22<00:02, 8.84it/s] 88%|████████▊ | 175/200 [00:22<00:02, 8.84it/s] 88%|████████▊ | 176/200 [00:23<00:04, 5.04it/s] 88%|████████▊ | 177/200 [00:23<00:03, 5.78it/s] 89%|████████▉ | 178/200 [00:23<00:03, 6.44it/s] 90%|████████▉ | 179/200 [00:23<00:02, 7.01it/s] 90%|█████████ | 180/200 [00:23<00:02, 7.47it/s] 90%|█████████ | 181/200 [00:23<00:02, 7.84it/s] 91%|█████████ | 182/200 [00:23<00:02, 8.12it/s] 92%|█████████▏| 183/200 [00:24<00:02, 8.32it/s] 92%|█████████▏| 184/200 [00:24<00:01, 8.47it/s] 92%|█████████▎| 185/200 [00:24<00:01, 8.58it/s] 93%|█████████▎| 186/200 [00:24<00:01, 8.66it/s] 94%|█████████▎| 187/200 [00:24<00:01, 8.71it/s] 94%|█████████▍| 188/200 [00:24<00:01, 8.75it/s] 94%|█████████▍| 189/200 [00:24<00:01, 8.77it/s] 95%|█████████▌| 190/200 [00:24<00:01, 8.79it/s] 96%|█████████▌| 191/200 [00:24<00:01, 8.81it/s] 96%|█████████▌| 192/200 [00:25<00:00, 8.81it/s] 96%|█████████▋| 193/200 [00:25<00:00, 8.81it/s] 97%|█████████▋| 194/200 [00:25<00:00, 8.82it/s] 98%|█████████▊| 195/200 [00:25<00:00, 8.82it/s] 98%|█████████▊| 196/200 [00:25<00:00, 8.83it/s] 98%|█████████▊| 197/200 [00:25<00:00, 8.84it/s] 99%|█████████▉| 198/200 [00:25<00:00, 8.84it/s] 100%|█████████▉| 199/200 [00:25<00:00, 8.84it/s] 100%|██████████| 200/200 [00:25<00:00, 8.84it/s] 100%|██████████| 200/200 [00:25<00:00, 7.70it/s] 0%| | 0/200 [00:00<?, ?it/s] 0%| | 1/200 [00:00<02:36, 1.27it/s] 1%| | 2/200 [00:01<01:56, 1.70it/s] 2%|▏ | 3/200 [00:01<01:43, 1.90it/s] 2%|▏ | 4/200 [00:01<01:11, 2.75it/s] 2%|▎ | 5/200 [00:01<00:53, 3.65it/s] 3%|▎ | 6/200 [00:02<00:42, 4.55it/s] 4%|▎ | 7/200 [00:02<00:35, 5.40it/s] 4%|▍ | 8/200 [00:02<00:31, 6.14it/s] 4%|▍ | 9/200 [00:02<00:28, 6.78it/s] 5%|▌ | 10/200 [00:02<00:26, 7.30it/s] 6%|▌ | 11/200 [00:02<00:24, 7.71it/s] 6%|▌ | 12/200 [00:02<00:23, 8.02it/s] 6%|▋ | 13/200 [00:02<00:22, 8.24it/s] 7%|▋ | 14/200 [00:02<00:22, 8.41it/s] 8%|▊ | 15/200 [00:03<00:21, 8.54it/s] 8%|▊ | 16/200 [00:03<00:21, 8.63it/s] 8%|▊ | 17/200 [00:03<00:21, 8.69it/s] 9%|▉ | 18/200 [00:03<00:20, 8.74it/s] 10%|▉ | 19/200 [00:03<00:20, 8.77it/s] 10%|█ | 20/200 [00:03<00:20, 8.79it/s] 10%|█ | 21/200 [00:03<00:20, 8.81it/s] 11%|█ | 22/200 [00:03<00:20, 8.82it/s] 12%|█▏ | 23/200 [00:03<00:20, 8.82it/s] 12%|█▏ | 24/200 [00:04<00:19, 8.83it/s] 12%|█▎ | 25/200 [00:04<00:19, 8.83it/s] 13%|█▎ | 26/200 [00:04<00:37, 4.69it/s] 14%|█▎ | 27/200 [00:04<00:31, 5.45it/s] 14%|█▍ | 28/200 [00:04<00:27, 6.16it/s] 14%|█▍ | 29/200 [00:04<00:25, 6.78it/s] 15%|█▌ | 30/200 [00:05<00:23, 7.27it/s] 16%|█▌ | 31/200 [00:05<00:21, 7.68it/s] 16%|█▌ | 32/200 [00:05<00:21, 8.00it/s] 16%|█▋ | 33/200 [00:05<00:20, 8.23it/s] 17%|█▋ | 34/200 [00:05<00:19, 8.40it/s] 18%|█▊ | 35/200 [00:05<00:19, 8.52it/s] 18%|█▊ | 36/200 [00:05<00:19, 8.61it/s] 18%|█▊ | 37/200 [00:05<00:18, 8.67it/s] 19%|█▉ | 38/200 [00:05<00:18, 8.72it/s] 20%|█▉ | 39/200 [00:06<00:18, 8.75it/s] 20%|██ | 40/200 [00:06<00:18, 8.77it/s] 20%|██ | 41/200 [00:06<00:18, 8.79it/s] 21%|██ | 42/200 [00:06<00:17, 8.79it/s] 22%|██▏ | 43/200 [00:06<00:17, 8.80it/s] 22%|██▏ | 44/200 [00:06<00:17, 8.81it/s] 22%|██▎ | 45/200 [00:06<00:17, 8.80it/s] 23%|██▎ | 46/200 [00:06<00:17, 8.79it/s] 24%|██▎ | 47/200 [00:07<00:17, 8.80it/s] 24%|██▍ | 48/200 [00:07<00:17, 8.81it/s] 24%|██▍ | 49/200 [00:07<00:17, 8.82it/s] 25%|██▌ | 50/200 [00:07<00:16, 8.83it/s] 26%|██▌ | 51/200 [00:07<00:31, 4.73it/s] 26%|██▌ | 52/200 [00:07<00:26, 5.49it/s] 26%|██▋ | 53/200 [00:08<00:23, 6.18it/s] 27%|██▋ | 54/200 [00:08<00:21, 6.79it/s] 28%|██▊ | 55/200 [00:08<00:19, 7.30it/s] 28%|██▊ | 56/200 [00:08<00:18, 7.70it/s] 28%|██▊ | 57/200 [00:08<00:17, 8.01it/s] 29%|██▉ | 58/200 [00:08<00:17, 8.25it/s] 30%|██▉ | 59/200 [00:08<00:16, 8.42it/s] 30%|███ | 60/200 [00:08<00:16, 8.54it/s] 30%|███ | 61/200 [00:08<00:16, 8.62it/s] 31%|███ | 62/200 [00:09<00:15, 8.69it/s] 32%|███▏ | 63/200 [00:09<00:15, 8.73it/s] 32%|███▏ | 64/200 [00:09<00:15, 8.76it/s] 32%|███▎ | 65/200 [00:09<00:15, 8.79it/s] 33%|███▎ | 66/200 [00:09<00:15, 8.81it/s] 34%|███▎ | 67/200 [00:09<00:15, 8.82it/s] 34%|███▍ | 68/200 [00:09<00:14, 8.83it/s] 34%|███▍ | 69/200 [00:09<00:14, 8.83it/s] 35%|███▌ | 70/200 [00:09<00:14, 8.83it/s] 36%|███▌ | 71/200 [00:10<00:14, 8.83it/s] 36%|███▌ | 72/200 [00:10<00:14, 8.84it/s] 36%|███▋ | 73/200 [00:10<00:14, 8.84it/s] 37%|███▋ | 74/200 [00:10<00:14, 8.84it/s] 38%|███▊ | 75/200 [00:10<00:14, 8.84it/s] 38%|███▊ | 76/200 [00:10<00:26, 4.73it/s] 38%|███▊ | 77/200 [00:11<00:22, 5.48it/s] 39%|███▉ | 78/200 [00:11<00:19, 6.17it/s] 40%|███▉ | 79/200 [00:11<00:17, 6.78it/s] 40%|████ | 80/200 [00:11<00:16, 7.28it/s] 40%|████ | 81/200 [00:11<00:15, 7.67it/s] 41%|████ | 82/200 [00:11<00:14, 7.98it/s] 42%|████▏ | 83/200 [00:11<00:14, 8.21it/s] 42%|████▏ | 84/200 [00:11<00:13, 8.38it/s] 42%|████▎ | 85/200 [00:11<00:13, 8.50it/s] 43%|████▎ | 86/200 [00:12<00:13, 8.59it/s] 44%|████▎ | 87/200 [00:12<00:13, 8.66it/s] 44%|████▍ | 88/200 [00:12<00:12, 8.71it/s] 44%|████▍ | 89/200 [00:12<00:12, 8.74it/s] 45%|████▌ | 90/200 [00:12<00:12, 8.75it/s] 46%|████▌ | 91/200 [00:12<00:12, 8.78it/s] 46%|████▌ | 92/200 [00:12<00:12, 8.79it/s] 46%|████▋ | 93/200 [00:12<00:12, 8.80it/s] 47%|████▋ | 94/200 [00:12<00:12, 8.80it/s] 48%|████▊ | 95/200 [00:13<00:11, 8.81it/s] 48%|████▊ | 96/200 [00:13<00:11, 8.82it/s] 48%|████▊ | 97/200 [00:13<00:11, 8.82it/s] 49%|████▉ | 98/200 [00:13<00:11, 8.83it/s] 50%|████▉ | 99/200 [00:13<00:11, 8.83it/s] 50%|█████ | 100/200 [00:13<00:11, 8.84it/s] 50%|█████ | 101/200 [00:14<00:21, 4.71it/s] 51%|█████ | 102/200 [00:14<00:17, 5.47it/s] 52%|█████▏ | 103/200 [00:14<00:15, 6.17it/s] 52%|█████▏ | 104/200 [00:14<00:14, 6.79it/s] 52%|█████▎ | 105/200 [00:14<00:13, 7.30it/s] 53%|█████▎ | 106/200 [00:14<00:12, 7.70it/s] 54%|█████▎ | 107/200 [00:14<00:11, 8.00it/s] 54%|█████▍ | 108/200 [00:14<00:11, 8.23it/s] 55%|█████▍ | 109/200 [00:15<00:10, 8.40it/s] 55%|█████▌ | 110/200 [00:15<00:10, 8.53it/s] 56%|█████▌ | 111/200 [00:15<00:10, 8.61it/s] 56%|█████▌ | 112/200 [00:15<00:10, 8.67it/s] 56%|█████▋ | 113/200 [00:15<00:09, 8.72it/s] 57%|█████▋ | 114/200 [00:15<00:09, 8.75it/s] 57%|█████▊ | 115/200 [00:15<00:09, 8.78it/s] 58%|█████▊ | 116/200 [00:15<00:09, 8.79it/s] 58%|█████▊ | 117/200 [00:15<00:09, 8.80it/s] 59%|█████▉ | 118/200 [00:16<00:09, 8.81it/s] 60%|█████▉ | 119/200 [00:16<00:09, 8.82it/s] 60%|██████ | 120/200 [00:16<00:09, 8.81it/s] 60%|██████ | 121/200 [00:16<00:08, 8.80it/s] 61%|██████ | 122/200 [00:16<00:08, 8.80it/s] 62%|██████▏ | 123/200 [00:16<00:08, 8.81it/s] 62%|██████▏ | 124/200 [00:16<00:08, 8.82it/s] 62%|██████▎ | 125/200 [00:16<00:08, 8.82it/s] 63%|██████▎ | 126/200 [00:17<00:15, 4.73it/s] 64%|██████▎ | 127/200 [00:17<00:13, 5.49it/s] 64%|██████▍ | 128/200 [00:17<00:11, 6.19it/s] 64%|██████▍ | 129/200 [00:17<00:10, 6.80it/s] 65%|██████▌ | 130/200 [00:17<00:09, 7.31it/s] 66%|██████▌ | 131/200 [00:17<00:08, 7.71it/s] 66%|██████▌ | 132/200 [00:17<00:08, 8.01it/s] 66%|██████▋ | 133/200 [00:18<00:08, 8.23it/s] 67%|██████▋ | 134/200 [00:18<00:07, 8.41it/s] 68%|██████▊ | 135/200 [00:18<00:07, 8.53it/s] 68%|██████▊ | 136/200 [00:18<00:07, 8.62it/s] 68%|██████▊ | 137/200 [00:18<00:07, 8.68it/s] 69%|██████▉ | 138/200 [00:18<00:07, 8.73it/s] 70%|██████▉ | 139/200 [00:18<00:06, 8.77it/s] 70%|███████ | 140/200 [00:18<00:06, 8.79it/s] 70%|███████ | 141/200 [00:18<00:06, 8.80it/s] 71%|███████ | 142/200 [00:19<00:06, 8.80it/s] 72%|███████▏ | 143/200 [00:19<00:06, 8.81it/s] 72%|███████▏ | 144/200 [00:19<00:06, 8.82it/s] 72%|███████▎ | 145/200 [00:19<00:06, 8.83it/s] 73%|███████▎ | 146/200 [00:19<00:06, 8.84it/s] 74%|███████▎ | 147/200 [00:19<00:05, 8.84it/s] 74%|███████▍ | 148/200 [00:19<00:05, 8.83it/s] 74%|███████▍ | 149/200 [00:19<00:05, 8.83it/s] 75%|███████▌ | 150/200 [00:19<00:05, 8.83it/s] 76%|███████▌ | 151/200 [00:20<00:10, 4.75it/s] 76%|███████▌ | 152/200 [00:20<00:08, 5.51it/s] 76%|███████▋ | 153/200 [00:20<00:07, 6.21it/s] 77%|███████▋ | 154/200 [00:20<00:06, 6.82it/s] 78%|███████▊ | 155/200 [00:20<00:06, 7.32it/s] 78%|███████▊ | 156/200 [00:21<00:05, 7.72it/s] 78%|███████▊ | 157/200 [00:21<00:05, 8.03it/s] 79%|███████▉ | 158/200 [00:21<00:05, 8.25it/s] 80%|███████▉ | 159/200 [00:21<00:04, 8.41it/s] 80%|████████ | 160/200 [00:21<00:04, 8.53it/s] 80%|████████ | 161/200 [00:21<00:04, 8.62it/s] 81%|████████ | 162/200 [00:21<00:04, 8.68it/s] 82%|████████▏ | 163/200 [00:21<00:04, 8.73it/s] 82%|████████▏ | 164/200 [00:21<00:04, 8.75it/s] 82%|████████▎ | 165/200 [00:22<00:03, 8.77it/s] 83%|████████▎ | 166/200 [00:22<00:03, 8.78it/s] 84%|████████▎ | 167/200 [00:22<00:03, 8.78it/s] 84%|████████▍ | 168/200 [00:22<00:03, 8.79it/s] 84%|████████▍ | 169/200 [00:22<00:03, 8.80it/s] 85%|████████▌ | 170/200 [00:22<00:03, 8.80it/s] 86%|████████▌ | 171/200 [00:22<00:03, 8.80it/s] 86%|████████▌ | 172/200 [00:22<00:03, 8.80it/s] 86%|████████▋ | 173/200 [00:22<00:03, 8.81it/s] 87%|████████▋ | 174/200 [00:23<00:02, 8.81it/s] 88%|████████▊ | 175/200 [00:23<00:02, 8.81it/s] 88%|████████▊ | 176/200 [00:23<00:05, 4.76it/s] 88%|████████▊ | 177/200 [00:23<00:04, 5.52it/s] 89%|████████▉ | 178/200 [00:23<00:03, 6.21it/s] 90%|████████▉ | 179/200 [00:23<00:03, 6.81it/s] 90%|█████████ | 180/200 [00:24<00:02, 7.31it/s] 90%|█████████ | 181/200 [00:24<00:02, 7.70it/s] 91%|█████████ | 182/200 [00:24<00:02, 8.01it/s] 92%|█████████▏| 183/200 [00:24<00:02, 8.24it/s] 92%|█████████▏| 184/200 [00:24<00:01, 8.41it/s] 92%|█████████▎| 185/200 [00:24<00:01, 8.53it/s] 93%|█████████▎| 186/200 [00:24<00:01, 8.61it/s] 94%|█████████▎| 187/200 [00:24<00:01, 8.68it/s] 94%|█████████▍| 188/200 [00:24<00:01, 8.72it/s] 94%|█████████▍| 189/200 [00:25<00:01, 8.75it/s] 95%|█████████▌| 190/200 [00:25<00:01, 8.78it/s] 96%|█████████▌| 191/200 [00:25<00:01, 8.80it/s] 96%|█████████▌| 192/200 [00:25<00:00, 8.81it/s] 96%|█████████▋| 193/200 [00:25<00:00, 8.82it/s] 97%|█████████▋| 194/200 [00:25<00:00, 8.83it/s] 98%|█████████▊| 195/200 [00:25<00:00, 8.83it/s] 98%|█████████▊| 196/200 [00:25<00:00, 8.83it/s] 98%|█████████▊| 197/200 [00:25<00:00, 8.83it/s] 99%|█████████▉| 198/200 [00:26<00:00, 8.84it/s] 100%|█████████▉| 199/200 [00:26<00:00, 8.84it/s] 100%|██████████| 200/200 [00:26<00:00, 8.84it/s] 100%|██████████| 200/200 [00:26<00:00, 7.60it/s]
Prediction
devxpy/glid-3-xl-stable:7d6a340eIDp5icamcxpng5ln4bmo5cfot53eStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedInput
{ "mask": "https://replicate.delivery/mgxm/9e666bd2-3d28-4346-b73c-c83cef29f758/mask.png", "prompt": "scarlett johansson wearing earing", "edit_image": "https://replicate.delivery/mgxm/9a79954b-ce76-4f83-8189-b4d3b28e3543/orig.png", "num_outputs": 1, "num_inference_steps": "100" }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run devxpy/glid-3-xl-stable using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "devxpy/glid-3-xl-stable:7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7", { input: { mask: "https://replicate.delivery/mgxm/9e666bd2-3d28-4346-b73c-c83cef29f758/mask.png", prompt: "scarlett johansson wearing earing", edit_image: "https://replicate.delivery/mgxm/9a79954b-ce76-4f83-8189-b4d3b28e3543/orig.png", num_outputs: 1, num_inference_steps: "100" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run devxpy/glid-3-xl-stable using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "devxpy/glid-3-xl-stable:7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7", input={ "mask": "https://replicate.delivery/mgxm/9e666bd2-3d28-4346-b73c-c83cef29f758/mask.png", "prompt": "scarlett johansson wearing earing", "edit_image": "https://replicate.delivery/mgxm/9a79954b-ce76-4f83-8189-b4d3b28e3543/orig.png", "num_outputs": 1, "num_inference_steps": "100" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run devxpy/glid-3-xl-stable using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7", "input": { "mask": "https://replicate.delivery/mgxm/9e666bd2-3d28-4346-b73c-c83cef29f758/mask.png", "prompt": "scarlett johansson wearing earing", "edit_image": "https://replicate.delivery/mgxm/9a79954b-ce76-4f83-8189-b4d3b28e3543/orig.png", "num_outputs": 1, "num_inference_steps": "100" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/devxpy/glid-3-xl-stable@sha256:7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7 \ -i 'mask="https://replicate.delivery/mgxm/9e666bd2-3d28-4346-b73c-c83cef29f758/mask.png"' \ -i 'prompt="scarlett johansson wearing earing"' \ -i 'edit_image="https://replicate.delivery/mgxm/9a79954b-ce76-4f83-8189-b4d3b28e3543/orig.png"' \ -i 'num_outputs=1' \ -i 'num_inference_steps="100"'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/devxpy/glid-3-xl-stable@sha256:7d6a340e1815acf2b3b2ee0fcaf830fbbcd8697e9712ca63d81930c60484d2d7
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mask": "https://replicate.delivery/mgxm/9e666bd2-3d28-4346-b73c-c83cef29f758/mask.png", "prompt": "scarlett johansson wearing earing", "edit_image": "https://replicate.delivery/mgxm/9a79954b-ce76-4f83-8189-b4d3b28e3543/orig.png", "num_outputs": 1, "num_inference_steps": "100" } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2022-10-27T00:34:59.688826Z", "created_at": "2022-10-27T00:34:45.923001Z", "data_removed": false, "error": null, "id": "p5icamcxpng5ln4bmo5cfot53e", "input": { "mask": "https://replicate.delivery/mgxm/9e666bd2-3d28-4346-b73c-c83cef29f758/mask.png", "prompt": "scarlett johansson wearing earing", "edit_image": "https://replicate.delivery/mgxm/9a79954b-ce76-4f83-8189-b4d3b28e3543/orig.png", "num_outputs": 1, "num_inference_steps": "100" }, "logs": "Using device: cuda:0\n\n 0%| | 0/100 [00:00<?, ?it/s]\n 1%| | 1/100 [00:00<01:00, 1.64it/s]\n 2%|▏ | 2/100 [00:01<00:49, 1.97it/s]\n 3%|▎ | 3/100 [00:01<00:45, 2.11it/s]\n 4%|▍ | 4/100 [00:01<00:31, 3.03it/s]\n 5%|▌ | 5/100 [00:01<00:23, 4.00it/s]\n 6%|▌ | 6/100 [00:01<00:19, 4.95it/s]\n 7%|▋ | 7/100 [00:01<00:15, 5.82it/s]\n 8%|▊ | 8/100 [00:02<00:13, 6.59it/s]\n 9%|▉ | 9/100 [00:02<00:12, 7.23it/s]\n 10%|█ | 10/100 [00:02<00:11, 7.73it/s]\n 11%|█ | 11/100 [00:02<00:10, 8.12it/s]\n 12%|█▏ | 12/100 [00:02<00:10, 8.40it/s]\n 13%|█▎ | 13/100 [00:02<00:10, 8.62it/s]\n 14%|█▍ | 14/100 [00:02<00:09, 8.78it/s]\n 15%|█▌ | 15/100 [00:02<00:09, 8.89it/s]\n 16%|█▌ | 16/100 [00:02<00:09, 8.98it/s]\n 17%|█▋ | 17/100 [00:03<00:09, 9.03it/s]\n 18%|█▊ | 18/100 [00:03<00:09, 9.07it/s]\n 19%|█▉ | 19/100 [00:03<00:08, 9.11it/s]\n 20%|██ | 20/100 [00:03<00:08, 9.12it/s]\n 21%|██ | 21/100 [00:03<00:08, 9.14it/s]\n 22%|██▏ | 22/100 [00:03<00:08, 9.15it/s]\n 23%|██▎ | 23/100 [00:03<00:08, 9.15it/s]\n 24%|██▍ | 24/100 [00:03<00:08, 9.16it/s]\n 25%|██▌ | 25/100 [00:03<00:08, 9.16it/s]\n 26%|██▌ | 26/100 [00:04<00:11, 6.22it/s]\n 27%|██▋ | 27/100 [00:04<00:10, 6.87it/s]\n 28%|██▊ | 28/100 [00:04<00:09, 7.43it/s]\n 29%|██▉ | 29/100 [00:04<00:09, 7.88it/s]\n 30%|███ | 30/100 [00:04<00:08, 8.22it/s]\n 31%|███ | 31/100 [00:04<00:08, 8.49it/s]\n 32%|███▏ | 32/100 [00:04<00:07, 8.68it/s]\n 33%|███▎ | 33/100 [00:04<00:07, 8.83it/s]\n 34%|███▍ | 34/100 [00:05<00:07, 8.93it/s]\n 35%|███▌ | 35/100 [00:05<00:07, 9.00it/s]\n 36%|███▌ | 36/100 [00:05<00:07, 9.05it/s]\n 37%|███▋ | 37/100 [00:05<00:06, 9.09it/s]\n 38%|███▊ | 38/100 [00:05<00:06, 9.11it/s]\n 39%|███▉ | 39/100 [00:05<00:06, 9.13it/s]\n 40%|████ | 40/100 [00:05<00:06, 9.15it/s]\n 41%|████ | 41/100 [00:05<00:06, 9.16it/s]\n 42%|████▏ | 42/100 [00:05<00:06, 9.16it/s]\n 43%|████▎ | 43/100 [00:06<00:06, 9.16it/s]\n 44%|████▍ | 44/100 [00:06<00:06, 9.16it/s]\n 45%|████▌ | 45/100 [00:06<00:06, 9.16it/s]\n 46%|████▌ | 46/100 [00:06<00:05, 9.16it/s]\n 47%|████▋ | 47/100 [00:06<00:05, 9.17it/s]\n 48%|████▊ | 48/100 [00:06<00:05, 9.17it/s]\n 49%|████▉ | 49/100 [00:06<00:05, 9.17it/s]\n 50%|█████ | 50/100 [00:06<00:05, 9.17it/s]\n 51%|█████ | 51/100 [00:07<00:07, 6.21it/s]\n 52%|█████▏ | 52/100 [00:07<00:06, 6.86it/s]\n 53%|█████▎ | 53/100 [00:07<00:06, 7.43it/s]\n 54%|█████▍ | 54/100 [00:07<00:05, 7.88it/s]\n 55%|█████▌ | 55/100 [00:07<00:05, 8.22it/s]\n 56%|█████▌ | 56/100 [00:07<00:05, 8.48it/s]\n 57%|█████▋ | 57/100 [00:07<00:04, 8.68it/s]\n 58%|█████▊ | 58/100 [00:07<00:04, 8.83it/s]\n 59%|█████▉ | 59/100 [00:07<00:04, 8.93it/s]\n 60%|██████ | 60/100 [00:08<00:04, 9.01it/s]\n 61%|██████ | 61/100 [00:08<00:04, 9.06it/s]\n 62%|██████▏ | 62/100 [00:08<00:04, 9.10it/s]\n 63%|██████▎ | 63/100 [00:08<00:04, 9.12it/s]\n 64%|██████▍ | 64/100 [00:08<00:03, 9.12it/s]\n 65%|██████▌ | 65/100 [00:08<00:03, 9.13it/s]\n 66%|██████▌ | 66/100 [00:08<00:03, 9.13it/s]\n 67%|██████▋ | 67/100 [00:08<00:03, 9.14it/s]\n 68%|██████▊ | 68/100 [00:08<00:03, 9.15it/s]\n 69%|██████▉ | 69/100 [00:09<00:03, 9.16it/s]\n 70%|███████ | 70/100 [00:09<00:03, 9.16it/s]\n 71%|███████ | 71/100 [00:09<00:03, 9.17it/s]\n 72%|███████▏ | 72/100 [00:09<00:03, 9.17it/s]\n 73%|███████▎ | 73/100 [00:09<00:02, 9.17it/s]\n 74%|███████▍ | 74/100 [00:09<00:02, 9.17it/s]\n 75%|███████▌ | 75/100 [00:09<00:02, 9.16it/s]\n 76%|███████▌ | 76/100 [00:09<00:03, 6.25it/s]\n 77%|███████▋ | 77/100 [00:10<00:03, 6.90it/s]\n 78%|███████▊ | 78/100 [00:10<00:02, 7.45it/s]\n 79%|███████▉ | 79/100 [00:10<00:02, 7.89it/s]\n 80%|████████ | 80/100 [00:10<00:02, 8.23it/s]\n 81%|████████ | 81/100 [00:10<00:02, 8.49it/s]\n 82%|████████▏ | 82/100 [00:10<00:02, 8.67it/s]\n 83%|████████▎ | 83/100 [00:10<00:01, 8.81it/s]\n 84%|████████▍ | 84/100 [00:10<00:01, 8.91it/s]\n 85%|████████▌ | 85/100 [00:10<00:01, 8.98it/s]\n 86%|████████▌ | 86/100 [00:11<00:01, 9.03it/s]\n 87%|████████▋ | 87/100 [00:11<00:01, 9.06it/s]\n 88%|████████▊ | 88/100 [00:11<00:01, 9.08it/s]\n 89%|████████▉ | 89/100 [00:11<00:01, 9.10it/s]\n 90%|█████████ | 90/100 [00:11<00:01, 9.09it/s]\n 91%|█████████ | 91/100 [00:11<00:00, 9.10it/s]\n 92%|█████████▏| 92/100 [00:11<00:00, 9.11it/s]\n 93%|█████████▎| 93/100 [00:11<00:00, 9.12it/s]\n 94%|█████████▍| 94/100 [00:11<00:00, 9.14it/s]\n 95%|█████████▌| 95/100 [00:12<00:00, 9.14it/s]\n 96%|█████████▌| 96/100 [00:12<00:00, 9.14it/s]\n 97%|█████████▋| 97/100 [00:12<00:00, 9.14it/s]\n 98%|█████████▊| 98/100 [00:12<00:00, 9.15it/s]\n 99%|█████████▉| 99/100 [00:12<00:00, 9.15it/s]\n100%|██████████| 100/100 [00:12<00:00, 9.16it/s]\n100%|██████████| 100/100 [00:12<00:00, 7.95it/s]", "metrics": { "predict_time": 13.793986, "total_time": 13.765825 }, "output": [ "https://replicate.delivery/pbxt/VwdejnwBR21fVUrXdjRECDn6etIQLiW0QdvFlTtUCdXmhwzfA/00000.png" ], "started_at": "2022-10-27T00:34:45.894840Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/p5icamcxpng5ln4bmo5cfot53e", "cancel": "https://api.replicate.com/v1/predictions/p5icamcxpng5ln4bmo5cfot53e/cancel" }, "version": "d53d0cf59b46f622265ad5924be1e536d6a371e8b1eaceeebc870b6001a0659b" }
Generated inUsing device: cuda:0 0%| | 0/100 [00:00<?, ?it/s] 1%| | 1/100 [00:00<01:00, 1.64it/s] 2%|▏ | 2/100 [00:01<00:49, 1.97it/s] 3%|▎ | 3/100 [00:01<00:45, 2.11it/s] 4%|▍ | 4/100 [00:01<00:31, 3.03it/s] 5%|▌ | 5/100 [00:01<00:23, 4.00it/s] 6%|▌ | 6/100 [00:01<00:19, 4.95it/s] 7%|▋ | 7/100 [00:01<00:15, 5.82it/s] 8%|▊ | 8/100 [00:02<00:13, 6.59it/s] 9%|▉ | 9/100 [00:02<00:12, 7.23it/s] 10%|█ | 10/100 [00:02<00:11, 7.73it/s] 11%|█ | 11/100 [00:02<00:10, 8.12it/s] 12%|█▏ | 12/100 [00:02<00:10, 8.40it/s] 13%|█▎ | 13/100 [00:02<00:10, 8.62it/s] 14%|█▍ | 14/100 [00:02<00:09, 8.78it/s] 15%|█▌ | 15/100 [00:02<00:09, 8.89it/s] 16%|█▌ | 16/100 [00:02<00:09, 8.98it/s] 17%|█▋ | 17/100 [00:03<00:09, 9.03it/s] 18%|█▊ | 18/100 [00:03<00:09, 9.07it/s] 19%|█▉ | 19/100 [00:03<00:08, 9.11it/s] 20%|██ | 20/100 [00:03<00:08, 9.12it/s] 21%|██ | 21/100 [00:03<00:08, 9.14it/s] 22%|██▏ | 22/100 [00:03<00:08, 9.15it/s] 23%|██▎ | 23/100 [00:03<00:08, 9.15it/s] 24%|██▍ | 24/100 [00:03<00:08, 9.16it/s] 25%|██▌ | 25/100 [00:03<00:08, 9.16it/s] 26%|██▌ | 26/100 [00:04<00:11, 6.22it/s] 27%|██▋ | 27/100 [00:04<00:10, 6.87it/s] 28%|██▊ | 28/100 [00:04<00:09, 7.43it/s] 29%|██▉ | 29/100 [00:04<00:09, 7.88it/s] 30%|███ | 30/100 [00:04<00:08, 8.22it/s] 31%|███ | 31/100 [00:04<00:08, 8.49it/s] 32%|███▏ | 32/100 [00:04<00:07, 8.68it/s] 33%|███▎ | 33/100 [00:04<00:07, 8.83it/s] 34%|███▍ | 34/100 [00:05<00:07, 8.93it/s] 35%|███▌ | 35/100 [00:05<00:07, 9.00it/s] 36%|███▌ | 36/100 [00:05<00:07, 9.05it/s] 37%|███▋ | 37/100 [00:05<00:06, 9.09it/s] 38%|███▊ | 38/100 [00:05<00:06, 9.11it/s] 39%|███▉ | 39/100 [00:05<00:06, 9.13it/s] 40%|████ | 40/100 [00:05<00:06, 9.15it/s] 41%|████ | 41/100 [00:05<00:06, 9.16it/s] 42%|████▏ | 42/100 [00:05<00:06, 9.16it/s] 43%|████▎ | 43/100 [00:06<00:06, 9.16it/s] 44%|████▍ | 44/100 [00:06<00:06, 9.16it/s] 45%|████▌ | 45/100 [00:06<00:06, 9.16it/s] 46%|████▌ | 46/100 [00:06<00:05, 9.16it/s] 47%|████▋ | 47/100 [00:06<00:05, 9.17it/s] 48%|████▊ | 48/100 [00:06<00:05, 9.17it/s] 49%|████▉ | 49/100 [00:06<00:05, 9.17it/s] 50%|█████ | 50/100 [00:06<00:05, 9.17it/s] 51%|█████ | 51/100 [00:07<00:07, 6.21it/s] 52%|█████▏ | 52/100 [00:07<00:06, 6.86it/s] 53%|█████▎ | 53/100 [00:07<00:06, 7.43it/s] 54%|█████▍ | 54/100 [00:07<00:05, 7.88it/s] 55%|█████▌ | 55/100 [00:07<00:05, 8.22it/s] 56%|█████▌ | 56/100 [00:07<00:05, 8.48it/s] 57%|█████▋ | 57/100 [00:07<00:04, 8.68it/s] 58%|█████▊ | 58/100 [00:07<00:04, 8.83it/s] 59%|█████▉ | 59/100 [00:07<00:04, 8.93it/s] 60%|██████ | 60/100 [00:08<00:04, 9.01it/s] 61%|██████ | 61/100 [00:08<00:04, 9.06it/s] 62%|██████▏ | 62/100 [00:08<00:04, 9.10it/s] 63%|██████▎ | 63/100 [00:08<00:04, 9.12it/s] 64%|██████▍ | 64/100 [00:08<00:03, 9.12it/s] 65%|██████▌ | 65/100 [00:08<00:03, 9.13it/s] 66%|██████▌ | 66/100 [00:08<00:03, 9.13it/s] 67%|██████▋ | 67/100 [00:08<00:03, 9.14it/s] 68%|██████▊ | 68/100 [00:08<00:03, 9.15it/s] 69%|██████▉ | 69/100 [00:09<00:03, 9.16it/s] 70%|███████ | 70/100 [00:09<00:03, 9.16it/s] 71%|███████ | 71/100 [00:09<00:03, 9.17it/s] 72%|███████▏ | 72/100 [00:09<00:03, 9.17it/s] 73%|███████▎ | 73/100 [00:09<00:02, 9.17it/s] 74%|███████▍ | 74/100 [00:09<00:02, 9.17it/s] 75%|███████▌ | 75/100 [00:09<00:02, 9.16it/s] 76%|███████▌ | 76/100 [00:09<00:03, 6.25it/s] 77%|███████▋ | 77/100 [00:10<00:03, 6.90it/s] 78%|███████▊ | 78/100 [00:10<00:02, 7.45it/s] 79%|███████▉ | 79/100 [00:10<00:02, 7.89it/s] 80%|████████ | 80/100 [00:10<00:02, 8.23it/s] 81%|████████ | 81/100 [00:10<00:02, 8.49it/s] 82%|████████▏ | 82/100 [00:10<00:02, 8.67it/s] 83%|████████▎ | 83/100 [00:10<00:01, 8.81it/s] 84%|████████▍ | 84/100 [00:10<00:01, 8.91it/s] 85%|████████▌ | 85/100 [00:10<00:01, 8.98it/s] 86%|████████▌ | 86/100 [00:11<00:01, 9.03it/s] 87%|████████▋ | 87/100 [00:11<00:01, 9.06it/s] 88%|████████▊ | 88/100 [00:11<00:01, 9.08it/s] 89%|████████▉ | 89/100 [00:11<00:01, 9.10it/s] 90%|█████████ | 90/100 [00:11<00:01, 9.09it/s] 91%|█████████ | 91/100 [00:11<00:00, 9.10it/s] 92%|█████████▏| 92/100 [00:11<00:00, 9.11it/s] 93%|█████████▎| 93/100 [00:11<00:00, 9.12it/s] 94%|█████████▍| 94/100 [00:11<00:00, 9.14it/s] 95%|█████████▌| 95/100 [00:12<00:00, 9.14it/s] 96%|█████████▌| 96/100 [00:12<00:00, 9.14it/s] 97%|█████████▋| 97/100 [00:12<00:00, 9.14it/s] 98%|█████████▊| 98/100 [00:12<00:00, 9.15it/s] 99%|█████████▉| 99/100 [00:12<00:00, 9.15it/s] 100%|██████████| 100/100 [00:12<00:00, 9.16it/s] 100%|██████████| 100/100 [00:12<00:00, 7.95it/s]
Want to make some of these yourself?
Run this model