dribnet / clipit
Image generation with CLIP + VQGAN / PixelDraw
Prediction
dribnet/clipit:3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11IDyt34tm4zi5arvj4bpfjp3apwqaStatusSucceededSourceWebHardware–Total duration–CreatedInput
- aspect
- widescreen
- prompts
- sunset river snow mountain
- quality
- draft
{ "aspect": "widescreen", "prompts": "sunset river snow mountain", "quality": "draft" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run dribnet/clipit using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "dribnet/clipit:3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11", { input: { aspect: "widescreen", prompts: "sunset river snow mountain", quality: "draft" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run dribnet/clipit using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "dribnet/clipit:3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11", input={ "aspect": "widescreen", "prompts": "sunset river snow mountain", "quality": "draft" } ) # The dribnet/clipit model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/dribnet/clipit/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run dribnet/clipit using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "dribnet/clipit:3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11", "input": { "aspect": "widescreen", "prompts": "sunset river snow mountain", "quality": "draft" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-09-09T21:45:36.439293Z", "created_at": "2021-09-09T21:42:04.043670Z", "data_removed": false, "error": null, "id": "yt34tm4zi5arvj4bpfjp3apwqa", "input": { "aspect": "widescreen", "prompts": "sunset river snow mountain", "quality": "draft" }, "logs": "Working with z of shape (1, 256, 16, 16) = 65536 dimensions.\nDownloading: \"https://download.pytorch.org/models/vgg16-397923af.pth\" to /root/.cache/torch/hub/checkpoints/vgg16-397923af.pth\n\n 0%| | 0.00/528M [00:00<?, ?B/s]\n\n 1%| | 3.15M/528M [00:00<00:16, 33.0MB/s]\n\n 1%|1 | 5.95M/528M [00:00<00:17, 31.8MB/s]\n\n 4%|4 | 22.4M/528M [00:00<00:12, 42.1MB/s]\n\n 9%|8 | 44.9M/528M [00:00<00:09, 55.9MB/s]\n\n 13%|#3 | 69.2M/528M [00:00<00:06, 73.0MB/s]\n\n 17%|#7 | 91.7M/528M [00:00<00:04, 92.1MB/s]\n\n 21%|## | 109M/528M [00:00<00:04, 103MB/s]\n\n 25%|##4 | 130M/528M [00:00<00:03, 123MB/s]\n\n 29%|##8 | 152M/528M [00:00<00:02, 143MB/s]\n\n 34%|###3 | 177M/528M [00:01<00:02, 165MB/s]\n\n 38%|###8 | 203M/528M [00:01<00:01, 187MB/s]\n\n 43%|####3 | 228M/528M [00:01<00:01, 204MB/s]\n\n 48%|####7 | 252M/528M [00:01<00:01, 217MB/s]\n\n 52%|#####2 | 275M/528M [00:01<00:01, 215MB/s]\n\n 57%|#####6 | 299M/528M [00:01<00:01, 225MB/s]\n\n 61%|######1 | 322M/528M [00:01<00:00, 228MB/s]\n\n 65%|######5 | 345M/528M [00:01<00:00, 215MB/s]\n\n 70%|######9 | 369M/528M [00:01<00:00, 225MB/s]\n\n 74%|#######4 | 391M/528M [00:02<00:00, 202MB/s]\n\n 78%|#######7 | 412M/528M [00:02<00:00, 157MB/s]\n\n 83%|########2 | 437M/528M [00:02<00:00, 179MB/s]\n\n 88%|########7 | 463M/528M [00:02<00:00, 200MB/s]\n\n 93%|#########2| 490M/528M [00:02<00:00, 218MB/s]\n\n 97%|#########7| 513M/528M [00:02<00:00, 219MB/s]\n\n100%|##########| 528M/528M [00:02<00:00, 205MB/s]\nloaded pretrained LPIPS loss from taming/modules/autoencoder/lpips/vgg.pth\nVQLPIPSWithDiscriminator running with hinge loss.\nRestored from models/vqgan_imagenet_f16_16384.ckpt\n\n 0%| | 0.00/338M [00:00<?, ?iB/s]\n\n 0%|1 | 1.12M/338M [00:00<00:30, 11.6MiB/s]\n\n 5%|#7 | 15.7M/338M [00:00<00:21, 16.0MiB/s]\n\n 12%|####4 | 39.6M/338M [00:00<00:14, 22.3MiB/s]\n\n 19%|####### | 62.8M/338M [00:00<00:09, 30.6MiB/s]\n\n 23%|########8 | 79.0M/338M [00:00<00:06, 40.6MiB/s]\n\n 30%|###########2 | 99.8M/338M [00:00<00:04, 53.7MiB/s]\n\n 36%|##############1 | 122M/338M [00:00<00:03, 69.8MiB/s]\n\n 43%|################6 | 144M/338M [00:00<00:02, 88.2MiB/s]\n\n 48%|###################3 | 164M/338M [00:00<00:01, 107MiB/s]\n\n 54%|#####################6 | 183M/338M [00:01<00:01, 123MiB/s]\n\n 60%|########################1 | 204M/338M [00:01<00:00, 142MiB/s]\n\n 68%|########################### | 228M/338M [00:01<00:00, 164MiB/s]\n\n 74%|#############################7 | 251M/338M [00:01<00:00, 180MiB/s]\n\n 81%|################################2 | 272M/338M [00:01<00:00, 190MiB/s]\n\n 87%|##################################7 | 294M/338M [00:01<00:00, 185MiB/s]\n\n 93%|#####################################3 | 315M/338M [00:01<00:00, 196MiB/s]\n\n100%|#######################################8| 336M/338M [00:01<00:00, 203MiB/s]\n\n100%|########################################| 338M/338M [00:01<00:00, 203MiB/s]\nUsing device:\ncuda:0\nOptimising using:\nAdam\nUsing text prompts:\n['sunset river snow mountain']\nUsing seed:\n14723532543356836858\n\n0it [00:00, ?it/s]\n/root/.pyenv/versions/3.8.12/lib/python3.8/site-packages/torch/nn/functional.py:3451: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.\n warnings.warn(\niter: 0, loss: 0.952009, losses: 0.952009\n\n0it [00:00, ?it/s]\n\n1it [00:00, 3.26it/s]\n\n2it [00:00, 3.60it/s]\n\n3it [00:00, 3.89it/s]\n\n4it [00:00, 4.11it/s]\n\n5it [00:01, 4.31it/s]\n\n6it [00:01, 4.45it/s]\n\n7it [00:01, 4.57it/s]\n\n8it [00:01, 4.65it/s]\n\n9it [00:01, 4.73it/s]\n\n10it [00:02, 4.78it/s]\niter: 10, loss: 0.872961, losses: 0.872961\n\n10it [00:02, 4.78it/s]\n\n11it [00:02, 4.13it/s]\n\n12it [00:02, 4.35it/s]\n\n13it [00:02, 4.50it/s]\n\n14it [00:03, 4.62it/s]\n\n15it [00:03, 4.66it/s]\n\n16it [00:03, 4.71it/s]\n\n17it [00:03, 4.76it/s]\n\n18it [00:03, 4.81it/s]\n\n19it [00:04, 4.78it/s]\n\n20it [00:04, 4.83it/s]\niter: 20, loss: 0.816933, losses: 0.816933\n\n20it [00:04, 4.83it/s]\n\n21it [00:05, 2.72it/s]\n\n22it [00:05, 3.13it/s]\n\n23it [00:05, 3.52it/s]\n\n24it [00:05, 3.82it/s]\n\n25it [00:05, 4.06it/s]\n\n26it [00:06, 4.29it/s]\n\n27it [00:06, 4.49it/s]\n\n28it [00:06, 4.58it/s]\n\n29it [00:06, 4.67it/s]\n\n30it [00:06, 4.76it/s]\niter: 30, loss: 0.793794, losses: 0.793794\n\n30it [00:07, 4.76it/s]\n\n31it [00:07, 2.49it/s]\n\n32it [00:07, 2.93it/s]\n\n33it [00:08, 3.33it/s]\n\n34it [00:08, 3.67it/s]\n\n35it [00:08, 4.00it/s]\n\n36it [00:08, 4.23it/s]\n\n37it [00:08, 4.38it/s]\n\n38it [00:09, 4.53it/s]\n\n39it [00:09, 4.61it/s]\n\n40it [00:09, 4.69it/s]\niter: 40, loss: 0.788617, losses: 0.788617\n\n40it [00:09, 4.69it/s]\n\n41it [00:11, 1.19it/s]\n\n42it [00:12, 1.51it/s]\n\n43it [00:12, 1.90it/s]\n\n44it [00:12, 2.32it/s]\n\n45it [00:12, 2.74it/s]\n\n46it [00:12, 3.16it/s]\n\n47it [00:13, 3.51it/s]\n\n48it [00:13, 3.82it/s]\n\n49it [00:13, 4.06it/s]\n\n50it [00:13, 4.16it/s]\niter: 50, loss: 0.800087, losses: 0.800087\n\n50it [00:13, 4.16it/s]\n\n51it [00:14, 3.83it/s]\n\n52it [00:14, 4.07it/s]\n\n53it [00:14, 4.27it/s]\n\n54it [00:14, 4.40it/s]\n\n55it [00:14, 4.52it/s]\n\n56it [00:15, 4.59it/s]\n\n57it [00:15, 4.64it/s]\n\n58it [00:15, 4.68it/s]\n\n59it [00:15, 4.75it/s]\n\n60it [00:16, 4.76it/s]\niter: 60, loss: 0.798107, losses: 0.798107\n\n60it [00:16, 4.76it/s]\n\n61it [00:16, 3.10it/s]\n\n62it [00:16, 3.51it/s]\n\n63it [00:17, 3.80it/s]\n\n64it [00:17, 4.08it/s]\n\n65it [00:17, 4.31it/s]\n\n66it [00:17, 4.49it/s]\n\n67it [00:17, 4.61it/s]\n\n68it [00:18, 4.70it/s]\n\n69it [00:18, 4.70it/s]\n\n70it [00:18, 4.71it/s]\niter: 70, loss: 0.797794, losses: 0.797794\n\n70it [00:18, 4.71it/s]\n\n71it [00:20, 1.22it/s]\n\n72it [00:20, 1.53it/s]\n\n73it [00:21, 1.92it/s]\n\n74it [00:21, 2.33it/s]\n\n75it [00:21, 2.76it/s]\n\n76it [00:21, 3.16it/s]\n\n77it [00:22, 3.49it/s]\n\n78it [00:22, 3.81it/s]\n\n79it [00:22, 4.06it/s]\n\n80it [00:22, 4.29it/s]\niter: 80, loss: 0.784545, losses: 0.784545\n\n80it [00:22, 4.29it/s]\n\n81it [00:24, 1.26it/s]\n\n82it [00:25, 1.57it/s]\n\n83it [00:25, 1.97it/s]\n\n84it [00:25, 2.39it/s]\n\n85it [00:25, 2.81it/s]\n\n86it [00:25, 3.22it/s]\n\n87it [00:26, 3.57it/s]\n\n88it [00:26, 3.86it/s]\n\n89it [00:26, 4.09it/s]\n\n90it [00:26, 4.28it/s]\niter: 90, loss: 0.784368, losses: 0.784368\n\n90it [00:26, 4.28it/s]\n\n91it [00:27, 1.86it/s]\n\n92it [00:28, 2.30it/s]\n\n93it [00:28, 2.72it/s]\n\n94it [00:28, 3.14it/s]\n\n95it [00:28, 3.49it/s]\n\n96it [00:28, 3.79it/s]\n\n97it [00:29, 4.01it/s]\n\n98it [00:29, 4.24it/s]\n\n99it [00:29, 4.39it/s]\n\n100it [00:29, 4.54it/s]\niter: 100, loss: 0.778032, losses: 0.778032\n\n100it [00:29, 4.54it/s]\n\n101it [00:32, 1.22it/s]\n\n102it [00:32, 1.52it/s]\n\n103it [00:32, 1.91it/s]\n\n104it [00:32, 2.34it/s]\n\n105it [00:32, 2.76it/s]\n\n106it [00:33, 3.19it/s]\n\n107it [00:33, 3.53it/s]\n\n108it [00:33, 3.87it/s]\n\n109it [00:33, 4.12it/s]\n\n110it [00:33, 4.29it/s]\niter: 110, loss: 0.766626, losses: 0.766626\n\n110it [00:34, 4.29it/s]\n\n111it [00:34, 4.14it/s]\n\n112it [00:34, 4.32it/s]\n\n113it [00:34, 4.42it/s]\n\n114it [00:34, 4.59it/s]\n\n115it [00:35, 4.61it/s]\n\n116it [00:35, 4.72it/s]\n\n117it [00:35, 4.77it/s]\n\n118it [00:35, 4.77it/s]\n\n119it [00:35, 4.83it/s]\n\n120it [00:36, 4.80it/s]\niter: 120, loss: 0.776433, losses: 0.776433\n\n120it [00:36, 4.80it/s]\n\n121it [00:36, 3.05it/s]\n\n122it [00:36, 3.42it/s]\n\n123it [00:37, 3.74it/s]\n\n124it [00:37, 3.98it/s]\n\n125it [00:37, 4.20it/s]\n\n126it [00:37, 4.33it/s]\n\n127it [00:37, 4.44it/s]\n\n128it [00:38, 4.50it/s]\n\n129it [00:38, 4.58it/s]\n\n130it [00:38, 4.67it/s]\niter: 130, loss: 0.783198, losses: 0.783198\n\n130it [00:38, 4.67it/s]\n\n131it [00:40, 1.23it/s]\n\n132it [00:41, 1.56it/s]\n\n133it [00:41, 1.96it/s]\n\n134it [00:41, 2.39it/s]\n\n135it [00:41, 2.82it/s]\n\n136it [00:41, 3.20it/s]\n\n137it [00:42, 3.53it/s]\n\n138it [00:42, 3.82it/s]\n\n139it [00:42, 4.06it/s]\n\n140it [00:42, 4.26it/s]\niter: 140, loss: 0.770599, losses: 0.770599\n\n140it [00:42, 4.26it/s]\n\n141it [00:44, 1.28it/s]\n\n142it [00:44, 1.63it/s]\n\n143it [00:45, 2.03it/s]\n\n144it [00:45, 2.43it/s]\n\n145it [00:45, 2.83it/s]\n\n146it [00:45, 3.20it/s]\n\n147it [00:46, 3.53it/s]\n\n148it [00:46, 3.81it/s]\n\n149it [00:46, 4.01it/s]\n\n150it [00:46, 4.22it/s]\niter: 150, loss: 0.75432, losses: 0.75432\n\n150it [00:46, 4.22it/s]\n\n151it [00:48, 1.28it/s]\n\n152it [00:48, 1.60it/s]\n\n153it [00:49, 2.00it/s]\n\n154it [00:49, 2.43it/s]\n\n155it [00:49, 2.84it/s]\n\n156it [00:49, 3.22it/s]\n\n157it [00:50, 3.57it/s]\n\n158it [00:50, 3.84it/s]\n\n159it [00:50, 4.02it/s]\n\n160it [00:50, 4.20it/s]\niter: 160, loss: 0.766017, losses: 0.766017\n\n160it [00:50, 4.20it/s]\n\n161it [00:51, 2.33it/s]\n\n162it [00:51, 2.75it/s]\n\n163it [00:51, 3.15it/s]\n\n164it [00:52, 3.48it/s]\n\n165it [00:52, 3.77it/s]\n\n166it [00:52, 4.03it/s]\n\n167it [00:52, 4.25it/s]\n\n168it [00:53, 4.35it/s]\n\n169it [00:53, 4.47it/s]\n\n170it [00:53, 4.54it/s]\niter: 170, loss: 0.769404, losses: 0.769404\n\n170it [00:53, 4.54it/s]\n\n171it [00:53, 4.33it/s]\n\n172it [00:53, 4.41it/s]\n\n173it [00:54, 4.55it/s]\n\n174it [00:54, 4.59it/s]\n\n175it [00:54, 4.66it/s]\n\n176it [00:54, 4.65it/s]\n\n177it [00:55, 4.69it/s]\n\n178it [00:55, 4.72it/s]\n\n179it [00:55, 4.75it/s]\n\n180it [00:55, 4.72it/s]\niter: 180, loss: 0.772921, losses: 0.772921\n\n180it [00:55, 4.72it/s]\n\n181it [00:55, 4.44it/s]\n\n182it [00:56, 4.54it/s]\n\n183it [00:56, 4.57it/s]\n\n184it [00:56, 4.62it/s]\n\n185it [00:56, 4.62it/s]\n\n186it [00:56, 4.65it/s]\n\n187it [00:57, 4.68it/s]\n\n188it [00:57, 4.72it/s]\n\n189it [00:57, 4.68it/s]\n\n190it [00:57, 4.71it/s]\niter: 190, loss: 0.749382, losses: 0.749382\n\n190it [00:57, 4.71it/s]\n\n191it [00:58, 4.49it/s]\n\n192it [00:58, 4.52it/s]\n\n193it [00:58, 4.60it/s]\n\n194it [00:58, 4.66it/s]\n\n195it [00:58, 4.64it/s]\n\n196it [00:59, 4.67it/s]\n\n197it [00:59, 4.68it/s]\n\n198it [00:59, 4.69it/s]\n\n199it [00:59, 4.68it/s]\n\n200it [00:59, 4.68it/s]\niter: 200, loss: 0.770398, losses: 0.770398\n\n200it [01:00, 4.68it/s]\n\n200it [01:00, 3.32it/s]", "metrics": {}, "output": [ { "file": "https://replicate.delivery/mgxm/5bed9d88-48ee-44fe-bc3d-e3303b650354/out.png" } ], "started_at": null, "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/yt34tm4zi5arvj4bpfjp3apwqa", "cancel": "https://api.replicate.com/v1/predictions/yt34tm4zi5arvj4bpfjp3apwqa/cancel" }, "version": "3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11" }
Working with z of shape (1, 256, 16, 16) = 65536 dimensions. Downloading: "https://download.pytorch.org/models/vgg16-397923af.pth" to /root/.cache/torch/hub/checkpoints/vgg16-397923af.pth 0%| | 0.00/528M [00:00<?, ?B/s] 1%| | 3.15M/528M [00:00<00:16, 33.0MB/s] 1%|1 | 5.95M/528M [00:00<00:17, 31.8MB/s] 4%|4 | 22.4M/528M [00:00<00:12, 42.1MB/s] 9%|8 | 44.9M/528M [00:00<00:09, 55.9MB/s] 13%|#3 | 69.2M/528M [00:00<00:06, 73.0MB/s] 17%|#7 | 91.7M/528M [00:00<00:04, 92.1MB/s] 21%|## | 109M/528M [00:00<00:04, 103MB/s] 25%|##4 | 130M/528M [00:00<00:03, 123MB/s] 29%|##8 | 152M/528M [00:00<00:02, 143MB/s] 34%|###3 | 177M/528M [00:01<00:02, 165MB/s] 38%|###8 | 203M/528M [00:01<00:01, 187MB/s] 43%|####3 | 228M/528M [00:01<00:01, 204MB/s] 48%|####7 | 252M/528M [00:01<00:01, 217MB/s] 52%|#####2 | 275M/528M [00:01<00:01, 215MB/s] 57%|#####6 | 299M/528M [00:01<00:01, 225MB/s] 61%|######1 | 322M/528M [00:01<00:00, 228MB/s] 65%|######5 | 345M/528M [00:01<00:00, 215MB/s] 70%|######9 | 369M/528M [00:01<00:00, 225MB/s] 74%|#######4 | 391M/528M [00:02<00:00, 202MB/s] 78%|#######7 | 412M/528M [00:02<00:00, 157MB/s] 83%|########2 | 437M/528M [00:02<00:00, 179MB/s] 88%|########7 | 463M/528M [00:02<00:00, 200MB/s] 93%|#########2| 490M/528M [00:02<00:00, 218MB/s] 97%|#########7| 513M/528M [00:02<00:00, 219MB/s] 100%|##########| 528M/528M [00:02<00:00, 205MB/s] loaded pretrained LPIPS loss from taming/modules/autoencoder/lpips/vgg.pth VQLPIPSWithDiscriminator running with hinge loss. Restored from models/vqgan_imagenet_f16_16384.ckpt 0%| | 0.00/338M [00:00<?, ?iB/s] 0%|1 | 1.12M/338M [00:00<00:30, 11.6MiB/s] 5%|#7 | 15.7M/338M [00:00<00:21, 16.0MiB/s] 12%|####4 | 39.6M/338M [00:00<00:14, 22.3MiB/s] 19%|####### | 62.8M/338M [00:00<00:09, 30.6MiB/s] 23%|########8 | 79.0M/338M [00:00<00:06, 40.6MiB/s] 30%|###########2 | 99.8M/338M [00:00<00:04, 53.7MiB/s] 36%|##############1 | 122M/338M [00:00<00:03, 69.8MiB/s] 43%|################6 | 144M/338M [00:00<00:02, 88.2MiB/s] 48%|###################3 | 164M/338M [00:00<00:01, 107MiB/s] 54%|#####################6 | 183M/338M [00:01<00:01, 123MiB/s] 60%|########################1 | 204M/338M [00:01<00:00, 142MiB/s] 68%|########################### | 228M/338M [00:01<00:00, 164MiB/s] 74%|#############################7 | 251M/338M [00:01<00:00, 180MiB/s] 81%|################################2 | 272M/338M [00:01<00:00, 190MiB/s] 87%|##################################7 | 294M/338M [00:01<00:00, 185MiB/s] 93%|#####################################3 | 315M/338M [00:01<00:00, 196MiB/s] 100%|#######################################8| 336M/338M [00:01<00:00, 203MiB/s] 100%|########################################| 338M/338M [00:01<00:00, 203MiB/s] Using device: cuda:0 Optimising using: Adam Using text prompts: ['sunset river snow mountain'] Using seed: 14723532543356836858 0it [00:00, ?it/s] /root/.pyenv/versions/3.8.12/lib/python3.8/site-packages/torch/nn/functional.py:3451: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. warnings.warn( iter: 0, loss: 0.952009, losses: 0.952009 0it [00:00, ?it/s] 1it [00:00, 3.26it/s] 2it [00:00, 3.60it/s] 3it [00:00, 3.89it/s] 4it [00:00, 4.11it/s] 5it [00:01, 4.31it/s] 6it [00:01, 4.45it/s] 7it [00:01, 4.57it/s] 8it [00:01, 4.65it/s] 9it [00:01, 4.73it/s] 10it [00:02, 4.78it/s] iter: 10, loss: 0.872961, losses: 0.872961 10it [00:02, 4.78it/s] 11it [00:02, 4.13it/s] 12it [00:02, 4.35it/s] 13it [00:02, 4.50it/s] 14it [00:03, 4.62it/s] 15it [00:03, 4.66it/s] 16it [00:03, 4.71it/s] 17it [00:03, 4.76it/s] 18it [00:03, 4.81it/s] 19it [00:04, 4.78it/s] 20it [00:04, 4.83it/s] iter: 20, loss: 0.816933, losses: 0.816933 20it [00:04, 4.83it/s] 21it [00:05, 2.72it/s] 22it [00:05, 3.13it/s] 23it [00:05, 3.52it/s] 24it [00:05, 3.82it/s] 25it [00:05, 4.06it/s] 26it [00:06, 4.29it/s] 27it [00:06, 4.49it/s] 28it [00:06, 4.58it/s] 29it [00:06, 4.67it/s] 30it [00:06, 4.76it/s] iter: 30, loss: 0.793794, losses: 0.793794 30it [00:07, 4.76it/s] 31it [00:07, 2.49it/s] 32it [00:07, 2.93it/s] 33it [00:08, 3.33it/s] 34it [00:08, 3.67it/s] 35it [00:08, 4.00it/s] 36it [00:08, 4.23it/s] 37it [00:08, 4.38it/s] 38it [00:09, 4.53it/s] 39it [00:09, 4.61it/s] 40it [00:09, 4.69it/s] iter: 40, loss: 0.788617, losses: 0.788617 40it [00:09, 4.69it/s] 41it [00:11, 1.19it/s] 42it [00:12, 1.51it/s] 43it [00:12, 1.90it/s] 44it [00:12, 2.32it/s] 45it [00:12, 2.74it/s] 46it [00:12, 3.16it/s] 47it [00:13, 3.51it/s] 48it [00:13, 3.82it/s] 49it [00:13, 4.06it/s] 50it [00:13, 4.16it/s] iter: 50, loss: 0.800087, losses: 0.800087 50it [00:13, 4.16it/s] 51it [00:14, 3.83it/s] 52it [00:14, 4.07it/s] 53it [00:14, 4.27it/s] 54it [00:14, 4.40it/s] 55it [00:14, 4.52it/s] 56it [00:15, 4.59it/s] 57it [00:15, 4.64it/s] 58it [00:15, 4.68it/s] 59it [00:15, 4.75it/s] 60it [00:16, 4.76it/s] iter: 60, loss: 0.798107, losses: 0.798107 60it [00:16, 4.76it/s] 61it [00:16, 3.10it/s] 62it [00:16, 3.51it/s] 63it [00:17, 3.80it/s] 64it [00:17, 4.08it/s] 65it [00:17, 4.31it/s] 66it [00:17, 4.49it/s] 67it [00:17, 4.61it/s] 68it [00:18, 4.70it/s] 69it [00:18, 4.70it/s] 70it [00:18, 4.71it/s] iter: 70, loss: 0.797794, losses: 0.797794 70it [00:18, 4.71it/s] 71it [00:20, 1.22it/s] 72it [00:20, 1.53it/s] 73it [00:21, 1.92it/s] 74it [00:21, 2.33it/s] 75it [00:21, 2.76it/s] 76it [00:21, 3.16it/s] 77it [00:22, 3.49it/s] 78it [00:22, 3.81it/s] 79it [00:22, 4.06it/s] 80it [00:22, 4.29it/s] iter: 80, loss: 0.784545, losses: 0.784545 80it [00:22, 4.29it/s] 81it [00:24, 1.26it/s] 82it [00:25, 1.57it/s] 83it [00:25, 1.97it/s] 84it [00:25, 2.39it/s] 85it [00:25, 2.81it/s] 86it [00:25, 3.22it/s] 87it [00:26, 3.57it/s] 88it [00:26, 3.86it/s] 89it [00:26, 4.09it/s] 90it [00:26, 4.28it/s] iter: 90, loss: 0.784368, losses: 0.784368 90it [00:26, 4.28it/s] 91it [00:27, 1.86it/s] 92it [00:28, 2.30it/s] 93it [00:28, 2.72it/s] 94it [00:28, 3.14it/s] 95it [00:28, 3.49it/s] 96it [00:28, 3.79it/s] 97it [00:29, 4.01it/s] 98it [00:29, 4.24it/s] 99it [00:29, 4.39it/s] 100it [00:29, 4.54it/s] iter: 100, loss: 0.778032, losses: 0.778032 100it [00:29, 4.54it/s] 101it [00:32, 1.22it/s] 102it [00:32, 1.52it/s] 103it [00:32, 1.91it/s] 104it [00:32, 2.34it/s] 105it [00:32, 2.76it/s] 106it [00:33, 3.19it/s] 107it [00:33, 3.53it/s] 108it [00:33, 3.87it/s] 109it [00:33, 4.12it/s] 110it [00:33, 4.29it/s] iter: 110, loss: 0.766626, losses: 0.766626 110it [00:34, 4.29it/s] 111it [00:34, 4.14it/s] 112it [00:34, 4.32it/s] 113it [00:34, 4.42it/s] 114it [00:34, 4.59it/s] 115it [00:35, 4.61it/s] 116it [00:35, 4.72it/s] 117it [00:35, 4.77it/s] 118it [00:35, 4.77it/s] 119it [00:35, 4.83it/s] 120it [00:36, 4.80it/s] iter: 120, loss: 0.776433, losses: 0.776433 120it [00:36, 4.80it/s] 121it [00:36, 3.05it/s] 122it [00:36, 3.42it/s] 123it [00:37, 3.74it/s] 124it [00:37, 3.98it/s] 125it [00:37, 4.20it/s] 126it [00:37, 4.33it/s] 127it [00:37, 4.44it/s] 128it [00:38, 4.50it/s] 129it [00:38, 4.58it/s] 130it [00:38, 4.67it/s] iter: 130, loss: 0.783198, losses: 0.783198 130it [00:38, 4.67it/s] 131it [00:40, 1.23it/s] 132it [00:41, 1.56it/s] 133it [00:41, 1.96it/s] 134it [00:41, 2.39it/s] 135it [00:41, 2.82it/s] 136it [00:41, 3.20it/s] 137it [00:42, 3.53it/s] 138it [00:42, 3.82it/s] 139it [00:42, 4.06it/s] 140it [00:42, 4.26it/s] iter: 140, loss: 0.770599, losses: 0.770599 140it [00:42, 4.26it/s] 141it [00:44, 1.28it/s] 142it [00:44, 1.63it/s] 143it [00:45, 2.03it/s] 144it [00:45, 2.43it/s] 145it [00:45, 2.83it/s] 146it [00:45, 3.20it/s] 147it [00:46, 3.53it/s] 148it [00:46, 3.81it/s] 149it [00:46, 4.01it/s] 150it [00:46, 4.22it/s] iter: 150, loss: 0.75432, losses: 0.75432 150it [00:46, 4.22it/s] 151it [00:48, 1.28it/s] 152it [00:48, 1.60it/s] 153it [00:49, 2.00it/s] 154it [00:49, 2.43it/s] 155it [00:49, 2.84it/s] 156it [00:49, 3.22it/s] 157it [00:50, 3.57it/s] 158it [00:50, 3.84it/s] 159it [00:50, 4.02it/s] 160it [00:50, 4.20it/s] iter: 160, loss: 0.766017, losses: 0.766017 160it [00:50, 4.20it/s] 161it [00:51, 2.33it/s] 162it [00:51, 2.75it/s] 163it [00:51, 3.15it/s] 164it [00:52, 3.48it/s] 165it [00:52, 3.77it/s] 166it [00:52, 4.03it/s] 167it [00:52, 4.25it/s] 168it [00:53, 4.35it/s] 169it [00:53, 4.47it/s] 170it [00:53, 4.54it/s] iter: 170, loss: 0.769404, losses: 0.769404 170it [00:53, 4.54it/s] 171it [00:53, 4.33it/s] 172it [00:53, 4.41it/s] 173it [00:54, 4.55it/s] 174it [00:54, 4.59it/s] 175it [00:54, 4.66it/s] 176it [00:54, 4.65it/s] 177it [00:55, 4.69it/s] 178it [00:55, 4.72it/s] 179it [00:55, 4.75it/s] 180it [00:55, 4.72it/s] iter: 180, loss: 0.772921, losses: 0.772921 180it [00:55, 4.72it/s] 181it [00:55, 4.44it/s] 182it [00:56, 4.54it/s] 183it [00:56, 4.57it/s] 184it [00:56, 4.62it/s] 185it [00:56, 4.62it/s] 186it [00:56, 4.65it/s] 187it [00:57, 4.68it/s] 188it [00:57, 4.72it/s] 189it [00:57, 4.68it/s] 190it [00:57, 4.71it/s] iter: 190, loss: 0.749382, losses: 0.749382 190it [00:57, 4.71it/s] 191it [00:58, 4.49it/s] 192it [00:58, 4.52it/s] 193it [00:58, 4.60it/s] 194it [00:58, 4.66it/s] 195it [00:58, 4.64it/s] 196it [00:59, 4.67it/s] 197it [00:59, 4.68it/s] 198it [00:59, 4.69it/s] 199it [00:59, 4.68it/s] 200it [00:59, 4.68it/s] iter: 200, loss: 0.770398, losses: 0.770398 200it [01:00, 4.68it/s] 200it [01:00, 3.32it/s]
Prediction
dribnet/clipit:3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11IDgryw2y56h5bfncxnvn4wvb4gp4StatusSucceededSourceWebHardware–Total duration–CreatedInput
- aspect
- widescreen
- prompts
- cats by Bansky
- quality
- draft
{ "aspect": "widescreen", "prompts": "cats by Bansky", "quality": "draft" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run dribnet/clipit using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "dribnet/clipit:3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11", { input: { aspect: "widescreen", prompts: "cats by Bansky", quality: "draft" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run dribnet/clipit using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "dribnet/clipit:3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11", input={ "aspect": "widescreen", "prompts": "cats by Bansky", "quality": "draft" } ) # The dribnet/clipit model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/dribnet/clipit/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run dribnet/clipit using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "dribnet/clipit:3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11", "input": { "aspect": "widescreen", "prompts": "cats by Bansky", "quality": "draft" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-09-09T21:49:27.989882Z", "created_at": "2021-09-09T21:48:33.833859Z", "data_removed": false, "error": null, "id": "gryw2y56h5bfncxnvn4wvb4gp4", "input": { "aspect": "widescreen", "prompts": "cats by Bansky", "quality": "draft" }, "logs": "Working with z of shape (1, 256, 16, 16) = 65536 dimensions.\nloaded pretrained LPIPS loss from taming/modules/autoencoder/lpips/vgg.pth\nVQLPIPSWithDiscriminator running with hinge loss.\nRestored from models/vqgan_imagenet_f16_16384.ckpt\nUsing device:\ncuda:0\nOptimising using:\nAdam\nUsing text prompts:\n['cats by Bansky']\nUsing seed:\n2834369569982184821\n\n0it [00:00, ?it/s]\niter: 0, loss: 1.03798, losses: 1.03798\n\n0it [00:00, ?it/s]\n\n1it [00:00, 3.62it/s]\n\n2it [00:00, 3.87it/s]\n\n3it [00:00, 4.08it/s]\n\n4it [00:00, 4.26it/s]\n\n5it [00:01, 4.37it/s]\n\n6it [00:01, 4.47it/s]\n\n7it [00:01, 4.52it/s]\n\n8it [00:01, 4.60it/s]\n\n9it [00:01, 4.62it/s]\n\n10it [00:02, 4.70it/s]\niter: 10, loss: 0.908019, losses: 0.908019\n\n10it [00:02, 4.70it/s]\n\n11it [00:02, 4.46it/s]\n\n12it [00:02, 4.51it/s]\n\n13it [00:02, 4.53it/s]\n\n14it [00:03, 4.57it/s]\n\n15it [00:03, 4.64it/s]\n\n16it [00:03, 4.70it/s]\n\n17it [00:03, 4.69it/s]\n\n18it [00:03, 4.71it/s]\n\n19it [00:04, 4.72it/s]\n\n20it [00:04, 4.70it/s]\niter: 20, loss: 0.84931, losses: 0.84931\n\n20it [00:04, 4.70it/s]\n\n21it [00:04, 4.52it/s]\n\n22it [00:04, 4.57it/s]\n\n23it [00:05, 4.62it/s]\n\n24it [00:05, 4.66it/s]\n\n25it [00:05, 4.66it/s]\n\n26it [00:05, 4.69it/s]\n\n27it [00:05, 4.69it/s]\n\n28it [00:06, 4.69it/s]\n\n29it [00:06, 4.74it/s]\n\n30it [00:06, 4.72it/s]\niter: 30, loss: 0.866546, losses: 0.866546\n\n30it [00:06, 4.72it/s]\n\n31it [00:06, 4.49it/s]\n\n32it [00:06, 4.53it/s]\n\n33it [00:07, 4.55it/s]\n\n34it [00:07, 4.54it/s]\n\n35it [00:07, 4.53it/s]\n\n36it [00:07, 4.58it/s]\n\n37it [00:08, 4.62it/s]\n\n38it [00:08, 4.64it/s]\n\n39it [00:08, 4.60it/s]\n\n40it [00:08, 4.55it/s]\niter: 40, loss: 0.817893, losses: 0.817893\n\n40it [00:08, 4.55it/s]\n\n41it [00:08, 4.35it/s]\n\n42it [00:09, 4.45it/s]\n\n43it [00:09, 4.47it/s]\n\n44it [00:09, 4.53it/s]\n\n45it [00:09, 4.54it/s]\n\n46it [00:10, 4.58it/s]\n\n47it [00:10, 4.58it/s]\n\n48it [00:10, 4.64it/s]\n\n49it [00:10, 4.63it/s]\n\n50it [00:10, 4.64it/s]\niter: 50, loss: 0.812147, losses: 0.812147\n\n50it [00:11, 4.64it/s]\n\n51it [00:11, 4.41it/s]\n\n52it [00:11, 4.51it/s]\n\n53it [00:11, 4.53it/s]\n\n54it [00:11, 4.60it/s]\n\n55it [00:12, 4.59it/s]\n\n56it [00:12, 4.58it/s]\n\n57it [00:12, 4.63it/s]\n\n58it [00:12, 4.64it/s]\n\n59it [00:12, 4.63it/s]\n\n60it [00:13, 4.60it/s]\niter: 60, loss: 0.776441, losses: 0.776441\n\n60it [00:13, 4.60it/s]\n\n61it [00:13, 4.45it/s]\n\n62it [00:13, 4.53it/s]\n\n63it [00:13, 4.59it/s]\n\n64it [00:13, 4.57it/s]\n\n65it [00:14, 4.58it/s]\n\n66it [00:14, 4.61it/s]\n\n67it [00:14, 4.64it/s]\n\n68it [00:14, 4.67it/s]\n\n69it [00:15, 4.62it/s]\n\n70it [00:15, 4.62it/s]\niter: 70, loss: 0.790263, losses: 0.790263\n\n70it [00:15, 4.62it/s]\n\n71it [00:15, 4.38it/s]\n\n72it [00:15, 4.44it/s]\n\n73it [00:15, 4.51it/s]\n\n74it [00:16, 4.53it/s]\n\n75it [00:16, 4.59it/s]\n\n76it [00:16, 4.58it/s]\n\n77it [00:16, 4.62it/s]\n\n78it [00:17, 4.59it/s]\n\n79it [00:17, 4.61it/s]\n\n80it [00:17, 4.60it/s]\niter: 80, loss: 0.758861, losses: 0.758861\n\n80it [00:17, 4.60it/s]\n\n81it [00:17, 4.41it/s]\n\n82it [00:17, 4.47it/s]\n\n83it [00:18, 4.52it/s]\n\n84it [00:18, 4.59it/s]\n\n85it [00:18, 4.59it/s]\n\n86it [00:18, 4.57it/s]\n\n87it [00:19, 4.62it/s]\n\n88it [00:19, 4.66it/s]\n\n89it [00:19, 4.63it/s]\n\n90it [00:19, 4.66it/s]\niter: 90, loss: 0.772865, losses: 0.772865\n\n90it [00:19, 4.66it/s]\n\n91it [00:19, 4.44it/s]\n\n92it [00:20, 4.49it/s]\n\n93it [00:20, 4.58it/s]\n\n94it [00:20, 4.58it/s]\n\n95it [00:20, 4.63it/s]\n\n96it [00:20, 4.65it/s]\n\n97it [00:21, 4.59it/s]\n\n98it [00:21, 4.63it/s]\n\n99it [00:21, 4.62it/s]\n\n100it [00:21, 4.69it/s]\niter: 100, loss: 0.774167, losses: 0.774167\n\n100it [00:21, 4.69it/s]\n\n101it [00:22, 4.42it/s]\n\n102it [00:22, 4.49it/s]\n\n103it [00:22, 4.50it/s]\n\n104it [00:22, 4.58it/s]\n\n105it [00:22, 4.63it/s]\n\n106it [00:23, 4.54it/s]\n\n107it [00:23, 4.58it/s]\n\n108it [00:23, 4.61it/s]\n\n109it [00:23, 4.60it/s]\n\n110it [00:24, 4.63it/s]\niter: 110, loss: 0.727429, losses: 0.727429\n\n110it [00:24, 4.63it/s]\n\n111it [00:24, 4.38it/s]\n\n112it [00:24, 4.49it/s]\n\n113it [00:24, 4.56it/s]\n\n114it [00:24, 4.54it/s]\n\n115it [00:25, 4.56it/s]\n\n116it [00:25, 4.57it/s]\n\n117it [00:25, 4.61it/s]\n\n118it [00:25, 4.59it/s]\n\n119it [00:26, 4.59it/s]\n\n120it [00:26, 4.60it/s]\niter: 120, loss: 0.760857, losses: 0.760857\n\n120it [00:26, 4.60it/s]\n\n121it [00:26, 4.36it/s]\n\n122it [00:26, 4.42it/s]\n\n123it [00:26, 4.43it/s]\n\n124it [00:27, 4.47it/s]\n\n125it [00:27, 4.49it/s]\n\n126it [00:27, 4.55it/s]\n\n127it [00:27, 4.60it/s]\n\n128it [00:28, 4.55it/s]\n\n129it [00:28, 4.53it/s]\n\n130it [00:28, 4.57it/s]\niter: 130, loss: 0.730336, losses: 0.730336\n\n130it [00:28, 4.57it/s]\n\n131it [00:28, 4.37it/s]\n\n132it [00:28, 4.42it/s]\n\n133it [00:29, 4.52it/s]\n\n134it [00:29, 4.54it/s]\n\n135it [00:29, 4.56it/s]\n\n136it [00:29, 4.60it/s]\n\n137it [00:30, 4.60it/s]\n\n138it [00:30, 4.54it/s]\n\n139it [00:30, 4.56it/s]\n\n140it [00:30, 4.58it/s]\niter: 140, loss: 0.759234, losses: 0.759234\n\n140it [00:30, 4.58it/s]\n\n141it [00:30, 4.37it/s]\n\n142it [00:31, 4.42it/s]\n\n143it [00:31, 4.48it/s]\n\n144it [00:31, 4.50it/s]\n\n145it [00:31, 4.52it/s]\n\n146it [00:32, 4.58it/s]\n\n147it [00:32, 4.59it/s]\n\n148it [00:32, 4.58it/s]\n\n149it [00:32, 4.63it/s]\n\n150it [00:32, 4.62it/s]\niter: 150, loss: 0.770327, losses: 0.770327\n\n150it [00:33, 4.62it/s]\n\n151it [00:33, 4.38it/s]\n\n152it [00:33, 4.45it/s]\n\n153it [00:33, 4.48it/s]\n\n154it [00:33, 4.55it/s]\n\n155it [00:34, 4.51it/s]\n\n156it [00:34, 4.52it/s]\n\n157it [00:34, 4.56it/s]\n\n158it [00:34, 4.61it/s]\n\n159it [00:34, 4.61it/s]\n\n160it [00:35, 4.57it/s]\niter: 160, loss: 0.758196, losses: 0.758196\n\n160it [00:35, 4.57it/s]\n\n161it [00:35, 4.32it/s]\n\n162it [00:35, 4.39it/s]\n\n163it [00:35, 4.45it/s]\n\n164it [00:36, 4.43it/s]\n\n165it [00:36, 4.49it/s]\n\n166it [00:36, 4.53it/s]\n\n167it [00:36, 4.55it/s]\n\n168it [00:36, 4.59it/s]\n\n169it [00:37, 4.56it/s]\n\n170it [00:37, 4.56it/s]\niter: 170, loss: 0.775423, losses: 0.775423\n\n170it [00:37, 4.56it/s]\n\n171it [00:37, 4.32it/s]\n\n172it [00:37, 4.39it/s]\n\n173it [00:38, 4.43it/s]\n\n174it [00:38, 4.51it/s]\n\n175it [00:38, 4.53it/s]\n\n176it [00:38, 4.54it/s]\n\n177it [00:38, 4.55it/s]\n\n178it [00:39, 4.54it/s]\n\n179it [00:39, 4.51it/s]\n\n180it [00:39, 4.51it/s]\niter: 180, loss: 0.753732, losses: 0.753732\n\n180it [00:39, 4.51it/s]\n\n181it [00:39, 4.27it/s]\n\n182it [00:40, 4.42it/s]\n\n183it [00:40, 4.44it/s]\n\n184it [00:40, 4.42it/s]\n\n185it [00:40, 4.46it/s]\n\n186it [00:40, 4.49it/s]\n\n187it [00:41, 4.50it/s]\n\n188it [00:41, 4.50it/s]\n\n189it [00:41, 4.52it/s]\n\n190it [00:41, 4.53it/s]\niter: 190, loss: 0.756438, losses: 0.756438\n\n190it [00:41, 4.53it/s]\n\n191it [00:42, 4.30it/s]\n\n192it [00:42, 4.38it/s]\n\n193it [00:42, 4.43it/s]\n\n194it [00:42, 4.48it/s]\n\n195it [00:42, 4.48it/s]\n\n196it [00:43, 4.50it/s]\n\n197it [00:43, 4.52it/s]\n\n198it [00:43, 4.53it/s]\n\n199it [00:43, 4.53it/s]\n\n200it [00:44, 4.48it/s]\niter: 200, loss: 0.746095, losses: 0.746095\n\n200it [00:44, 4.48it/s]\n\n200it [00:44, 4.51it/s]", "metrics": {}, "output": [ { "file": "https://replicate.delivery/mgxm/dfba5a01-7fa3-4804-8533-763cb90122df/out.png" } ], "started_at": null, "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/gryw2y56h5bfncxnvn4wvb4gp4", "cancel": "https://api.replicate.com/v1/predictions/gryw2y56h5bfncxnvn4wvb4gp4/cancel" }, "version": "3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11" }
Working with z of shape (1, 256, 16, 16) = 65536 dimensions. loaded pretrained LPIPS loss from taming/modules/autoencoder/lpips/vgg.pth VQLPIPSWithDiscriminator running with hinge loss. Restored from models/vqgan_imagenet_f16_16384.ckpt Using device: cuda:0 Optimising using: Adam Using text prompts: ['cats by Bansky'] Using seed: 2834369569982184821 0it [00:00, ?it/s] iter: 0, loss: 1.03798, losses: 1.03798 0it [00:00, ?it/s] 1it [00:00, 3.62it/s] 2it [00:00, 3.87it/s] 3it [00:00, 4.08it/s] 4it [00:00, 4.26it/s] 5it [00:01, 4.37it/s] 6it [00:01, 4.47it/s] 7it [00:01, 4.52it/s] 8it [00:01, 4.60it/s] 9it [00:01, 4.62it/s] 10it [00:02, 4.70it/s] iter: 10, loss: 0.908019, losses: 0.908019 10it [00:02, 4.70it/s] 11it [00:02, 4.46it/s] 12it [00:02, 4.51it/s] 13it [00:02, 4.53it/s] 14it [00:03, 4.57it/s] 15it [00:03, 4.64it/s] 16it [00:03, 4.70it/s] 17it [00:03, 4.69it/s] 18it [00:03, 4.71it/s] 19it [00:04, 4.72it/s] 20it [00:04, 4.70it/s] iter: 20, loss: 0.84931, losses: 0.84931 20it [00:04, 4.70it/s] 21it [00:04, 4.52it/s] 22it [00:04, 4.57it/s] 23it [00:05, 4.62it/s] 24it [00:05, 4.66it/s] 25it [00:05, 4.66it/s] 26it [00:05, 4.69it/s] 27it [00:05, 4.69it/s] 28it [00:06, 4.69it/s] 29it [00:06, 4.74it/s] 30it [00:06, 4.72it/s] iter: 30, loss: 0.866546, losses: 0.866546 30it [00:06, 4.72it/s] 31it [00:06, 4.49it/s] 32it [00:06, 4.53it/s] 33it [00:07, 4.55it/s] 34it [00:07, 4.54it/s] 35it [00:07, 4.53it/s] 36it [00:07, 4.58it/s] 37it [00:08, 4.62it/s] 38it [00:08, 4.64it/s] 39it [00:08, 4.60it/s] 40it [00:08, 4.55it/s] iter: 40, loss: 0.817893, losses: 0.817893 40it [00:08, 4.55it/s] 41it [00:08, 4.35it/s] 42it [00:09, 4.45it/s] 43it [00:09, 4.47it/s] 44it [00:09, 4.53it/s] 45it [00:09, 4.54it/s] 46it [00:10, 4.58it/s] 47it [00:10, 4.58it/s] 48it [00:10, 4.64it/s] 49it [00:10, 4.63it/s] 50it [00:10, 4.64it/s] iter: 50, loss: 0.812147, losses: 0.812147 50it [00:11, 4.64it/s] 51it [00:11, 4.41it/s] 52it [00:11, 4.51it/s] 53it [00:11, 4.53it/s] 54it [00:11, 4.60it/s] 55it [00:12, 4.59it/s] 56it [00:12, 4.58it/s] 57it [00:12, 4.63it/s] 58it [00:12, 4.64it/s] 59it [00:12, 4.63it/s] 60it [00:13, 4.60it/s] iter: 60, loss: 0.776441, losses: 0.776441 60it [00:13, 4.60it/s] 61it [00:13, 4.45it/s] 62it [00:13, 4.53it/s] 63it [00:13, 4.59it/s] 64it [00:13, 4.57it/s] 65it [00:14, 4.58it/s] 66it [00:14, 4.61it/s] 67it [00:14, 4.64it/s] 68it [00:14, 4.67it/s] 69it [00:15, 4.62it/s] 70it [00:15, 4.62it/s] iter: 70, loss: 0.790263, losses: 0.790263 70it [00:15, 4.62it/s] 71it [00:15, 4.38it/s] 72it [00:15, 4.44it/s] 73it [00:15, 4.51it/s] 74it [00:16, 4.53it/s] 75it [00:16, 4.59it/s] 76it [00:16, 4.58it/s] 77it [00:16, 4.62it/s] 78it [00:17, 4.59it/s] 79it [00:17, 4.61it/s] 80it [00:17, 4.60it/s] iter: 80, loss: 0.758861, losses: 0.758861 80it [00:17, 4.60it/s] 81it [00:17, 4.41it/s] 82it [00:17, 4.47it/s] 83it [00:18, 4.52it/s] 84it [00:18, 4.59it/s] 85it [00:18, 4.59it/s] 86it [00:18, 4.57it/s] 87it [00:19, 4.62it/s] 88it [00:19, 4.66it/s] 89it [00:19, 4.63it/s] 90it [00:19, 4.66it/s] iter: 90, loss: 0.772865, losses: 0.772865 90it [00:19, 4.66it/s] 91it [00:19, 4.44it/s] 92it [00:20, 4.49it/s] 93it [00:20, 4.58it/s] 94it [00:20, 4.58it/s] 95it [00:20, 4.63it/s] 96it [00:20, 4.65it/s] 97it [00:21, 4.59it/s] 98it [00:21, 4.63it/s] 99it [00:21, 4.62it/s] 100it [00:21, 4.69it/s] iter: 100, loss: 0.774167, losses: 0.774167 100it [00:21, 4.69it/s] 101it [00:22, 4.42it/s] 102it [00:22, 4.49it/s] 103it [00:22, 4.50it/s] 104it [00:22, 4.58it/s] 105it [00:22, 4.63it/s] 106it [00:23, 4.54it/s] 107it [00:23, 4.58it/s] 108it [00:23, 4.61it/s] 109it [00:23, 4.60it/s] 110it [00:24, 4.63it/s] iter: 110, loss: 0.727429, losses: 0.727429 110it [00:24, 4.63it/s] 111it [00:24, 4.38it/s] 112it [00:24, 4.49it/s] 113it [00:24, 4.56it/s] 114it [00:24, 4.54it/s] 115it [00:25, 4.56it/s] 116it [00:25, 4.57it/s] 117it [00:25, 4.61it/s] 118it [00:25, 4.59it/s] 119it [00:26, 4.59it/s] 120it [00:26, 4.60it/s] iter: 120, loss: 0.760857, losses: 0.760857 120it [00:26, 4.60it/s] 121it [00:26, 4.36it/s] 122it [00:26, 4.42it/s] 123it [00:26, 4.43it/s] 124it [00:27, 4.47it/s] 125it [00:27, 4.49it/s] 126it [00:27, 4.55it/s] 127it [00:27, 4.60it/s] 128it [00:28, 4.55it/s] 129it [00:28, 4.53it/s] 130it [00:28, 4.57it/s] iter: 130, loss: 0.730336, losses: 0.730336 130it [00:28, 4.57it/s] 131it [00:28, 4.37it/s] 132it [00:28, 4.42it/s] 133it [00:29, 4.52it/s] 134it [00:29, 4.54it/s] 135it [00:29, 4.56it/s] 136it [00:29, 4.60it/s] 137it [00:30, 4.60it/s] 138it [00:30, 4.54it/s] 139it [00:30, 4.56it/s] 140it [00:30, 4.58it/s] iter: 140, loss: 0.759234, losses: 0.759234 140it [00:30, 4.58it/s] 141it [00:30, 4.37it/s] 142it [00:31, 4.42it/s] 143it [00:31, 4.48it/s] 144it [00:31, 4.50it/s] 145it [00:31, 4.52it/s] 146it [00:32, 4.58it/s] 147it [00:32, 4.59it/s] 148it [00:32, 4.58it/s] 149it [00:32, 4.63it/s] 150it [00:32, 4.62it/s] iter: 150, loss: 0.770327, losses: 0.770327 150it [00:33, 4.62it/s] 151it [00:33, 4.38it/s] 152it [00:33, 4.45it/s] 153it [00:33, 4.48it/s] 154it [00:33, 4.55it/s] 155it [00:34, 4.51it/s] 156it [00:34, 4.52it/s] 157it [00:34, 4.56it/s] 158it [00:34, 4.61it/s] 159it [00:34, 4.61it/s] 160it [00:35, 4.57it/s] iter: 160, loss: 0.758196, losses: 0.758196 160it [00:35, 4.57it/s] 161it [00:35, 4.32it/s] 162it [00:35, 4.39it/s] 163it [00:35, 4.45it/s] 164it [00:36, 4.43it/s] 165it [00:36, 4.49it/s] 166it [00:36, 4.53it/s] 167it [00:36, 4.55it/s] 168it [00:36, 4.59it/s] 169it [00:37, 4.56it/s] 170it [00:37, 4.56it/s] iter: 170, loss: 0.775423, losses: 0.775423 170it [00:37, 4.56it/s] 171it [00:37, 4.32it/s] 172it [00:37, 4.39it/s] 173it [00:38, 4.43it/s] 174it [00:38, 4.51it/s] 175it [00:38, 4.53it/s] 176it [00:38, 4.54it/s] 177it [00:38, 4.55it/s] 178it [00:39, 4.54it/s] 179it [00:39, 4.51it/s] 180it [00:39, 4.51it/s] iter: 180, loss: 0.753732, losses: 0.753732 180it [00:39, 4.51it/s] 181it [00:39, 4.27it/s] 182it [00:40, 4.42it/s] 183it [00:40, 4.44it/s] 184it [00:40, 4.42it/s] 185it [00:40, 4.46it/s] 186it [00:40, 4.49it/s] 187it [00:41, 4.50it/s] 188it [00:41, 4.50it/s] 189it [00:41, 4.52it/s] 190it [00:41, 4.53it/s] iter: 190, loss: 0.756438, losses: 0.756438 190it [00:41, 4.53it/s] 191it [00:42, 4.30it/s] 192it [00:42, 4.38it/s] 193it [00:42, 4.43it/s] 194it [00:42, 4.48it/s] 195it [00:42, 4.48it/s] 196it [00:43, 4.50it/s] 197it [00:43, 4.52it/s] 198it [00:43, 4.53it/s] 199it [00:43, 4.53it/s] 200it [00:44, 4.48it/s] iter: 200, loss: 0.746095, losses: 0.746095 200it [00:44, 4.48it/s] 200it [00:44, 4.51it/s]
Prediction
dribnet/clipit:3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11IDa5vzdlzdyjbyxg2rsmtny5jtf4StatusSucceededSourceWebHardware–Total duration–CreatedInput
- aspect
- widescreen
- prompts
- sunset river snow mountain
- quality
- better
{ "aspect": "widescreen", "prompts": "sunset river snow mountain", "quality": "better" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run dribnet/clipit using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "dribnet/clipit:3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11", { input: { aspect: "widescreen", prompts: "sunset river snow mountain", quality: "better" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run dribnet/clipit using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "dribnet/clipit:3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11", input={ "aspect": "widescreen", "prompts": "sunset river snow mountain", "quality": "better" } ) # The dribnet/clipit model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/dribnet/clipit/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run dribnet/clipit using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "dribnet/clipit:3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11", "input": { "aspect": "widescreen", "prompts": "sunset river snow mountain", "quality": "better" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-09-10T17:13:35.662495Z", "created_at": "2021-09-10T16:54:26.298159Z", "data_removed": false, "error": null, "id": "a5vzdlzdyjbyxg2rsmtny5jtf4", "input": { "aspect": "widescreen", "prompts": "sunset river snow mountain", "quality": "better" }, "logs": "Working with z of shape (1, 256, 16, 16) = 65536 dimensions.\nDownloading: \"https://download.pytorch.org/models/vgg16-397923af.pth\" to /root/.cache/torch/hub/checkpoints/vgg16-397923af.pth\n\n 0%| | 0.00/528M [00:00<?, ?B/s]\n\n 1%| | 3.58M/528M [00:00<00:14, 37.5MB/s]\n\n 1%|1 | 7.39M/528M [00:00<00:14, 38.1MB/s]\n\n 6%|6 | 33.8M/528M [00:00<00:10, 51.4MB/s]\n\n 11%|#1 | 60.2M/528M [00:00<00:07, 68.1MB/s]\n\n 16%|#6 | 87.1M/528M [00:00<00:05, 88.1MB/s]\n\n 21%|##1 | 113M/528M [00:00<00:03, 111MB/s]\n\n 26%|##6 | 140M/528M [00:00<00:03, 135MB/s]\n\n 32%|###1 | 167M/528M [00:00<00:02, 160MB/s]\n\n 37%|###6 | 193M/528M [00:00<00:01, 184MB/s]\n\n 42%|####1 | 219M/528M [00:01<00:01, 204MB/s]\n\n 47%|####6 | 246M/528M [00:01<00:01, 222MB/s]\n\n 52%|#####1 | 273M/528M [00:01<00:01, 236MB/s]\n\n 57%|#####6 | 299M/528M [00:01<00:00, 247MB/s]\n\n 62%|######1 | 326M/528M [00:01<00:00, 256MB/s]\n\n 67%|######6 | 352M/528M [00:01<00:00, 261MB/s]\n\n 72%|#######1 | 378M/528M [00:01<00:00, 266MB/s]\n\n 77%|#######6 | 404M/528M [00:01<00:00, 268MB/s]\n\n 82%|########1 | 431M/528M [00:01<00:00, 272MB/s]\n\n 87%|########6 | 458M/528M [00:01<00:00, 275MB/s]\n\n 92%|#########1| 485M/528M [00:02<00:00, 277MB/s]\n\n 97%|#########6| 512M/528M [00:02<00:00, 274MB/s]\n\n100%|##########| 528M/528M [00:02<00:00, 255MB/s]\nloaded pretrained LPIPS loss from taming/modules/autoencoder/lpips/vgg.pth\nVQLPIPSWithDiscriminator running with hinge loss.\nRestored from models/vqgan_imagenet_f16_16384.ckpt\n\n 0%| | 0.00/244M [00:00<?, ?iB/s]\n\n 0%|1 | 944k/244M [00:00<00:27, 9.31MiB/s]\n\n 2%|9 | 5.95M/244M [00:00<00:20, 12.4MiB/s]\n\n 4%|#3 | 8.63M/244M [00:00<00:16, 14.8MiB/s]\n\n 6%|##1 | 13.7M/244M [00:00<00:12, 19.0MiB/s]\n\n 7%|##8 | 18.3M/244M [00:00<00:10, 23.1MiB/s]\n\n 10%|###6 | 23.3M/244M [00:00<00:08, 27.7MiB/s]\n\n 11%|####3 | 28.0M/244M [00:00<00:07, 31.9MiB/s]\n\n 13%|##### | 32.6M/244M [00:00<00:06, 35.5MiB/s]\n\n 16%|#####9 | 37.9M/244M [00:00<00:05, 39.6MiB/s]\n\n 20%|#######4 | 48.0M/244M [00:01<00:07, 27.7MiB/s]\n\n 21%|######## | 51.7M/244M [00:01<00:08, 22.5MiB/s]\n\n 22%|########5 | 54.7M/244M [00:01<00:08, 22.7MiB/s]\n\n 24%|#########1 | 58.6M/244M [00:02<00:07, 26.2MiB/s]\n\n 26%|#########7 | 62.5M/244M [00:02<00:06, 29.3MiB/s]\n\n 27%|##########2 | 65.8M/244M [00:02<00:11, 15.6MiB/s]\n\n 28%|##########7 | 68.8M/244M [00:02<00:10, 18.3MiB/s]\n\n 30%|###########2 | 72.0M/244M [00:03<00:12, 14.8MiB/s]\n\n 30%|###########5 | 74.2M/244M [00:03<00:13, 13.6MiB/s]\n\n 32%|############1 | 77.8M/244M [00:03<00:10, 16.8MiB/s]\n\n 33%|############4 | 80.1M/244M [00:03<00:10, 17.1MiB/s]\n\n 34%|############# | 84.1M/244M [00:03<00:08, 20.8MiB/s]\n\n 36%|#############5 | 87.3M/244M [00:03<00:07, 23.4MiB/s]\n\n 37%|##############1 | 90.9M/244M [00:03<00:06, 26.4MiB/s]\n\n 39%|##############7 | 95.0M/244M [00:03<00:05, 29.9MiB/s]\n\n 41%|###############4 | 99.0M/244M [00:03<00:04, 32.6MiB/s]\n\n 42%|################5 | 104M/244M [00:04<00:04, 35.9MiB/s]\n\n 46%|################## | 113M/244M [00:04<00:03, 44.0MiB/s]\n\n 48%|##################8 | 118M/244M [00:04<00:02, 44.9MiB/s]\n\n 50%|###################6 | 123M/244M [00:04<00:02, 46.1MiB/s]\n\n 52%|####################4 | 128M/244M [00:04<00:02, 43.9MiB/s]\n\n 54%|#####################2 | 133M/244M [00:04<00:02, 44.7MiB/s]\n\n 56%|#####################9 | 137M/244M [00:05<00:07, 15.8MiB/s]\n\n 58%|######################4 | 141M/244M [00:05<00:06, 17.5MiB/s]\n\n 59%|######################9 | 144M/244M [00:05<00:05, 20.0MiB/s]\n\n 61%|#######################5 | 148M/244M [00:05<00:04, 23.7MiB/s]\n\n 62%|########################2 | 152M/244M [00:05<00:03, 27.3MiB/s]\n\n 64%|########################7 | 155M/244M [00:06<00:08, 11.1MiB/s]\n\n 65%|#########################2 | 158M/244M [00:06<00:06, 13.1MiB/s]\n\n 66%|#########################8 | 162M/244M [00:06<00:05, 16.6MiB/s]\n\n 68%|##########################6 | 167M/244M [00:06<00:03, 20.6MiB/s]\n\n 70%|###########################3 | 171M/244M [00:07<00:03, 24.7MiB/s]\n\n 72%|############################ | 175M/244M [00:07<00:02, 28.4MiB/s]\n\n 73%|############################6 | 179M/244M [00:07<00:02, 30.5MiB/s]\n\n 75%|#############################2 | 183M/244M [00:07<00:02, 32.0MiB/s]\n\n 77%|#############################8 | 187M/244M [00:07<00:01, 34.6MiB/s]\n\n 78%|##############################4 | 191M/244M [00:07<00:01, 35.3MiB/s]\n\n 80%|###############################1 | 195M/244M [00:07<00:01, 36.9MiB/s]\n\n 82%|###############################8 | 199M/244M [00:07<00:01, 39.3MiB/s]\n\n 83%|################################5 | 204M/244M [00:07<00:01, 41.0MiB/s]\n\n 85%|#################################2 | 208M/244M [00:08<00:00, 42.0MiB/s]\n\n 87%|#################################9 | 212M/244M [00:08<00:00, 43.6MiB/s]\n\n 89%|##################################6 | 217M/244M [00:08<00:00, 39.6MiB/s]\n\n 91%|###################################3 | 221M/244M [00:08<00:00, 41.8MiB/s]\n\n 93%|####################################1 | 226M/244M [00:08<00:00, 43.3MiB/s]\n\n 95%|####################################8 | 231M/244M [00:08<00:00, 44.7MiB/s]\n\n 96%|#####################################5 | 235M/244M [00:08<00:00, 43.9MiB/s]\n\n 98%|######################################2| 239M/244M [00:08<00:00, 40.1MiB/s]\n\n100%|######################################8| 243M/244M [00:08<00:00, 40.2MiB/s]\n\n100%|#######################################| 244M/244M [00:08<00:00, 28.7MiB/s]\n\n 0%| | 0.00/338M [00:00<?, ?iB/s]\n\n 0%| | 864k/338M [00:00<00:41, 8.45MiB/s]\n\n 3%|# | 9.55M/338M [00:00<00:29, 11.6MiB/s]\n\n 8%|###1 | 28.2M/338M [00:00<00:20, 16.2MiB/s]\n\n 15%|#####5 | 49.0M/338M [00:00<00:13, 22.4MiB/s]\n\n 21%|#######9 | 70.2M/338M [00:00<00:09, 30.7MiB/s]\n\n 25%|#########5 | 84.7M/338M [00:00<00:06, 39.6MiB/s]\n\n 32%|############4 | 108M/338M [00:00<00:04, 52.9MiB/s]\n\n 39%|###############1 | 131M/338M [00:00<00:03, 69.1MiB/s]\n\n 46%|#################8 | 155M/338M [00:00<00:02, 88.2MiB/s]\n\n 53%|##################### | 178M/338M [00:01<00:01, 109MiB/s]\n\n 59%|#######################7 | 201M/338M [00:01<00:01, 130MiB/s]\n\n 66%|##########################5 | 224M/338M [00:01<00:00, 151MiB/s]\n\n 73%|#############################2 | 247M/338M [00:01<00:00, 170MiB/s]\n\n 80%|################################ | 270M/338M [00:01<00:00, 187MiB/s]\n\n 87%|##################################7 | 294M/338M [00:01<00:00, 201MiB/s]\n\n 94%|#####################################4 | 316M/338M [00:01<00:00, 211MiB/s]\n\n100%|########################################| 338M/338M [00:01<00:00, 203MiB/s]\n\n 0%| | 0.00/335M [00:00<?, ?iB/s]\n\n 0%|1 | 880k/335M [00:00<00:39, 8.81MiB/s]\n\n 3%|# | 9.05M/335M [00:00<00:28, 12.1MiB/s]\n\n 9%|###3 | 29.5M/335M [00:00<00:19, 16.8MiB/s]\n\n 15%|#####5 | 48.8M/335M [00:00<00:12, 23.2MiB/s]\n\n 20%|#######5 | 66.3M/335M [00:00<00:08, 31.4MiB/s]\n\n 25%|#########6 | 84.8M/335M [00:00<00:06, 42.0MiB/s]\n\n 31%|############ | 104M/335M [00:00<00:04, 55.0MiB/s]\n\n 37%|##############4 | 124M/335M [00:00<00:03, 70.6MiB/s]\n\n 42%|################5 | 142M/335M [00:00<00:02, 87.0MiB/s]\n\n 48%|################### | 159M/335M [00:01<00:01, 102MiB/s]\n\n 53%|#####################1 | 177M/335M [00:01<00:01, 115MiB/s]\n\n 58%|#######################2 | 194M/335M [00:01<00:01, 129MiB/s]\n\n 64%|#########################4 | 213M/335M [00:01<00:00, 144MiB/s]\n\n 69%|###########################7 | 232M/335M [00:01<00:00, 157MiB/s]\n\n 75%|#############################9 | 251M/335M [00:01<00:00, 167MiB/s]\n\n 80%|################################1 | 269M/335M [00:01<00:00, 173MiB/s]\n\n 86%|##################################3 | 287M/335M [00:01<00:00, 176MiB/s]\n\n 91%|####################################4 | 305M/335M [00:01<00:00, 179MiB/s]\n\n 96%|######################################5 | 323M/335M [00:01<00:00, 175MiB/s]\n\n100%|########################################| 335M/335M [00:02<00:00, 175MiB/s]\nUsing device:\ncuda:0\nOptimising using:\nAdam\nUsing text prompts:\n['sunset river snow mountain']\nUsing seed:\n13134512906597671219\n\n0it [00:00, ?it/s]\n/root/.pyenv/versions/3.8.12/lib/python3.8/site-packages/torch/nn/functional.py:3451: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.\n warnings.warn(\niter: 0, loss: 2.87432, losses: 1.01627, 0.938799, 0.919253\n\n0it [00:00, ?it/s]\n\n1it [00:01, 1.59s/it]\n\n2it [00:02, 1.46s/it]\n\n3it [00:03, 1.36s/it]\n\n4it [00:05, 1.30s/it]\n\n5it [00:06, 1.26s/it]\n\n6it [00:07, 1.23s/it]\n\n7it [00:08, 1.21s/it]\n\n8it [00:09, 1.19s/it]\n\n9it [00:10, 1.18s/it]\n\n10it [00:11, 1.17s/it]\niter: 10, loss: 2.53385, losses: 0.916875, 0.811756, 0.805219\n\n10it [00:12, 1.17s/it]\n\n11it [00:13, 1.25s/it]\n\n12it [00:14, 1.22s/it]\n\n13it [00:15, 1.20s/it]\n\n14it [00:16, 1.19s/it]\n\n15it [00:18, 1.19s/it]\n\n16it [00:19, 1.18s/it]\n\n17it [00:20, 1.18s/it]\n\n18it [00:21, 1.18s/it]\n\n19it [00:22, 1.18s/it]\n\n20it [00:23, 1.18s/it]\niter: 20, loss: 2.45401, losses: 0.8898, 0.780712, 0.7835\n\n20it [00:24, 1.18s/it]\n\n21it [00:25, 1.26s/it]\n\n22it [00:26, 1.23s/it]\n\n23it [00:27, 1.21s/it]\n\n24it [00:28, 1.21s/it]\n\n25it [00:30, 1.20s/it]\n\n26it [00:31, 1.19s/it]\n\n27it [00:32, 1.19s/it]\n\n28it [00:33, 1.19s/it]\n\n29it [00:34, 1.19s/it]\n\n30it [00:35, 1.18s/it]\niter: 30, loss: 2.39285, losses: 0.859799, 0.764968, 0.768086\n\n30it [00:36, 1.18s/it]\n\n31it [00:37, 1.27s/it]\n\n32it [00:38, 1.24s/it]\n\n33it [00:39, 1.22s/it]\n\n34it [00:40, 1.21s/it]\n\n35it [00:42, 1.20s/it]\n\n36it [00:43, 1.20s/it]\n\n37it [00:44, 1.19s/it]\n\n38it [00:45, 1.19s/it]\n\n39it [00:46, 1.19s/it]\n\n40it [00:48, 1.19s/it]\niter: 40, loss: 2.34407, losses: 0.838778, 0.751518, 0.753775\n\n40it [00:48, 1.19s/it]\n\n41it [00:49, 1.27s/it]\n\n42it [00:50, 1.24s/it]\n\n43it [00:51, 1.23s/it]\n\n44it [00:53, 1.22s/it]\n\n45it [00:54, 1.21s/it]\n\n46it [00:55, 1.21s/it]\n\n47it [00:56, 1.20s/it]\n\n48it [00:57, 1.21s/it]\n\n49it [00:59, 1.20s/it]\n\n50it [01:00, 1.20s/it]\niter: 50, loss: 2.28044, losses: 0.808476, 0.736273, 0.735691\n\n50it [01:01, 1.20s/it]\n\n51it [01:01, 1.29s/it]\n\n52it [01:02, 1.26s/it]\n\n53it [01:04, 1.24s/it]\n\n54it [01:05, 1.23s/it]\n\n55it [01:06, 1.22s/it]\n\n56it [01:07, 1.22s/it]\n\n57it [01:09, 1.22s/it]\n\n58it [01:10, 1.22s/it]\n\n59it [01:11, 1.22s/it]\n\n60it [01:12, 1.22s/it]\niter: 60, loss: 2.31961, losses: 0.821977, 0.746209, 0.751426\n\n60it [01:13, 1.22s/it]\n\n61it [01:14, 1.31s/it]\n\n62it [01:15, 1.28s/it]\n\n63it [01:16, 1.27s/it]\n\n64it [01:17, 1.26s/it]\n\n65it [01:19, 1.25s/it]\n\n66it [01:20, 1.24s/it]\n\n67it [01:21, 1.24s/it]\n\n68it [01:22, 1.24s/it]\n\n69it [01:24, 1.24s/it]\n\n70it [01:25, 1.24s/it]\niter: 70, loss: 2.25297, losses: 0.798291, 0.727504, 0.727176\n\n70it [01:26, 1.24s/it]\n\n71it [01:26, 1.33s/it]\n\n72it [01:28, 1.30s/it]\n\n73it [01:29, 1.28s/it]\n\n74it [01:30, 1.27s/it]\n\n75it [01:31, 1.27s/it]\n\n76it [01:33, 1.26s/it]\n\n77it [01:34, 1.26s/it]\n\n78it [01:35, 1.26s/it]\n\n79it [01:36, 1.26s/it]\n\n80it [01:38, 1.27s/it]\niter: 80, loss: 2.29742, losses: 0.820728, 0.735178, 0.741515\n\n80it [01:38, 1.27s/it]\n\n81it [01:39, 1.36s/it]\n\n82it [01:40, 1.33s/it]\n\n83it [01:42, 1.31s/it]\n\n84it [01:43, 1.30s/it]\n\n85it [01:44, 1.30s/it]\n\n86it [01:46, 1.29s/it]\n\n87it [01:47, 1.29s/it]\n\n88it [01:48, 1.29s/it]\n\n89it [01:49, 1.29s/it]\n\n90it [01:51, 1.29s/it]\niter: 90, loss: 2.31728, losses: 0.823852, 0.747526, 0.745903\n\n90it [01:52, 1.29s/it]\n\n91it [01:52, 1.38s/it]\n\n92it [01:54, 1.36s/it]\n\n93it [01:55, 1.34s/it]\n\n94it [01:56, 1.33s/it]\n\n95it [01:58, 1.32s/it]\n\n96it [01:59, 1.32s/it]\n\n97it [02:00, 1.32s/it]\n\n98it [02:01, 1.31s/it]\n\n99it [02:03, 1.31s/it]\n\n100it [02:04, 1.31s/it]\niter: 100, loss: 2.21957, losses: 0.775672, 0.722175, 0.721722\n\n100it [02:05, 1.31s/it]\n\n101it [02:06, 1.40s/it]\n\n102it [02:07, 1.37s/it]\n\n103it [02:08, 1.34s/it]\n\n104it [02:10, 1.32s/it]\n\n105it [02:11, 1.31s/it]\n\n106it [02:12, 1.30s/it]\n\n107it [02:13, 1.29s/it]\n\n108it [02:15, 1.29s/it]\n\n109it [02:16, 1.28s/it]\n\n110it [02:17, 1.28s/it]\niter: 110, loss: 2.20572, losses: 0.777474, 0.713529, 0.71472\n\n110it [02:18, 1.28s/it]\n\n111it [02:19, 1.37s/it]\n\n112it [02:20, 1.34s/it]\n\n113it [02:21, 1.32s/it]\n\n114it [02:23, 1.30s/it]\n\n115it [02:24, 1.29s/it]\n\n116it [02:25, 1.28s/it]\n\n117it [02:26, 1.28s/it]\n\n118it [02:28, 1.28s/it]\n\n119it [02:29, 1.27s/it]\n\n120it [02:30, 1.26s/it]\niter: 120, loss: 2.25052, losses: 0.793996, 0.726703, 0.729821\n\n120it [02:31, 1.26s/it]\n\n121it [02:32, 1.35s/it]\n\n122it [02:33, 1.32s/it]\n\n123it [02:34, 1.30s/it]\n\n124it [02:35, 1.29s/it]\n\n125it [02:37, 1.28s/it]\n\n126it [02:38, 1.27s/it]\n\n127it [02:39, 1.26s/it]\n\n128it [02:40, 1.26s/it]\n\n129it [02:42, 1.26s/it]\n\n130it [02:43, 1.26s/it]\niter: 130, loss: 2.26218, losses: 0.801104, 0.73463, 0.726444\n\n130it [02:44, 1.26s/it]\n\n131it [02:45, 1.35s/it]\n\n132it [02:46, 1.32s/it]\n\n133it [02:47, 1.30s/it]\n\n134it [02:48, 1.28s/it]\n\n135it [02:50, 1.28s/it]\n\n136it [02:51, 1.27s/it]\n\n137it [02:52, 1.26s/it]\n\n138it [02:53, 1.26s/it]\n\n139it [02:55, 1.26s/it]\n\n140it [02:56, 1.26s/it]\niter: 140, loss: 2.21133, losses: 0.776866, 0.720238, 0.714226\n\n140it [02:57, 1.26s/it]\n\n141it [02:57, 1.35s/it]\n\n142it [02:59, 1.32s/it]\n\n143it [03:00, 1.30s/it]\n\n144it [03:01, 1.29s/it]\n\n145it [03:02, 1.28s/it]\n\n146it [03:04, 1.28s/it]\n\n147it [03:05, 1.27s/it]\n\n148it [03:06, 1.27s/it]\n\n149it [03:07, 1.27s/it]\n\n150it [03:09, 1.27s/it]\niter: 150, loss: 2.25043, losses: 0.79191, 0.725539, 0.732977\n\n150it [03:10, 1.27s/it]\n\n151it [03:10, 1.36s/it]\n\n152it [03:12, 1.33s/it]\n\n153it [03:13, 1.31s/it]\n\n154it [03:14, 1.30s/it]\n\n155it [03:15, 1.29s/it]\n\n156it [03:17, 1.28s/it]\n\n157it [03:18, 1.28s/it]\n\n158it [03:19, 1.28s/it]\n\n159it [03:20, 1.27s/it]\n\n160it [03:22, 1.27s/it]\niter: 160, loss: 2.23944, losses: 0.787206, 0.723273, 0.728956\n\n160it [03:22, 1.27s/it]\n\n161it [03:23, 1.36s/it]\n\n162it [03:25, 1.33s/it]\n\n163it [03:26, 1.31s/it]\n\n164it [03:27, 1.30s/it]\n\n165it [03:28, 1.29s/it]\n\n166it [03:30, 1.29s/it]\n\n167it [03:31, 1.28s/it]\n\n168it [03:32, 1.28s/it]\n\n169it [03:33, 1.28s/it]\n\n170it [03:35, 1.28s/it]\niter: 170, loss: 2.18366, losses: 0.763624, 0.708966, 0.711072\n\n170it [03:36, 1.28s/it]\n\n171it [03:36, 1.37s/it]\n\n172it [03:38, 1.34s/it]\n\n173it [03:39, 1.32s/it]\n\n174it [03:40, 1.31s/it]\n\n175it [03:41, 1.29s/it]\n\n176it [03:43, 1.29s/it]\n\n177it [03:44, 1.28s/it]\n\n178it [03:45, 1.27s/it]\n\n179it [03:46, 1.27s/it]\n\n180it [03:48, 1.27s/it]\niter: 180, loss: 2.17656, losses: 0.758799, 0.708682, 0.709082\n\n180it [03:49, 1.27s/it]\n\n181it [03:49, 1.36s/it]\n\n182it [03:51, 1.33s/it]\n\n183it [03:52, 1.31s/it]\n\n184it [03:53, 1.30s/it]\n\n185it [03:54, 1.29s/it]\n\n186it [03:56, 1.28s/it]\n\n187it [03:57, 1.28s/it]\n\n188it [03:58, 1.27s/it]\n\n189it [03:59, 1.27s/it]\n\n190it [04:01, 1.27s/it]\niter: 190, loss: 2.25759, losses: 0.795768, 0.727799, 0.734025\n\n190it [04:01, 1.27s/it]\n\n191it [04:02, 1.36s/it]\n\n192it [04:04, 1.33s/it]\n\n193it [04:05, 1.31s/it]\n\n194it [04:06, 1.30s/it]\n\n195it [04:07, 1.29s/it]\n\n196it [04:09, 1.28s/it]\n\n197it [04:10, 1.27s/it]\n\n198it [04:11, 1.27s/it]\n\n199it [04:12, 1.27s/it]\n\n200it [04:14, 1.27s/it]\niter: 200, loss: 2.22929, losses: 0.786578, 0.719772, 0.722939\n\n200it [04:14, 1.27s/it]\n\n201it [04:15, 1.36s/it]\n\n202it [04:16, 1.33s/it]\n\n203it [04:18, 1.31s/it]\n\n204it [04:19, 1.29s/it]\n\n205it [04:20, 1.28s/it]\n\n206it [04:21, 1.28s/it]\n\n207it [04:23, 1.27s/it]\n\n208it [04:24, 1.27s/it]\n\n209it [04:25, 1.26s/it]\n\n210it [04:27, 1.27s/it]\niter: 210, loss: 2.17118, losses: 0.76052, 0.702163, 0.708499\n\n210it [04:27, 1.27s/it]\n\n211it [04:28, 1.36s/it]\n\n212it [04:29, 1.33s/it]\n\n213it [04:31, 1.31s/it]\n\n214it [04:32, 1.30s/it]\n\n215it [04:33, 1.29s/it]\n\n216it [04:34, 1.28s/it]\n\n217it [04:36, 1.28s/it]\n\n218it [04:37, 1.28s/it]\n\n219it [04:38, 1.27s/it]\n\n220it [04:40, 1.27s/it]\niter: 220, loss: 2.18328, losses: 0.76311, 0.707958, 0.712216\n\n220it [04:40, 1.27s/it]\n\n221it [04:41, 1.36s/it]\n\n222it [04:42, 1.33s/it]\n\n223it [04:44, 1.31s/it]\n\n224it [04:45, 1.30s/it]\n\n225it [04:46, 1.29s/it]\n\n226it [04:47, 1.29s/it]\n\n227it [04:49, 1.28s/it]\n\n228it [04:50, 1.28s/it]\n\n229it [04:51, 1.27s/it]\n\n230it [04:53, 1.27s/it]\niter: 230, loss: 2.25154, losses: 0.798176, 0.722844, 0.730516\n\n230it [04:53, 1.27s/it]\n\n231it [04:54, 1.37s/it]\n\n232it [04:55, 1.33s/it]\n\n233it [04:57, 1.32s/it]\n\n234it [04:58, 1.30s/it]\n\n235it [04:59, 1.29s/it]\n\n236it [05:00, 1.28s/it]\n\n237it [05:02, 1.28s/it]\n\n238it [05:03, 1.28s/it]\n\n239it [05:04, 1.28s/it]\n\n240it [05:06, 1.28s/it]\niter: 240, loss: 2.17989, losses: 0.761402, 0.708513, 0.709976\n\n240it [05:06, 1.28s/it]\n\n241it [05:07, 1.37s/it]\n\n242it [05:08, 1.34s/it]\n\n243it [05:10, 1.32s/it]\n\n244it [05:11, 1.31s/it]\n\n245it [05:12, 1.30s/it]\n\n246it [05:13, 1.29s/it]\n\n247it [05:15, 1.28s/it]\n\n248it [05:16, 1.28s/it]\n\n249it [05:17, 1.28s/it]\n\n250it [05:19, 1.28s/it]\niter: 250, loss: 2.17274, losses: 0.757853, 0.704662, 0.710222\n\n250it [05:19, 1.28s/it]\n\n251it [05:20, 1.37s/it]\n\n252it [05:21, 1.34s/it]\n\n253it [05:23, 1.32s/it]\n\n254it [05:24, 1.30s/it]\n\n255it [05:25, 1.29s/it]\n\n256it [05:27, 1.29s/it]\n\n257it [05:28, 1.28s/it]\n\n258it [05:29, 1.28s/it]\n\n259it [05:30, 1.27s/it]\n\n260it [05:32, 1.27s/it]\niter: 260, loss: 2.21905, losses: 0.783277, 0.714188, 0.721587\n\n260it [05:32, 1.27s/it]\n\n261it [05:33, 1.36s/it]\n\n262it [05:34, 1.33s/it]\n\n263it [05:36, 1.31s/it]\n\n264it [05:37, 1.30s/it]\n\n265it [05:38, 1.29s/it]\n\n266it [05:39, 1.28s/it]\n\n267it [05:41, 1.28s/it]\n\n268it [05:42, 1.27s/it]\n\n269it [05:43, 1.27s/it]\n\n270it [05:45, 1.27s/it]\niter: 270, loss: 2.16962, losses: 0.76268, 0.702876, 0.704061\n\n270it [05:45, 1.27s/it]\n\n271it [05:46, 1.36s/it]\n\n272it [05:47, 1.33s/it]\n\n273it [05:49, 1.31s/it]\n\n274it [05:50, 1.30s/it]\n\n275it [05:51, 1.29s/it]\n\n276it [05:52, 1.28s/it]\n\n277it [05:54, 1.28s/it]\n\n278it [05:55, 1.27s/it]\n\n279it [05:56, 1.27s/it]\n\n280it [05:57, 1.27s/it]\niter: 280, loss: 2.24343, losses: 0.79148, 0.723849, 0.7281\n\n280it [05:58, 1.27s/it]\n\n281it [05:59, 1.36s/it]\n\n282it [06:00, 1.33s/it]\n\n283it [06:02, 1.31s/it]\n\n284it [06:03, 1.30s/it]\n\n285it [06:04, 1.29s/it]\n\n286it [06:05, 1.28s/it]\n\n287it [06:07, 1.28s/it]\n\n288it [06:08, 1.27s/it]\n\n289it [06:09, 1.27s/it]\n\n290it [06:10, 1.27s/it]\niter: 290, loss: 2.25858, losses: 0.797974, 0.727931, 0.732673\n\n290it [06:11, 1.27s/it]\n\n291it [06:12, 1.37s/it]\n\n292it [06:13, 1.34s/it]\n\n293it [06:15, 1.32s/it]\n\n294it [06:16, 1.31s/it]\n\n295it [06:17, 1.30s/it]\n\n296it [06:18, 1.29s/it]\n\n297it [06:20, 1.29s/it]\n\n298it [06:21, 1.28s/it]\n\n299it [06:22, 1.28s/it]\n\n300it [06:24, 1.28s/it]\niter: 300, loss: 2.23411, losses: 0.790873, 0.71901, 0.724229\n\n300it [06:24, 1.28s/it]\n\n301it [06:25, 1.37s/it]\n\n302it [06:26, 1.34s/it]\n\n303it [06:28, 1.32s/it]\n\n304it [06:29, 1.31s/it]\n\n305it [06:30, 1.30s/it]\n\n306it [06:31, 1.29s/it]\n\n307it [06:33, 1.28s/it]\n\n308it [06:34, 1.28s/it]\n\n309it [06:35, 1.28s/it]\n\n310it [06:37, 1.28s/it]\niter: 310, loss: 2.2213, losses: 0.781752, 0.718001, 0.721544\n\n310it [06:37, 1.28s/it]\n\n311it [06:38, 1.37s/it]\n\n312it [06:39, 1.34s/it]\n\n313it [06:41, 1.32s/it]\n\n314it [06:42, 1.30s/it]\n\n315it [06:43, 1.29s/it]\n\n316it [06:44, 1.28s/it]\n\n317it [06:46, 1.28s/it]\n\n318it [06:47, 1.28s/it]\n\n319it [06:48, 1.27s/it]\n\n320it [06:50, 1.27s/it]\niter: 320, loss: 2.22429, losses: 0.782343, 0.717883, 0.724067\n\n320it [06:50, 1.27s/it]\n\n321it [06:51, 1.36s/it]\n\n322it [06:52, 1.34s/it]\n\n323it [06:54, 1.31s/it]\n\n324it [06:55, 1.30s/it]\n\n325it [06:56, 1.29s/it]\n\n326it [06:57, 1.28s/it]\n\n327it [06:59, 1.28s/it]\n\n328it [07:00, 1.28s/it]\n\n329it [07:01, 1.27s/it]\n\n330it [07:03, 1.27s/it]\niter: 330, loss: 2.22646, losses: 0.786218, 0.717032, 0.72321\n\n330it [07:03, 1.27s/it]\n\n331it [07:04, 1.36s/it]\n\n332it [07:05, 1.33s/it]\n\n333it [07:07, 1.31s/it]\n\n334it [07:08, 1.30s/it]\n\n335it [07:09, 1.28s/it]\n\n336it [07:10, 1.28s/it]\n\n337it [07:12, 1.27s/it]\n\n338it [07:13, 1.27s/it]\n\n339it [07:14, 1.27s/it]\n\n340it [07:15, 1.26s/it]\niter: 340, loss: 2.241, losses: 0.793107, 0.72127, 0.726618\n\n340it [07:16, 1.26s/it]\n\n341it [07:17, 1.35s/it]\n\n342it [07:18, 1.33s/it]\n\n343it [07:20, 1.31s/it]\n\n344it [07:21, 1.29s/it]\n\n345it [07:22, 1.28s/it]\n\n346it [07:23, 1.28s/it]\n\n347it [07:25, 1.27s/it]\n\n348it [07:26, 1.27s/it]\n\n349it [07:27, 1.27s/it]\n\n350it [07:28, 1.27s/it]\niter: 350, loss: 2.23518, losses: 0.784114, 0.722871, 0.728196\n\n350it [07:29, 1.27s/it]\n\n351it [07:30, 1.36s/it]\n\n352it [07:31, 1.33s/it]\n\n353it [07:33, 1.31s/it]\n\n354it [07:34, 1.30s/it]\n\n355it [07:35, 1.29s/it]\n\n356it [07:36, 1.28s/it]\n\n357it [07:38, 1.28s/it]\n\n358it [07:39, 1.28s/it]\n\n359it [07:40, 1.27s/it]\n\n360it [07:41, 1.27s/it]\niter: 360, loss: 2.22824, losses: 0.786418, 0.718143, 0.72368\n\n360it [07:42, 1.27s/it]\n\n361it [07:43, 1.36s/it]\n\n362it [07:44, 1.33s/it]\n\n363it [07:45, 1.32s/it]\n\n364it [07:47, 1.30s/it]\n\n365it [07:48, 1.29s/it]\n\n366it [07:49, 1.28s/it]\n\n367it [07:51, 1.28s/it]\n\n368it [07:52, 1.28s/it]\n\n369it [07:53, 1.28s/it]\n\n370it [07:54, 1.28s/it]\niter: 370, loss: 2.17586, losses: 0.76504, 0.702395, 0.708423\n\n370it [07:55, 1.28s/it]\n\n371it [07:56, 1.37s/it]\n\n372it [07:57, 1.34s/it]\n\n373it [07:59, 1.32s/it]\n\n374it [08:00, 1.31s/it]\n\n375it [08:01, 1.29s/it]\n\n376it [08:02, 1.29s/it]\n\n377it [08:04, 1.28s/it]\n\n378it [08:05, 1.28s/it]\n\n379it [08:06, 1.27s/it]\n\n380it [08:07, 1.27s/it]\niter: 380, loss: 2.16247, losses: 0.75774, 0.699513, 0.705221\n\n380it [08:08, 1.27s/it]\n\n381it [08:09, 1.37s/it]\n\n382it [08:10, 1.34s/it]\n\n383it [08:12, 1.32s/it]\n\n384it [08:13, 1.30s/it]\n\n385it [08:14, 1.29s/it]\n\n386it [08:15, 1.29s/it]\n\n387it [08:17, 1.28s/it]\n\n388it [08:18, 1.28s/it]\n\n389it [08:19, 1.28s/it]\n\n390it [08:20, 1.27s/it]\niter: 390, loss: 2.1718, losses: 0.759508, 0.704626, 0.707668\n\n390it [08:21, 1.27s/it]\n\n391it [08:22, 1.37s/it]\n\n392it [08:23, 1.33s/it]\n\n393it [08:25, 1.32s/it]\n\n394it [08:26, 1.30s/it]\n\n395it [08:27, 1.29s/it]\n\n396it [08:28, 1.29s/it]\n\n397it [08:30, 1.28s/it]\n\n398it [08:31, 1.28s/it]\n\n399it [08:32, 1.28s/it]\n\n400it [08:33, 1.27s/it]\niter: 400, loss: 2.17667, losses: 0.763937, 0.705741, 0.706996\n\n400it [08:34, 1.27s/it]\n\n401it [08:35, 1.36s/it]\n\n402it [08:36, 1.33s/it]\n\n403it [08:38, 1.31s/it]\n\n404it [08:39, 1.30s/it]\n\n405it [08:40, 1.29s/it]\n\n406it [08:41, 1.28s/it]\n\n407it [08:43, 1.27s/it]\n\n408it [08:44, 1.27s/it]\n\n409it [08:45, 1.27s/it]\n\n410it [08:46, 1.27s/it]\niter: 410, loss: 2.16414, losses: 0.755274, 0.701243, 0.707625\n\n410it [08:47, 1.27s/it]\n\n411it [08:48, 1.36s/it]\n\n412it [08:49, 1.33s/it]\n\n413it [08:50, 1.31s/it]\n\n414it [08:52, 1.30s/it]\n\n415it [08:53, 1.29s/it]\n\n416it [08:54, 1.28s/it]\n\n417it [08:56, 1.27s/it]\n\n418it [08:57, 1.27s/it]\n\n419it [08:58, 1.27s/it]\n\n420it [08:59, 1.26s/it]\niter: 420, loss: 2.24109, losses: 0.795919, 0.721658, 0.723515\n\n420it [09:00, 1.26s/it]\n\n421it [09:01, 1.36s/it]\n\n422it [09:02, 1.33s/it]\n\n423it [09:03, 1.31s/it]\n\n424it [09:05, 1.30s/it]\n\n425it [09:06, 1.29s/it]\n\n426it [09:07, 1.28s/it]\n\n427it [09:08, 1.27s/it]\n\n428it [09:10, 1.27s/it]\n\n429it [09:11, 1.27s/it]\n\n430it [09:12, 1.27s/it]\niter: 430, loss: 2.23592, losses: 0.787732, 0.720089, 0.728098\n\n430it [09:13, 1.27s/it]\n\n431it [09:14, 1.37s/it]\n\n432it [09:15, 1.33s/it]\n\n433it [09:16, 1.31s/it]\n\n434it [09:18, 1.30s/it]\n\n435it [09:19, 1.29s/it]\n\n436it [09:20, 1.28s/it]\n\n437it [09:21, 1.28s/it]\n\n438it [09:23, 1.27s/it]\n\n439it [09:24, 1.27s/it]\n\n440it [09:25, 1.27s/it]\niter: 440, loss: 2.24819, losses: 0.792399, 0.723132, 0.732659\n\n440it [09:26, 1.27s/it]\n\n441it [09:27, 1.37s/it]\n\n442it [09:28, 1.33s/it]\n\n443it [09:29, 1.32s/it]\n\n444it [09:31, 1.30s/it]\n\n445it [09:32, 1.29s/it]\n\n446it [09:33, 1.29s/it]\n\n447it [09:34, 1.28s/it]\n\n448it [09:36, 1.27s/it]\n\n449it [09:37, 1.27s/it]\n\n450it [09:38, 1.27s/it]\niter: 450, loss: 2.23246, losses: 0.783947, 0.719741, 0.728769\n\n450it [09:39, 1.27s/it]\n\n451it [09:40, 1.37s/it]\n\n452it [09:41, 1.34s/it]\n\n453it [09:42, 1.32s/it]\n\n454it [09:44, 1.30s/it]\n\n455it [09:45, 1.29s/it]\n\n456it [09:46, 1.29s/it]\n\n457it [09:47, 1.28s/it]\n\n458it [09:49, 1.28s/it]\n\n459it [09:50, 1.27s/it]\n\n460it [09:51, 1.27s/it]\niter: 460, loss: 2.27599, losses: 0.815376, 0.726655, 0.733957\n\n460it [09:52, 1.27s/it]\n\n461it [09:53, 1.37s/it]\n\n462it [09:54, 1.34s/it]\n\n463it [09:55, 1.32s/it]\n\n464it [09:57, 1.30s/it]\n\n465it [09:58, 1.29s/it]\n\n466it [09:59, 1.29s/it]\n\n467it [10:00, 1.28s/it]\n\n468it [10:02, 1.28s/it]\n\n469it [10:03, 1.27s/it]\n\n470it [10:04, 1.27s/it]\niter: 470, loss: 2.20068, losses: 0.773851, 0.712334, 0.714499\n\n470it [10:05, 1.27s/it]\n\n471it [10:06, 1.36s/it]\n\n472it [10:07, 1.33s/it]\n\n473it [10:08, 1.31s/it]\n\n474it [10:10, 1.30s/it]\n\n475it [10:11, 1.29s/it]\n\n476it [10:12, 1.28s/it]\n\n477it [10:13, 1.28s/it]\n\n478it [10:15, 1.27s/it]\n\n479it [10:16, 1.27s/it]\n\n480it [10:17, 1.27s/it]\niter: 480, loss: 2.23543, losses: 0.794325, 0.717294, 0.723813\n\n480it [10:18, 1.27s/it]\n\n481it [10:19, 1.36s/it]\n\n482it [10:20, 1.33s/it]\n\n483it [10:21, 1.31s/it]\n\n484it [10:23, 1.30s/it]\n\n485it [10:24, 1.29s/it]\n\n486it [10:25, 1.28s/it]\n\n487it [10:26, 1.28s/it]\n\n488it [10:28, 1.27s/it]\n\n489it [10:29, 1.27s/it]\n\n490it [10:30, 1.27s/it]\niter: 490, loss: 2.23271, losses: 0.794116, 0.716999, 0.721594\n\n490it [10:31, 1.27s/it]\n\n491it [10:32, 1.37s/it]\n\n492it [10:33, 1.33s/it]\n\n493it [10:34, 1.32s/it]\n\n494it [10:36, 1.30s/it]\n\n495it [10:37, 1.29s/it]\n\n496it [10:38, 1.28s/it]\n\n497it [10:39, 1.28s/it]\n\n498it [10:41, 1.27s/it]\n\n499it [10:42, 1.27s/it]\n\n500it [10:43, 1.27s/it]\niter: 500, loss: 2.2241, losses: 0.787178, 0.715713, 0.72121\n\n500it [10:44, 1.27s/it]\n\n500it [10:45, 1.29s/it]", "metrics": {}, "output": [ { "file": "https://replicate.delivery/mgxm/a19baad3-3d31-404c-9893-5784f1eb532f/out.png" } ], "started_at": null, "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/a5vzdlzdyjbyxg2rsmtny5jtf4", "cancel": "https://api.replicate.com/v1/predictions/a5vzdlzdyjbyxg2rsmtny5jtf4/cancel" }, "version": "3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11" }
Working with z of shape (1, 256, 16, 16) = 65536 dimensions. Downloading: "https://download.pytorch.org/models/vgg16-397923af.pth" to /root/.cache/torch/hub/checkpoints/vgg16-397923af.pth 0%| | 0.00/528M [00:00<?, ?B/s] 1%| | 3.58M/528M [00:00<00:14, 37.5MB/s] 1%|1 | 7.39M/528M [00:00<00:14, 38.1MB/s] 6%|6 | 33.8M/528M [00:00<00:10, 51.4MB/s] 11%|#1 | 60.2M/528M [00:00<00:07, 68.1MB/s] 16%|#6 | 87.1M/528M [00:00<00:05, 88.1MB/s] 21%|##1 | 113M/528M [00:00<00:03, 111MB/s] 26%|##6 | 140M/528M [00:00<00:03, 135MB/s] 32%|###1 | 167M/528M [00:00<00:02, 160MB/s] 37%|###6 | 193M/528M [00:00<00:01, 184MB/s] 42%|####1 | 219M/528M [00:01<00:01, 204MB/s] 47%|####6 | 246M/528M [00:01<00:01, 222MB/s] 52%|#####1 | 273M/528M [00:01<00:01, 236MB/s] 57%|#####6 | 299M/528M [00:01<00:00, 247MB/s] 62%|######1 | 326M/528M [00:01<00:00, 256MB/s] 67%|######6 | 352M/528M [00:01<00:00, 261MB/s] 72%|#######1 | 378M/528M [00:01<00:00, 266MB/s] 77%|#######6 | 404M/528M [00:01<00:00, 268MB/s] 82%|########1 | 431M/528M [00:01<00:00, 272MB/s] 87%|########6 | 458M/528M [00:01<00:00, 275MB/s] 92%|#########1| 485M/528M [00:02<00:00, 277MB/s] 97%|#########6| 512M/528M [00:02<00:00, 274MB/s] 100%|##########| 528M/528M [00:02<00:00, 255MB/s] loaded pretrained LPIPS loss from taming/modules/autoencoder/lpips/vgg.pth VQLPIPSWithDiscriminator running with hinge loss. Restored from models/vqgan_imagenet_f16_16384.ckpt 0%| | 0.00/244M [00:00<?, ?iB/s] 0%|1 | 944k/244M [00:00<00:27, 9.31MiB/s] 2%|9 | 5.95M/244M [00:00<00:20, 12.4MiB/s] 4%|#3 | 8.63M/244M [00:00<00:16, 14.8MiB/s] 6%|##1 | 13.7M/244M [00:00<00:12, 19.0MiB/s] 7%|##8 | 18.3M/244M [00:00<00:10, 23.1MiB/s] 10%|###6 | 23.3M/244M [00:00<00:08, 27.7MiB/s] 11%|####3 | 28.0M/244M [00:00<00:07, 31.9MiB/s] 13%|##### | 32.6M/244M [00:00<00:06, 35.5MiB/s] 16%|#####9 | 37.9M/244M [00:00<00:05, 39.6MiB/s] 20%|#######4 | 48.0M/244M [00:01<00:07, 27.7MiB/s] 21%|######## | 51.7M/244M [00:01<00:08, 22.5MiB/s] 22%|########5 | 54.7M/244M [00:01<00:08, 22.7MiB/s] 24%|#########1 | 58.6M/244M [00:02<00:07, 26.2MiB/s] 26%|#########7 | 62.5M/244M [00:02<00:06, 29.3MiB/s] 27%|##########2 | 65.8M/244M [00:02<00:11, 15.6MiB/s] 28%|##########7 | 68.8M/244M [00:02<00:10, 18.3MiB/s] 30%|###########2 | 72.0M/244M [00:03<00:12, 14.8MiB/s] 30%|###########5 | 74.2M/244M [00:03<00:13, 13.6MiB/s] 32%|############1 | 77.8M/244M [00:03<00:10, 16.8MiB/s] 33%|############4 | 80.1M/244M [00:03<00:10, 17.1MiB/s] 34%|############# | 84.1M/244M [00:03<00:08, 20.8MiB/s] 36%|#############5 | 87.3M/244M [00:03<00:07, 23.4MiB/s] 37%|##############1 | 90.9M/244M [00:03<00:06, 26.4MiB/s] 39%|##############7 | 95.0M/244M [00:03<00:05, 29.9MiB/s] 41%|###############4 | 99.0M/244M [00:03<00:04, 32.6MiB/s] 42%|################5 | 104M/244M [00:04<00:04, 35.9MiB/s] 46%|################## | 113M/244M [00:04<00:03, 44.0MiB/s] 48%|##################8 | 118M/244M [00:04<00:02, 44.9MiB/s] 50%|###################6 | 123M/244M [00:04<00:02, 46.1MiB/s] 52%|####################4 | 128M/244M [00:04<00:02, 43.9MiB/s] 54%|#####################2 | 133M/244M [00:04<00:02, 44.7MiB/s] 56%|#####################9 | 137M/244M [00:05<00:07, 15.8MiB/s] 58%|######################4 | 141M/244M [00:05<00:06, 17.5MiB/s] 59%|######################9 | 144M/244M [00:05<00:05, 20.0MiB/s] 61%|#######################5 | 148M/244M [00:05<00:04, 23.7MiB/s] 62%|########################2 | 152M/244M [00:05<00:03, 27.3MiB/s] 64%|########################7 | 155M/244M [00:06<00:08, 11.1MiB/s] 65%|#########################2 | 158M/244M [00:06<00:06, 13.1MiB/s] 66%|#########################8 | 162M/244M [00:06<00:05, 16.6MiB/s] 68%|##########################6 | 167M/244M [00:06<00:03, 20.6MiB/s] 70%|###########################3 | 171M/244M [00:07<00:03, 24.7MiB/s] 72%|############################ | 175M/244M [00:07<00:02, 28.4MiB/s] 73%|############################6 | 179M/244M [00:07<00:02, 30.5MiB/s] 75%|#############################2 | 183M/244M [00:07<00:02, 32.0MiB/s] 77%|#############################8 | 187M/244M [00:07<00:01, 34.6MiB/s] 78%|##############################4 | 191M/244M [00:07<00:01, 35.3MiB/s] 80%|###############################1 | 195M/244M [00:07<00:01, 36.9MiB/s] 82%|###############################8 | 199M/244M [00:07<00:01, 39.3MiB/s] 83%|################################5 | 204M/244M [00:07<00:01, 41.0MiB/s] 85%|#################################2 | 208M/244M [00:08<00:00, 42.0MiB/s] 87%|#################################9 | 212M/244M [00:08<00:00, 43.6MiB/s] 89%|##################################6 | 217M/244M [00:08<00:00, 39.6MiB/s] 91%|###################################3 | 221M/244M [00:08<00:00, 41.8MiB/s] 93%|####################################1 | 226M/244M [00:08<00:00, 43.3MiB/s] 95%|####################################8 | 231M/244M [00:08<00:00, 44.7MiB/s] 96%|#####################################5 | 235M/244M [00:08<00:00, 43.9MiB/s] 98%|######################################2| 239M/244M [00:08<00:00, 40.1MiB/s] 100%|######################################8| 243M/244M [00:08<00:00, 40.2MiB/s] 100%|#######################################| 244M/244M [00:08<00:00, 28.7MiB/s] 0%| | 0.00/338M [00:00<?, ?iB/s] 0%| | 864k/338M [00:00<00:41, 8.45MiB/s] 3%|# | 9.55M/338M [00:00<00:29, 11.6MiB/s] 8%|###1 | 28.2M/338M [00:00<00:20, 16.2MiB/s] 15%|#####5 | 49.0M/338M [00:00<00:13, 22.4MiB/s] 21%|#######9 | 70.2M/338M [00:00<00:09, 30.7MiB/s] 25%|#########5 | 84.7M/338M [00:00<00:06, 39.6MiB/s] 32%|############4 | 108M/338M [00:00<00:04, 52.9MiB/s] 39%|###############1 | 131M/338M [00:00<00:03, 69.1MiB/s] 46%|#################8 | 155M/338M [00:00<00:02, 88.2MiB/s] 53%|##################### | 178M/338M [00:01<00:01, 109MiB/s] 59%|#######################7 | 201M/338M [00:01<00:01, 130MiB/s] 66%|##########################5 | 224M/338M [00:01<00:00, 151MiB/s] 73%|#############################2 | 247M/338M [00:01<00:00, 170MiB/s] 80%|################################ | 270M/338M [00:01<00:00, 187MiB/s] 87%|##################################7 | 294M/338M [00:01<00:00, 201MiB/s] 94%|#####################################4 | 316M/338M [00:01<00:00, 211MiB/s] 100%|########################################| 338M/338M [00:01<00:00, 203MiB/s] 0%| | 0.00/335M [00:00<?, ?iB/s] 0%|1 | 880k/335M [00:00<00:39, 8.81MiB/s] 3%|# | 9.05M/335M [00:00<00:28, 12.1MiB/s] 9%|###3 | 29.5M/335M [00:00<00:19, 16.8MiB/s] 15%|#####5 | 48.8M/335M [00:00<00:12, 23.2MiB/s] 20%|#######5 | 66.3M/335M [00:00<00:08, 31.4MiB/s] 25%|#########6 | 84.8M/335M [00:00<00:06, 42.0MiB/s] 31%|############ | 104M/335M [00:00<00:04, 55.0MiB/s] 37%|##############4 | 124M/335M [00:00<00:03, 70.6MiB/s] 42%|################5 | 142M/335M [00:00<00:02, 87.0MiB/s] 48%|################### | 159M/335M [00:01<00:01, 102MiB/s] 53%|#####################1 | 177M/335M [00:01<00:01, 115MiB/s] 58%|#######################2 | 194M/335M [00:01<00:01, 129MiB/s] 64%|#########################4 | 213M/335M [00:01<00:00, 144MiB/s] 69%|###########################7 | 232M/335M [00:01<00:00, 157MiB/s] 75%|#############################9 | 251M/335M [00:01<00:00, 167MiB/s] 80%|################################1 | 269M/335M [00:01<00:00, 173MiB/s] 86%|##################################3 | 287M/335M [00:01<00:00, 176MiB/s] 91%|####################################4 | 305M/335M [00:01<00:00, 179MiB/s] 96%|######################################5 | 323M/335M [00:01<00:00, 175MiB/s] 100%|########################################| 335M/335M [00:02<00:00, 175MiB/s] Using device: cuda:0 Optimising using: Adam Using text prompts: ['sunset river snow mountain'] Using seed: 13134512906597671219 0it [00:00, ?it/s] /root/.pyenv/versions/3.8.12/lib/python3.8/site-packages/torch/nn/functional.py:3451: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. warnings.warn( iter: 0, loss: 2.87432, losses: 1.01627, 0.938799, 0.919253 0it [00:00, ?it/s] 1it [00:01, 1.59s/it] 2it [00:02, 1.46s/it] 3it [00:03, 1.36s/it] 4it [00:05, 1.30s/it] 5it [00:06, 1.26s/it] 6it [00:07, 1.23s/it] 7it [00:08, 1.21s/it] 8it [00:09, 1.19s/it] 9it [00:10, 1.18s/it] 10it [00:11, 1.17s/it] iter: 10, loss: 2.53385, losses: 0.916875, 0.811756, 0.805219 10it [00:12, 1.17s/it] 11it [00:13, 1.25s/it] 12it [00:14, 1.22s/it] 13it [00:15, 1.20s/it] 14it [00:16, 1.19s/it] 15it [00:18, 1.19s/it] 16it [00:19, 1.18s/it] 17it [00:20, 1.18s/it] 18it [00:21, 1.18s/it] 19it [00:22, 1.18s/it] 20it [00:23, 1.18s/it] iter: 20, loss: 2.45401, losses: 0.8898, 0.780712, 0.7835 20it [00:24, 1.18s/it] 21it [00:25, 1.26s/it] 22it [00:26, 1.23s/it] 23it [00:27, 1.21s/it] 24it [00:28, 1.21s/it] 25it [00:30, 1.20s/it] 26it [00:31, 1.19s/it] 27it [00:32, 1.19s/it] 28it [00:33, 1.19s/it] 29it [00:34, 1.19s/it] 30it [00:35, 1.18s/it] iter: 30, loss: 2.39285, losses: 0.859799, 0.764968, 0.768086 30it [00:36, 1.18s/it] 31it [00:37, 1.27s/it] 32it [00:38, 1.24s/it] 33it [00:39, 1.22s/it] 34it [00:40, 1.21s/it] 35it [00:42, 1.20s/it] 36it [00:43, 1.20s/it] 37it [00:44, 1.19s/it] 38it [00:45, 1.19s/it] 39it [00:46, 1.19s/it] 40it [00:48, 1.19s/it] iter: 40, loss: 2.34407, losses: 0.838778, 0.751518, 0.753775 40it [00:48, 1.19s/it] 41it [00:49, 1.27s/it] 42it [00:50, 1.24s/it] 43it [00:51, 1.23s/it] 44it [00:53, 1.22s/it] 45it [00:54, 1.21s/it] 46it [00:55, 1.21s/it] 47it [00:56, 1.20s/it] 48it [00:57, 1.21s/it] 49it [00:59, 1.20s/it] 50it [01:00, 1.20s/it] iter: 50, loss: 2.28044, losses: 0.808476, 0.736273, 0.735691 50it [01:01, 1.20s/it] 51it [01:01, 1.29s/it] 52it [01:02, 1.26s/it] 53it [01:04, 1.24s/it] 54it [01:05, 1.23s/it] 55it [01:06, 1.22s/it] 56it [01:07, 1.22s/it] 57it [01:09, 1.22s/it] 58it [01:10, 1.22s/it] 59it [01:11, 1.22s/it] 60it [01:12, 1.22s/it] iter: 60, loss: 2.31961, losses: 0.821977, 0.746209, 0.751426 60it [01:13, 1.22s/it] 61it [01:14, 1.31s/it] 62it [01:15, 1.28s/it] 63it [01:16, 1.27s/it] 64it [01:17, 1.26s/it] 65it [01:19, 1.25s/it] 66it [01:20, 1.24s/it] 67it [01:21, 1.24s/it] 68it [01:22, 1.24s/it] 69it [01:24, 1.24s/it] 70it [01:25, 1.24s/it] iter: 70, loss: 2.25297, losses: 0.798291, 0.727504, 0.727176 70it [01:26, 1.24s/it] 71it [01:26, 1.33s/it] 72it [01:28, 1.30s/it] 73it [01:29, 1.28s/it] 74it [01:30, 1.27s/it] 75it [01:31, 1.27s/it] 76it [01:33, 1.26s/it] 77it [01:34, 1.26s/it] 78it [01:35, 1.26s/it] 79it [01:36, 1.26s/it] 80it [01:38, 1.27s/it] iter: 80, loss: 2.29742, losses: 0.820728, 0.735178, 0.741515 80it [01:38, 1.27s/it] 81it [01:39, 1.36s/it] 82it [01:40, 1.33s/it] 83it [01:42, 1.31s/it] 84it [01:43, 1.30s/it] 85it [01:44, 1.30s/it] 86it [01:46, 1.29s/it] 87it [01:47, 1.29s/it] 88it [01:48, 1.29s/it] 89it [01:49, 1.29s/it] 90it [01:51, 1.29s/it] iter: 90, loss: 2.31728, losses: 0.823852, 0.747526, 0.745903 90it [01:52, 1.29s/it] 91it [01:52, 1.38s/it] 92it [01:54, 1.36s/it] 93it [01:55, 1.34s/it] 94it [01:56, 1.33s/it] 95it [01:58, 1.32s/it] 96it [01:59, 1.32s/it] 97it [02:00, 1.32s/it] 98it [02:01, 1.31s/it] 99it [02:03, 1.31s/it] 100it [02:04, 1.31s/it] iter: 100, loss: 2.21957, losses: 0.775672, 0.722175, 0.721722 100it [02:05, 1.31s/it] 101it [02:06, 1.40s/it] 102it [02:07, 1.37s/it] 103it [02:08, 1.34s/it] 104it [02:10, 1.32s/it] 105it [02:11, 1.31s/it] 106it [02:12, 1.30s/it] 107it [02:13, 1.29s/it] 108it [02:15, 1.29s/it] 109it [02:16, 1.28s/it] 110it [02:17, 1.28s/it] iter: 110, loss: 2.20572, losses: 0.777474, 0.713529, 0.71472 110it [02:18, 1.28s/it] 111it [02:19, 1.37s/it] 112it [02:20, 1.34s/it] 113it [02:21, 1.32s/it] 114it [02:23, 1.30s/it] 115it [02:24, 1.29s/it] 116it [02:25, 1.28s/it] 117it [02:26, 1.28s/it] 118it [02:28, 1.28s/it] 119it [02:29, 1.27s/it] 120it [02:30, 1.26s/it] iter: 120, loss: 2.25052, losses: 0.793996, 0.726703, 0.729821 120it [02:31, 1.26s/it] 121it [02:32, 1.35s/it] 122it [02:33, 1.32s/it] 123it [02:34, 1.30s/it] 124it [02:35, 1.29s/it] 125it [02:37, 1.28s/it] 126it [02:38, 1.27s/it] 127it [02:39, 1.26s/it] 128it [02:40, 1.26s/it] 129it [02:42, 1.26s/it] 130it [02:43, 1.26s/it] iter: 130, loss: 2.26218, losses: 0.801104, 0.73463, 0.726444 130it [02:44, 1.26s/it] 131it [02:45, 1.35s/it] 132it [02:46, 1.32s/it] 133it [02:47, 1.30s/it] 134it [02:48, 1.28s/it] 135it [02:50, 1.28s/it] 136it [02:51, 1.27s/it] 137it [02:52, 1.26s/it] 138it [02:53, 1.26s/it] 139it [02:55, 1.26s/it] 140it [02:56, 1.26s/it] iter: 140, loss: 2.21133, losses: 0.776866, 0.720238, 0.714226 140it [02:57, 1.26s/it] 141it [02:57, 1.35s/it] 142it [02:59, 1.32s/it] 143it [03:00, 1.30s/it] 144it [03:01, 1.29s/it] 145it [03:02, 1.28s/it] 146it [03:04, 1.28s/it] 147it [03:05, 1.27s/it] 148it [03:06, 1.27s/it] 149it [03:07, 1.27s/it] 150it [03:09, 1.27s/it] iter: 150, loss: 2.25043, losses: 0.79191, 0.725539, 0.732977 150it [03:10, 1.27s/it] 151it [03:10, 1.36s/it] 152it [03:12, 1.33s/it] 153it [03:13, 1.31s/it] 154it [03:14, 1.30s/it] 155it [03:15, 1.29s/it] 156it [03:17, 1.28s/it] 157it [03:18, 1.28s/it] 158it [03:19, 1.28s/it] 159it [03:20, 1.27s/it] 160it [03:22, 1.27s/it] iter: 160, loss: 2.23944, losses: 0.787206, 0.723273, 0.728956 160it [03:22, 1.27s/it] 161it [03:23, 1.36s/it] 162it [03:25, 1.33s/it] 163it [03:26, 1.31s/it] 164it [03:27, 1.30s/it] 165it [03:28, 1.29s/it] 166it [03:30, 1.29s/it] 167it [03:31, 1.28s/it] 168it [03:32, 1.28s/it] 169it [03:33, 1.28s/it] 170it [03:35, 1.28s/it] iter: 170, loss: 2.18366, losses: 0.763624, 0.708966, 0.711072 170it [03:36, 1.28s/it] 171it [03:36, 1.37s/it] 172it [03:38, 1.34s/it] 173it [03:39, 1.32s/it] 174it [03:40, 1.31s/it] 175it [03:41, 1.29s/it] 176it [03:43, 1.29s/it] 177it [03:44, 1.28s/it] 178it [03:45, 1.27s/it] 179it [03:46, 1.27s/it] 180it [03:48, 1.27s/it] iter: 180, loss: 2.17656, losses: 0.758799, 0.708682, 0.709082 180it [03:49, 1.27s/it] 181it [03:49, 1.36s/it] 182it [03:51, 1.33s/it] 183it [03:52, 1.31s/it] 184it [03:53, 1.30s/it] 185it [03:54, 1.29s/it] 186it [03:56, 1.28s/it] 187it [03:57, 1.28s/it] 188it [03:58, 1.27s/it] 189it [03:59, 1.27s/it] 190it [04:01, 1.27s/it] iter: 190, loss: 2.25759, losses: 0.795768, 0.727799, 0.734025 190it [04:01, 1.27s/it] 191it [04:02, 1.36s/it] 192it [04:04, 1.33s/it] 193it [04:05, 1.31s/it] 194it [04:06, 1.30s/it] 195it [04:07, 1.29s/it] 196it [04:09, 1.28s/it] 197it [04:10, 1.27s/it] 198it [04:11, 1.27s/it] 199it [04:12, 1.27s/it] 200it [04:14, 1.27s/it] iter: 200, loss: 2.22929, losses: 0.786578, 0.719772, 0.722939 200it [04:14, 1.27s/it] 201it [04:15, 1.36s/it] 202it [04:16, 1.33s/it] 203it [04:18, 1.31s/it] 204it [04:19, 1.29s/it] 205it [04:20, 1.28s/it] 206it [04:21, 1.28s/it] 207it [04:23, 1.27s/it] 208it [04:24, 1.27s/it] 209it [04:25, 1.26s/it] 210it [04:27, 1.27s/it] iter: 210, loss: 2.17118, losses: 0.76052, 0.702163, 0.708499 210it [04:27, 1.27s/it] 211it [04:28, 1.36s/it] 212it [04:29, 1.33s/it] 213it [04:31, 1.31s/it] 214it [04:32, 1.30s/it] 215it [04:33, 1.29s/it] 216it [04:34, 1.28s/it] 217it [04:36, 1.28s/it] 218it [04:37, 1.28s/it] 219it [04:38, 1.27s/it] 220it [04:40, 1.27s/it] iter: 220, loss: 2.18328, losses: 0.76311, 0.707958, 0.712216 220it [04:40, 1.27s/it] 221it [04:41, 1.36s/it] 222it [04:42, 1.33s/it] 223it [04:44, 1.31s/it] 224it [04:45, 1.30s/it] 225it [04:46, 1.29s/it] 226it [04:47, 1.29s/it] 227it [04:49, 1.28s/it] 228it [04:50, 1.28s/it] 229it [04:51, 1.27s/it] 230it [04:53, 1.27s/it] iter: 230, loss: 2.25154, losses: 0.798176, 0.722844, 0.730516 230it [04:53, 1.27s/it] 231it [04:54, 1.37s/it] 232it [04:55, 1.33s/it] 233it [04:57, 1.32s/it] 234it [04:58, 1.30s/it] 235it [04:59, 1.29s/it] 236it [05:00, 1.28s/it] 237it [05:02, 1.28s/it] 238it [05:03, 1.28s/it] 239it [05:04, 1.28s/it] 240it [05:06, 1.28s/it] iter: 240, loss: 2.17989, losses: 0.761402, 0.708513, 0.709976 240it [05:06, 1.28s/it] 241it [05:07, 1.37s/it] 242it [05:08, 1.34s/it] 243it [05:10, 1.32s/it] 244it [05:11, 1.31s/it] 245it [05:12, 1.30s/it] 246it [05:13, 1.29s/it] 247it [05:15, 1.28s/it] 248it [05:16, 1.28s/it] 249it [05:17, 1.28s/it] 250it [05:19, 1.28s/it] iter: 250, loss: 2.17274, losses: 0.757853, 0.704662, 0.710222 250it [05:19, 1.28s/it] 251it [05:20, 1.37s/it] 252it [05:21, 1.34s/it] 253it [05:23, 1.32s/it] 254it [05:24, 1.30s/it] 255it [05:25, 1.29s/it] 256it [05:27, 1.29s/it] 257it [05:28, 1.28s/it] 258it [05:29, 1.28s/it] 259it [05:30, 1.27s/it] 260it [05:32, 1.27s/it] iter: 260, loss: 2.21905, losses: 0.783277, 0.714188, 0.721587 260it [05:32, 1.27s/it] 261it [05:33, 1.36s/it] 262it [05:34, 1.33s/it] 263it [05:36, 1.31s/it] 264it [05:37, 1.30s/it] 265it [05:38, 1.29s/it] 266it [05:39, 1.28s/it] 267it [05:41, 1.28s/it] 268it [05:42, 1.27s/it] 269it [05:43, 1.27s/it] 270it [05:45, 1.27s/it] iter: 270, loss: 2.16962, losses: 0.76268, 0.702876, 0.704061 270it [05:45, 1.27s/it] 271it [05:46, 1.36s/it] 272it [05:47, 1.33s/it] 273it [05:49, 1.31s/it] 274it [05:50, 1.30s/it] 275it [05:51, 1.29s/it] 276it [05:52, 1.28s/it] 277it [05:54, 1.28s/it] 278it [05:55, 1.27s/it] 279it [05:56, 1.27s/it] 280it [05:57, 1.27s/it] iter: 280, loss: 2.24343, losses: 0.79148, 0.723849, 0.7281 280it [05:58, 1.27s/it] 281it [05:59, 1.36s/it] 282it [06:00, 1.33s/it] 283it [06:02, 1.31s/it] 284it [06:03, 1.30s/it] 285it [06:04, 1.29s/it] 286it [06:05, 1.28s/it] 287it [06:07, 1.28s/it] 288it [06:08, 1.27s/it] 289it [06:09, 1.27s/it] 290it [06:10, 1.27s/it] iter: 290, loss: 2.25858, losses: 0.797974, 0.727931, 0.732673 290it [06:11, 1.27s/it] 291it [06:12, 1.37s/it] 292it [06:13, 1.34s/it] 293it [06:15, 1.32s/it] 294it [06:16, 1.31s/it] 295it [06:17, 1.30s/it] 296it [06:18, 1.29s/it] 297it [06:20, 1.29s/it] 298it [06:21, 1.28s/it] 299it [06:22, 1.28s/it] 300it [06:24, 1.28s/it] iter: 300, loss: 2.23411, losses: 0.790873, 0.71901, 0.724229 300it [06:24, 1.28s/it] 301it [06:25, 1.37s/it] 302it [06:26, 1.34s/it] 303it [06:28, 1.32s/it] 304it [06:29, 1.31s/it] 305it [06:30, 1.30s/it] 306it [06:31, 1.29s/it] 307it [06:33, 1.28s/it] 308it [06:34, 1.28s/it] 309it [06:35, 1.28s/it] 310it [06:37, 1.28s/it] iter: 310, loss: 2.2213, losses: 0.781752, 0.718001, 0.721544 310it [06:37, 1.28s/it] 311it [06:38, 1.37s/it] 312it [06:39, 1.34s/it] 313it [06:41, 1.32s/it] 314it [06:42, 1.30s/it] 315it [06:43, 1.29s/it] 316it [06:44, 1.28s/it] 317it [06:46, 1.28s/it] 318it [06:47, 1.28s/it] 319it [06:48, 1.27s/it] 320it [06:50, 1.27s/it] iter: 320, loss: 2.22429, losses: 0.782343, 0.717883, 0.724067 320it [06:50, 1.27s/it] 321it [06:51, 1.36s/it] 322it [06:52, 1.34s/it] 323it [06:54, 1.31s/it] 324it [06:55, 1.30s/it] 325it [06:56, 1.29s/it] 326it [06:57, 1.28s/it] 327it [06:59, 1.28s/it] 328it [07:00, 1.28s/it] 329it [07:01, 1.27s/it] 330it [07:03, 1.27s/it] iter: 330, loss: 2.22646, losses: 0.786218, 0.717032, 0.72321 330it [07:03, 1.27s/it] 331it [07:04, 1.36s/it] 332it [07:05, 1.33s/it] 333it [07:07, 1.31s/it] 334it [07:08, 1.30s/it] 335it [07:09, 1.28s/it] 336it [07:10, 1.28s/it] 337it [07:12, 1.27s/it] 338it [07:13, 1.27s/it] 339it [07:14, 1.27s/it] 340it [07:15, 1.26s/it] iter: 340, loss: 2.241, losses: 0.793107, 0.72127, 0.726618 340it [07:16, 1.26s/it] 341it [07:17, 1.35s/it] 342it [07:18, 1.33s/it] 343it [07:20, 1.31s/it] 344it [07:21, 1.29s/it] 345it [07:22, 1.28s/it] 346it [07:23, 1.28s/it] 347it [07:25, 1.27s/it] 348it [07:26, 1.27s/it] 349it [07:27, 1.27s/it] 350it [07:28, 1.27s/it] iter: 350, loss: 2.23518, losses: 0.784114, 0.722871, 0.728196 350it [07:29, 1.27s/it] 351it [07:30, 1.36s/it] 352it [07:31, 1.33s/it] 353it [07:33, 1.31s/it] 354it [07:34, 1.30s/it] 355it [07:35, 1.29s/it] 356it [07:36, 1.28s/it] 357it [07:38, 1.28s/it] 358it [07:39, 1.28s/it] 359it [07:40, 1.27s/it] 360it [07:41, 1.27s/it] iter: 360, loss: 2.22824, losses: 0.786418, 0.718143, 0.72368 360it [07:42, 1.27s/it] 361it [07:43, 1.36s/it] 362it [07:44, 1.33s/it] 363it [07:45, 1.32s/it] 364it [07:47, 1.30s/it] 365it [07:48, 1.29s/it] 366it [07:49, 1.28s/it] 367it [07:51, 1.28s/it] 368it [07:52, 1.28s/it] 369it [07:53, 1.28s/it] 370it [07:54, 1.28s/it] iter: 370, loss: 2.17586, losses: 0.76504, 0.702395, 0.708423 370it [07:55, 1.28s/it] 371it [07:56, 1.37s/it] 372it [07:57, 1.34s/it] 373it [07:59, 1.32s/it] 374it [08:00, 1.31s/it] 375it [08:01, 1.29s/it] 376it [08:02, 1.29s/it] 377it [08:04, 1.28s/it] 378it [08:05, 1.28s/it] 379it [08:06, 1.27s/it] 380it [08:07, 1.27s/it] iter: 380, loss: 2.16247, losses: 0.75774, 0.699513, 0.705221 380it [08:08, 1.27s/it] 381it [08:09, 1.37s/it] 382it [08:10, 1.34s/it] 383it [08:12, 1.32s/it] 384it [08:13, 1.30s/it] 385it [08:14, 1.29s/it] 386it [08:15, 1.29s/it] 387it [08:17, 1.28s/it] 388it [08:18, 1.28s/it] 389it [08:19, 1.28s/it] 390it [08:20, 1.27s/it] iter: 390, loss: 2.1718, losses: 0.759508, 0.704626, 0.707668 390it [08:21, 1.27s/it] 391it [08:22, 1.37s/it] 392it [08:23, 1.33s/it] 393it [08:25, 1.32s/it] 394it [08:26, 1.30s/it] 395it [08:27, 1.29s/it] 396it [08:28, 1.29s/it] 397it [08:30, 1.28s/it] 398it [08:31, 1.28s/it] 399it [08:32, 1.28s/it] 400it [08:33, 1.27s/it] iter: 400, loss: 2.17667, losses: 0.763937, 0.705741, 0.706996 400it [08:34, 1.27s/it] 401it [08:35, 1.36s/it] 402it [08:36, 1.33s/it] 403it [08:38, 1.31s/it] 404it [08:39, 1.30s/it] 405it [08:40, 1.29s/it] 406it [08:41, 1.28s/it] 407it [08:43, 1.27s/it] 408it [08:44, 1.27s/it] 409it [08:45, 1.27s/it] 410it [08:46, 1.27s/it] iter: 410, loss: 2.16414, losses: 0.755274, 0.701243, 0.707625 410it [08:47, 1.27s/it] 411it [08:48, 1.36s/it] 412it [08:49, 1.33s/it] 413it [08:50, 1.31s/it] 414it [08:52, 1.30s/it] 415it [08:53, 1.29s/it] 416it [08:54, 1.28s/it] 417it [08:56, 1.27s/it] 418it [08:57, 1.27s/it] 419it [08:58, 1.27s/it] 420it [08:59, 1.26s/it] iter: 420, loss: 2.24109, losses: 0.795919, 0.721658, 0.723515 420it [09:00, 1.26s/it] 421it [09:01, 1.36s/it] 422it [09:02, 1.33s/it] 423it [09:03, 1.31s/it] 424it [09:05, 1.30s/it] 425it [09:06, 1.29s/it] 426it [09:07, 1.28s/it] 427it [09:08, 1.27s/it] 428it [09:10, 1.27s/it] 429it [09:11, 1.27s/it] 430it [09:12, 1.27s/it] iter: 430, loss: 2.23592, losses: 0.787732, 0.720089, 0.728098 430it [09:13, 1.27s/it] 431it [09:14, 1.37s/it] 432it [09:15, 1.33s/it] 433it [09:16, 1.31s/it] 434it [09:18, 1.30s/it] 435it [09:19, 1.29s/it] 436it [09:20, 1.28s/it] 437it [09:21, 1.28s/it] 438it [09:23, 1.27s/it] 439it [09:24, 1.27s/it] 440it [09:25, 1.27s/it] iter: 440, loss: 2.24819, losses: 0.792399, 0.723132, 0.732659 440it [09:26, 1.27s/it] 441it [09:27, 1.37s/it] 442it [09:28, 1.33s/it] 443it [09:29, 1.32s/it] 444it [09:31, 1.30s/it] 445it [09:32, 1.29s/it] 446it [09:33, 1.29s/it] 447it [09:34, 1.28s/it] 448it [09:36, 1.27s/it] 449it [09:37, 1.27s/it] 450it [09:38, 1.27s/it] iter: 450, loss: 2.23246, losses: 0.783947, 0.719741, 0.728769 450it [09:39, 1.27s/it] 451it [09:40, 1.37s/it] 452it [09:41, 1.34s/it] 453it [09:42, 1.32s/it] 454it [09:44, 1.30s/it] 455it [09:45, 1.29s/it] 456it [09:46, 1.29s/it] 457it [09:47, 1.28s/it] 458it [09:49, 1.28s/it] 459it [09:50, 1.27s/it] 460it [09:51, 1.27s/it] iter: 460, loss: 2.27599, losses: 0.815376, 0.726655, 0.733957 460it [09:52, 1.27s/it] 461it [09:53, 1.37s/it] 462it [09:54, 1.34s/it] 463it [09:55, 1.32s/it] 464it [09:57, 1.30s/it] 465it [09:58, 1.29s/it] 466it [09:59, 1.29s/it] 467it [10:00, 1.28s/it] 468it [10:02, 1.28s/it] 469it [10:03, 1.27s/it] 470it [10:04, 1.27s/it] iter: 470, loss: 2.20068, losses: 0.773851, 0.712334, 0.714499 470it [10:05, 1.27s/it] 471it [10:06, 1.36s/it] 472it [10:07, 1.33s/it] 473it [10:08, 1.31s/it] 474it [10:10, 1.30s/it] 475it [10:11, 1.29s/it] 476it [10:12, 1.28s/it] 477it [10:13, 1.28s/it] 478it [10:15, 1.27s/it] 479it [10:16, 1.27s/it] 480it [10:17, 1.27s/it] iter: 480, loss: 2.23543, losses: 0.794325, 0.717294, 0.723813 480it [10:18, 1.27s/it] 481it [10:19, 1.36s/it] 482it [10:20, 1.33s/it] 483it [10:21, 1.31s/it] 484it [10:23, 1.30s/it] 485it [10:24, 1.29s/it] 486it [10:25, 1.28s/it] 487it [10:26, 1.28s/it] 488it [10:28, 1.27s/it] 489it [10:29, 1.27s/it] 490it [10:30, 1.27s/it] iter: 490, loss: 2.23271, losses: 0.794116, 0.716999, 0.721594 490it [10:31, 1.27s/it] 491it [10:32, 1.37s/it] 492it [10:33, 1.33s/it] 493it [10:34, 1.32s/it] 494it [10:36, 1.30s/it] 495it [10:37, 1.29s/it] 496it [10:38, 1.28s/it] 497it [10:39, 1.28s/it] 498it [10:41, 1.27s/it] 499it [10:42, 1.27s/it] 500it [10:43, 1.27s/it] iter: 500, loss: 2.2241, losses: 0.787178, 0.715713, 0.72121 500it [10:44, 1.27s/it] 500it [10:45, 1.29s/it]
Prediction
dribnet/clipit:3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11IDnkyhl3jfpfaprjblubnsexssoqStatusSucceededSourceWebHardware–Total duration–CreatedInput
- aspect
- widescreen
- prompts
- sunset river snow mountain
- quality
- normal
{ "aspect": "widescreen", "prompts": "sunset river snow mountain", "quality": "normal" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run dribnet/clipit using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "dribnet/clipit:3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11", { input: { aspect: "widescreen", prompts: "sunset river snow mountain", quality: "normal" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run dribnet/clipit using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "dribnet/clipit:3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11", input={ "aspect": "widescreen", "prompts": "sunset river snow mountain", "quality": "normal" } ) # The dribnet/clipit model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/dribnet/clipit/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run dribnet/clipit using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "dribnet/clipit:3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11", "input": { "aspect": "widescreen", "prompts": "sunset river snow mountain", "quality": "normal" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-09-21T15:49:03.126574Z", "created_at": "2021-09-21T15:43:48.641034Z", "data_removed": false, "error": null, "id": "nkyhl3jfpfaprjblubnsexssoq", "input": { "aspect": "widescreen", "prompts": "sunset river snow mountain", "quality": "normal" }, "logs": "Working with z of shape (1, 256, 16, 16) = 65536 dimensions.\nloaded pretrained LPIPS loss from taming/modules/autoencoder/lpips/vgg.pth\nVQLPIPSWithDiscriminator running with hinge loss.\nRestored from models/vqgan_imagenet_f16_16384.ckpt\n\n 0%| | 0.00/335M [00:00<?, ?iB/s]\n\n 0%| | 736k/335M [00:00<00:55, 6.25MiB/s]\n\n 3%|#1 | 9.78M/335M [00:00<00:39, 8.69MiB/s]\n\n 8%|###1 | 28.0M/335M [00:00<00:26, 12.2MiB/s]\n\n 14%|#####3 | 47.2M/335M [00:00<00:17, 17.0MiB/s]\n\n 21%|######## | 70.6M/335M [00:00<00:11, 23.5MiB/s]\n\n 28%|##########7 | 94.9M/335M [00:00<00:07, 32.3MiB/s]\n\n 34%|#############2 | 114M/335M [00:00<00:05, 43.1MiB/s]\n\n 41%|###############8 | 136M/335M [00:00<00:03, 57.1MiB/s]\n\n 47%|##################4 | 159M/335M [00:00<00:02, 74.0MiB/s]\n\n 55%|#####################3 | 183M/335M [00:01<00:01, 94.0MiB/s]\n\n 61%|########################4 | 204M/335M [00:01<00:01, 103MiB/s]\n\n 67%|##########################6 | 223M/335M [00:01<00:01, 103MiB/s]\n\n 72%|############################6 | 240M/335M [00:01<00:00, 116MiB/s]\n\n 78%|###############################1 | 261M/335M [00:01<00:00, 136MiB/s]\n\n 84%|#################################7 | 282M/335M [00:01<00:00, 154MiB/s]\n\n 90%|#################################### | 302M/335M [00:01<00:00, 167MiB/s]\n\n 96%|######################################3 | 321M/335M [00:01<00:00, 175MiB/s]\n\n100%|########################################| 335M/335M [00:01<00:00, 178MiB/s]\nUsing device:\ncuda:0\nOptimising using:\nAdam\nUsing text prompts:\n['sunset river snow mountain']\nUsing seed:\n7059562411278813627\n\n0it [00:00, ?it/s]\niter: 0, loss: 1.87591, losses: 0.945593, 0.930314\n\n0it [00:00, ?it/s]\n\n1it [00:00, 1.02it/s]\n\n2it [00:01, 1.06it/s]\n\n3it [00:02, 1.09it/s]\n\n4it [00:03, 1.12it/s]\n\n5it [00:04, 1.13it/s]\n\n6it [00:05, 1.14it/s]\n\n7it [00:06, 1.15it/s]\n\n8it [00:06, 1.16it/s]\n\n9it [00:07, 1.15it/s]\n\n10it [00:08, 1.13it/s]\niter: 10, loss: 1.66744, losses: 0.83799, 0.829451\n\n10it [00:09, 1.13it/s]\n\n11it [00:09, 1.02it/s]\n\n12it [00:11, 1.04s/it]\n\n13it [00:12, 1.08s/it]\n\n14it [00:13, 1.07s/it]\n\n15it [00:14, 1.03s/it]\n\n16it [00:15, 1.01s/it]\n\n17it [00:16, 1.01it/s]\n\n18it [00:17, 1.02it/s]\n\n19it [00:18, 1.06it/s]\n\n20it [00:18, 1.10it/s]\niter: 20, loss: 1.56737, losses: 0.785052, 0.78232\n\n20it [00:19, 1.10it/s]\n\n21it [00:19, 1.07it/s]\n\n22it [00:20, 1.10it/s]\n\n23it [00:21, 1.12it/s]\n\n24it [00:22, 1.14it/s]\n\n25it [00:23, 1.15it/s]\n\n26it [00:24, 1.16it/s]\n\n27it [00:24, 1.16it/s]\n\n28it [00:25, 1.17it/s]\n\n29it [00:26, 1.17it/s]\n\n30it [00:27, 1.17it/s]\niter: 30, loss: 1.55591, losses: 0.781376, 0.774534\n\n30it [00:27, 1.17it/s]\n\n31it [00:28, 1.12it/s]\n\n32it [00:29, 1.14it/s]\n\n33it [00:30, 1.15it/s]\n\n34it [00:31, 1.16it/s]\n\n35it [00:31, 1.16it/s]\n\n36it [00:32, 1.17it/s]\n\n37it [00:33, 1.17it/s]\n\n38it [00:34, 1.18it/s]\n\n39it [00:35, 1.18it/s]\n\n40it [00:36, 1.19it/s]\niter: 40, loss: 1.53087, losses: 0.772241, 0.758628\n\n40it [00:36, 1.19it/s]\n\n41it [00:37, 1.14it/s]\n\n42it [00:37, 1.16it/s]\n\n43it [00:38, 1.17it/s]\n\n44it [00:39, 1.18it/s]\n\n45it [00:40, 1.19it/s]\n\n46it [00:41, 1.19it/s]\n\n47it [00:42, 1.20it/s]\n\n48it [00:42, 1.20it/s]\n\n49it [00:43, 1.20it/s]\n\n50it [00:44, 1.21it/s]\niter: 50, loss: 1.50661, losses: 0.759649, 0.746958\n\n50it [00:44, 1.21it/s]\n\n51it [00:45, 1.15it/s]\n\n52it [00:46, 1.17it/s]\n\n53it [00:47, 1.18it/s]\n\n54it [00:47, 1.19it/s]\n\n55it [00:48, 1.19it/s]\n\n56it [00:49, 1.20it/s]\n\n57it [00:50, 1.20it/s]\n\n58it [00:51, 1.21it/s]\n\n59it [00:52, 1.21it/s]\n\n60it [00:52, 1.21it/s]\niter: 60, loss: 1.5028, losses: 0.759857, 0.74294\n\n60it [00:53, 1.21it/s]\n\n61it [00:53, 1.15it/s]\n\n62it [00:54, 1.17it/s]\n\n63it [00:55, 1.18it/s]\n\n64it [00:56, 1.19it/s]\n\n65it [00:57, 1.20it/s]\n\n66it [00:58, 1.20it/s]\n\n67it [00:58, 1.21it/s]\n\n68it [00:59, 1.21it/s]\n\n69it [01:00, 1.21it/s]\n\n70it [01:01, 1.21it/s]\niter: 70, loss: 1.49035, losses: 0.75404, 0.736313\n\n70it [01:01, 1.21it/s]\n\n71it [01:02, 1.15it/s]\n\n72it [01:03, 1.17it/s]\n\n73it [01:03, 1.19it/s]\n\n74it [01:04, 1.20it/s]\n\n75it [01:05, 1.20it/s]\n\n76it [01:06, 1.21it/s]\n\n77it [01:07, 1.21it/s]\n\n78it [01:07, 1.22it/s]\n\n79it [01:08, 1.22it/s]\n\n80it [01:09, 1.22it/s]\niter: 80, loss: 1.48894, losses: 0.754004, 0.734938\n\n80it [01:10, 1.22it/s]\n\n81it [01:10, 1.16it/s]\n\n82it [01:11, 1.17it/s]\n\n83it [01:12, 1.19it/s]\n\n84it [01:13, 1.20it/s]\n\n85it [01:13, 1.20it/s]\n\n86it [01:14, 1.21it/s]\n\n87it [01:15, 1.21it/s]\n\n88it [01:16, 1.21it/s]\n\n89it [01:17, 1.21it/s]\n\n90it [01:17, 1.21it/s]\niter: 90, loss: 1.46546, losses: 0.740261, 0.725197\n\n90it [01:18, 1.21it/s]\n\n91it [01:18, 1.15it/s]\n\n92it [01:19, 1.17it/s]\n\n93it [01:20, 1.18it/s]\n\n94it [01:21, 1.19it/s]\n\n95it [01:22, 1.20it/s]\n\n96it [01:23, 1.20it/s]\n\n97it [01:23, 1.20it/s]\n\n98it [01:24, 1.21it/s]\n\n99it [01:25, 1.20it/s]\n\n100it [01:26, 1.21it/s]\niter: 100, loss: 1.47515, losses: 0.745841, 0.729311\n\n100it [01:26, 1.21it/s]\n\n101it [01:27, 1.15it/s]\n\n102it [01:28, 1.17it/s]\n\n103it [01:29, 1.18it/s]\n\n104it [01:29, 1.19it/s]\n\n105it [01:30, 1.20it/s]\n\n106it [01:31, 1.20it/s]\n\n107it [01:32, 1.20it/s]\n\n108it [01:33, 1.20it/s]\n\n109it [01:33, 1.20it/s]\n\n110it [01:34, 1.21it/s]\niter: 110, loss: 1.48614, losses: 0.754961, 0.731177\n\n110it [01:35, 1.21it/s]\n\n111it [01:35, 1.15it/s]\n\n112it [01:36, 1.17it/s]\n\n113it [01:37, 1.18it/s]\n\n114it [01:38, 1.19it/s]\n\n115it [01:39, 1.19it/s]\n\n116it [01:39, 1.20it/s]\n\n117it [01:40, 1.20it/s]\n\n118it [01:41, 1.20it/s]\n\n119it [01:42, 1.20it/s]\n\n120it [01:43, 1.20it/s]\niter: 120, loss: 1.43145, losses: 0.728015, 0.703438\n\n120it [01:43, 1.20it/s]\n\n121it [01:44, 1.14it/s]\n\n122it [01:45, 1.16it/s]\n\n123it [01:45, 1.17it/s]\n\n124it [01:46, 1.18it/s]\n\n125it [01:47, 1.19it/s]\n\n126it [01:48, 1.19it/s]\n\n127it [01:49, 1.19it/s]\n\n128it [01:50, 1.20it/s]\n\n129it [01:50, 1.20it/s]\n\n130it [01:51, 1.20it/s]\niter: 130, loss: 1.4728, losses: 0.749317, 0.723478\n\n130it [01:52, 1.20it/s]\n\n131it [01:52, 1.14it/s]\n\n132it [01:53, 1.15it/s]\n\n133it [01:54, 1.17it/s]\n\n134it [01:55, 1.18it/s]\n\n135it [01:56, 1.19it/s]\n\n136it [01:56, 1.19it/s]\n\n137it [01:57, 1.19it/s]\n\n138it [01:58, 1.19it/s]\n\n139it [01:59, 1.20it/s]\n\n140it [02:00, 1.19it/s]\niter: 140, loss: 1.47461, losses: 0.745884, 0.728723\n\n140it [02:00, 1.19it/s]\n\n141it [02:01, 1.13it/s]\n\n142it [02:02, 1.16it/s]\n\n143it [02:02, 1.17it/s]\n\n144it [02:03, 1.18it/s]\n\n145it [02:04, 1.19it/s]\n\n146it [02:05, 1.19it/s]\n\n147it [02:06, 1.19it/s]\n\n148it [02:07, 1.19it/s]\n\n149it [02:07, 1.20it/s]\n\n150it [02:08, 1.20it/s]\niter: 150, loss: 1.42148, losses: 0.723862, 0.697613\n\n150it [02:09, 1.20it/s]\n\n151it [02:09, 1.14it/s]\n\n152it [02:10, 1.16it/s]\n\n153it [02:11, 1.17it/s]\n\n154it [02:12, 1.18it/s]\n\n155it [02:12, 1.19it/s]\n\n156it [02:13, 1.19it/s]\n\n157it [02:14, 1.19it/s]\n\n158it [02:15, 1.20it/s]\n\n159it [02:16, 1.20it/s]\n\n160it [02:17, 1.20it/s]\niter: 160, loss: 1.48197, losses: 0.751354, 0.730616\n\n160it [02:17, 1.20it/s]\n\n161it [02:18, 1.14it/s]\n\n162it [02:18, 1.16it/s]\n\n163it [02:19, 1.17it/s]\n\n164it [02:20, 1.18it/s]\n\n165it [02:21, 1.19it/s]\n\n166it [02:22, 1.19it/s]\n\n167it [02:23, 1.19it/s]\n\n168it [02:23, 1.20it/s]\n\n169it [02:24, 1.20it/s]\n\n170it [02:25, 1.20it/s]\niter: 170, loss: 1.4567, losses: 0.741225, 0.715471\n\n170it [02:26, 1.20it/s]\n\n171it [02:26, 1.14it/s]\n\n172it [02:27, 1.16it/s]\n\n173it [02:28, 1.18it/s]\n\n174it [02:29, 1.19it/s]\n\n175it [02:29, 1.19it/s]\n\n176it [02:30, 1.19it/s]\n\n177it [02:31, 1.20it/s]\n\n178it [02:32, 1.20it/s]\n\n179it [02:33, 1.20it/s]\n\n180it [02:34, 1.20it/s]\niter: 180, loss: 1.45621, losses: 0.739763, 0.716449\n\n180it [02:34, 1.20it/s]\n\n181it [02:35, 1.14it/s]\n\n182it [02:35, 1.16it/s]\n\n183it [02:36, 1.18it/s]\n\n184it [02:37, 1.19it/s]\n\n185it [02:38, 1.19it/s]\n\n186it [02:39, 1.19it/s]\n\n187it [02:39, 1.20it/s]\n\n188it [02:40, 1.20it/s]\n\n189it [02:41, 1.21it/s]\n\n190it [02:42, 1.21it/s]\niter: 190, loss: 1.47477, losses: 0.744979, 0.729792\n\n190it [02:42, 1.21it/s]\n\n191it [02:43, 1.14it/s]\n\n192it [02:44, 1.16it/s]\n\n193it [02:45, 1.17it/s]\n\n194it [02:45, 1.18it/s]\n\n195it [02:46, 1.19it/s]\n\n196it [02:47, 1.20it/s]\n\n197it [02:48, 1.20it/s]\n\n198it [02:49, 1.20it/s]\n\n199it [02:50, 1.21it/s]\n\n200it [02:50, 1.21it/s]\niter: 200, loss: 1.41969, losses: 0.724852, 0.694841\n\n200it [02:51, 1.21it/s]\n\n201it [02:51, 1.15it/s]\n\n202it [02:52, 1.17it/s]\n\n203it [02:53, 1.18it/s]\n\n204it [02:54, 1.19it/s]\n\n205it [02:55, 1.19it/s]\n\n206it [02:55, 1.20it/s]\n\n207it [02:56, 1.20it/s]\n\n208it [02:57, 1.20it/s]\n\n209it [02:58, 1.20it/s]\n\n210it [02:59, 1.21it/s]\niter: 210, loss: 1.46267, losses: 0.742046, 0.720624\n\n210it [02:59, 1.21it/s]\n\n211it [03:00, 1.14it/s]\n\n212it [03:01, 1.17it/s]\n\n213it [03:01, 1.18it/s]\n\n214it [03:02, 1.19it/s]\n\n215it [03:03, 1.20it/s]\n\n216it [03:04, 1.20it/s]\n\n217it [03:05, 1.21it/s]\n\n218it [03:06, 1.21it/s]\n\n219it [03:06, 1.21it/s]\n\n220it [03:07, 1.21it/s]\niter: 220, loss: 1.44763, losses: 0.733925, 0.713701\n\n220it [03:08, 1.21it/s]\n\n221it [03:08, 1.15it/s]\n\n222it [03:09, 1.17it/s]\n\n223it [03:10, 1.18it/s]\n\n224it [03:11, 1.19it/s]\n\n225it [03:11, 1.19it/s]\n\n226it [03:12, 1.20it/s]\n\n227it [03:13, 1.20it/s]\n\n228it [03:14, 1.20it/s]\n\n229it [03:15, 1.20it/s]\n\n230it [03:16, 1.21it/s]\niter: 230, loss: 1.45722, losses: 0.740597, 0.71662\n\n230it [03:16, 1.21it/s]\n\n231it [03:17, 1.14it/s]\n\n232it [03:17, 1.16it/s]\n\n233it [03:18, 1.18it/s]\n\n234it [03:19, 1.19it/s]\n\n235it [03:20, 1.20it/s]\n\n236it [03:21, 1.20it/s]\n\n237it [03:22, 1.20it/s]\n\n238it [03:22, 1.20it/s]\n\n239it [03:23, 1.20it/s]\n\n240it [03:24, 1.21it/s]\niter: 240, loss: 1.46076, losses: 0.737396, 0.723366\n\n240it [03:25, 1.21it/s]\n\n241it [03:25, 1.15it/s]\n\n242it [03:26, 1.16it/s]\n\n243it [03:27, 1.18it/s]\n\n244it [03:27, 1.19it/s]\n\n245it [03:28, 1.20it/s]\n\n246it [03:29, 1.20it/s]\n\n247it [03:30, 1.20it/s]\n\n248it [03:31, 1.20it/s]\n\n249it [03:32, 1.21it/s]\n\n250it [03:32, 1.20it/s]\niter: 250, loss: 1.46064, losses: 0.741409, 0.719233\n\n250it [03:33, 1.20it/s]\n\n251it [03:33, 1.14it/s]\n\n252it [03:34, 1.16it/s]\n\n253it [03:35, 1.17it/s]\n\n254it [03:36, 1.18it/s]\n\n255it [03:37, 1.19it/s]\n\n256it [03:38, 1.19it/s]\n\n257it [03:38, 1.19it/s]\n\n258it [03:39, 1.20it/s]\n\n259it [03:40, 1.20it/s]\n\n260it [03:41, 1.20it/s]\niter: 260, loss: 1.45437, losses: 0.734091, 0.720275\n\n260it [03:41, 1.20it/s]\n\n261it [03:42, 1.14it/s]\n\n262it [03:43, 1.16it/s]\n\n263it [03:44, 1.17it/s]\n\n264it [03:44, 1.18it/s]\n\n265it [03:45, 1.19it/s]\n\n266it [03:46, 1.20it/s]\n\n267it [03:47, 1.20it/s]\n\n268it [03:48, 1.20it/s]\n\n269it [03:48, 1.21it/s]\n\n270it [03:49, 1.20it/s]\niter: 270, loss: 1.4758, losses: 0.74596, 0.729841\n\n270it [03:50, 1.20it/s]\n\n271it [03:50, 1.14it/s]\n\n272it [03:51, 1.16it/s]\n\n273it [03:52, 1.17it/s]\n\n274it [03:53, 1.18it/s]\n\n275it [03:54, 1.19it/s]\n\n276it [03:54, 1.19it/s]\n\n277it [03:55, 1.20it/s]\n\n278it [03:56, 1.20it/s]\n\n279it [03:57, 1.20it/s]\n\n280it [03:58, 1.20it/s]\niter: 280, loss: 1.46246, losses: 0.742268, 0.720194\n\n280it [03:58, 1.20it/s]\n\n281it [03:59, 1.14it/s]\n\n282it [04:00, 1.16it/s]\n\n283it [04:00, 1.17it/s]\n\n284it [04:01, 1.19it/s]\n\n285it [04:02, 1.19it/s]\n\n286it [04:03, 1.19it/s]\n\n287it [04:04, 1.20it/s]\n\n288it [04:05, 1.20it/s]\n\n289it [04:05, 1.20it/s]\n\n290it [04:06, 1.20it/s]\niter: 290, loss: 1.45674, losses: 0.736173, 0.720568\n\n290it [04:07, 1.20it/s]\n\n291it [04:07, 1.14it/s]\n\n292it [04:08, 1.16it/s]\n\n293it [04:09, 1.18it/s]\n\n294it [04:10, 1.19it/s]\n\n295it [04:11, 1.19it/s]\n\n296it [04:11, 1.20it/s]\n\n297it [04:12, 1.20it/s]\n\n298it [04:13, 1.21it/s]\n\n299it [04:14, 1.21it/s]\n\n300it [04:15, 1.20it/s]\niter: 300, loss: 1.46753, losses: 0.742301, 0.725231\n\n300it [04:15, 1.20it/s]\n\n301it [04:16, 1.14it/s]\n\n302it [04:16, 1.16it/s]\n\n303it [04:17, 1.17it/s]\n\n304it [04:18, 1.18it/s]\n\n305it [04:19, 1.19it/s]\n\n306it [04:20, 1.19it/s]\n\n307it [04:21, 1.20it/s]\n\n308it [04:21, 1.20it/s]\n\n309it [04:22, 1.20it/s]\n\n310it [04:23, 1.21it/s]\niter: 310, loss: 1.44706, losses: 0.731625, 0.71544\n\n310it [04:24, 1.21it/s]\n\n311it [04:24, 1.15it/s]\n\n312it [04:25, 1.16it/s]\n\n313it [04:26, 1.18it/s]\n\n314it [04:27, 1.19it/s]\n\n315it [04:27, 1.19it/s]\n\n316it [04:28, 1.20it/s]\n\n317it [04:29, 1.20it/s]\n\n318it [04:30, 1.20it/s]\n\n319it [04:31, 1.20it/s]\n\n320it [04:32, 1.20it/s]\niter: 320, loss: 1.45095, losses: 0.732868, 0.718083\n\n320it [04:32, 1.20it/s]\n\n321it [04:32, 1.14it/s]\n\n322it [04:33, 1.16it/s]\n\n323it [04:34, 1.17it/s]\n\n324it [04:35, 1.18it/s]\n\n325it [04:36, 1.19it/s]\n\n326it [04:37, 1.20it/s]\n\n327it [04:37, 1.20it/s]\n\n328it [04:38, 1.20it/s]\n\n329it [04:39, 1.20it/s]\n\n330it [04:40, 1.20it/s]\niter: 330, loss: 1.45507, losses: 0.737884, 0.717185\n\n330it [04:40, 1.20it/s]\n\n331it [04:41, 1.14it/s]\n\n332it [04:42, 1.16it/s]\n\n333it [04:43, 1.18it/s]\n\n334it [04:43, 1.19it/s]\n\n335it [04:44, 1.20it/s]\n\n336it [04:45, 1.19it/s]\n\n337it [04:46, 1.20it/s]\n\n338it [04:47, 1.20it/s]\n\n339it [04:48, 1.20it/s]\n\n340it [04:48, 1.21it/s]\niter: 340, loss: 1.43972, losses: 0.732735, 0.706989\n\n340it [04:49, 1.21it/s]\n\n341it [04:49, 1.14it/s]\n\n342it [04:50, 1.16it/s]\n\n343it [04:51, 1.17it/s]\n\n344it [04:52, 1.19it/s]\n\n345it [04:53, 1.19it/s]\n\n346it [04:54, 1.20it/s]\n\n347it [04:54, 1.20it/s]\n\n348it [04:55, 1.20it/s]\n\n349it [04:56, 1.20it/s]\n\n350it [04:57, 1.20it/s]\niter: 350, loss: 1.457, losses: 0.736383, 0.720621\n\n350it [04:57, 1.20it/s]\n\n350it [04:58, 1.17it/s]", "metrics": {}, "output": [ { "file": "https://replicate.delivery/mgxm/66cef0b3-613d-44ce-aed7-7d4722261240/out.png" } ], "started_at": null, "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/nkyhl3jfpfaprjblubnsexssoq", "cancel": "https://api.replicate.com/v1/predictions/nkyhl3jfpfaprjblubnsexssoq/cancel" }, "version": "3fab04f1fa2bab29b6b22bbeee2ba5f8cf12eea543482dd28358355bcb459f11" }
Working with z of shape (1, 256, 16, 16) = 65536 dimensions. loaded pretrained LPIPS loss from taming/modules/autoencoder/lpips/vgg.pth VQLPIPSWithDiscriminator running with hinge loss. Restored from models/vqgan_imagenet_f16_16384.ckpt 0%| | 0.00/335M [00:00<?, ?iB/s] 0%| | 736k/335M [00:00<00:55, 6.25MiB/s] 3%|#1 | 9.78M/335M [00:00<00:39, 8.69MiB/s] 8%|###1 | 28.0M/335M [00:00<00:26, 12.2MiB/s] 14%|#####3 | 47.2M/335M [00:00<00:17, 17.0MiB/s] 21%|######## | 70.6M/335M [00:00<00:11, 23.5MiB/s] 28%|##########7 | 94.9M/335M [00:00<00:07, 32.3MiB/s] 34%|#############2 | 114M/335M [00:00<00:05, 43.1MiB/s] 41%|###############8 | 136M/335M [00:00<00:03, 57.1MiB/s] 47%|##################4 | 159M/335M [00:00<00:02, 74.0MiB/s] 55%|#####################3 | 183M/335M [00:01<00:01, 94.0MiB/s] 61%|########################4 | 204M/335M [00:01<00:01, 103MiB/s] 67%|##########################6 | 223M/335M [00:01<00:01, 103MiB/s] 72%|############################6 | 240M/335M [00:01<00:00, 116MiB/s] 78%|###############################1 | 261M/335M [00:01<00:00, 136MiB/s] 84%|#################################7 | 282M/335M [00:01<00:00, 154MiB/s] 90%|#################################### | 302M/335M [00:01<00:00, 167MiB/s] 96%|######################################3 | 321M/335M [00:01<00:00, 175MiB/s] 100%|########################################| 335M/335M [00:01<00:00, 178MiB/s] Using device: cuda:0 Optimising using: Adam Using text prompts: ['sunset river snow mountain'] Using seed: 7059562411278813627 0it [00:00, ?it/s] iter: 0, loss: 1.87591, losses: 0.945593, 0.930314 0it [00:00, ?it/s] 1it [00:00, 1.02it/s] 2it [00:01, 1.06it/s] 3it [00:02, 1.09it/s] 4it [00:03, 1.12it/s] 5it [00:04, 1.13it/s] 6it [00:05, 1.14it/s] 7it [00:06, 1.15it/s] 8it [00:06, 1.16it/s] 9it [00:07, 1.15it/s] 10it [00:08, 1.13it/s] iter: 10, loss: 1.66744, losses: 0.83799, 0.829451 10it [00:09, 1.13it/s] 11it [00:09, 1.02it/s] 12it [00:11, 1.04s/it] 13it [00:12, 1.08s/it] 14it [00:13, 1.07s/it] 15it [00:14, 1.03s/it] 16it [00:15, 1.01s/it] 17it [00:16, 1.01it/s] 18it [00:17, 1.02it/s] 19it [00:18, 1.06it/s] 20it [00:18, 1.10it/s] iter: 20, loss: 1.56737, losses: 0.785052, 0.78232 20it [00:19, 1.10it/s] 21it [00:19, 1.07it/s] 22it [00:20, 1.10it/s] 23it [00:21, 1.12it/s] 24it [00:22, 1.14it/s] 25it [00:23, 1.15it/s] 26it [00:24, 1.16it/s] 27it [00:24, 1.16it/s] 28it [00:25, 1.17it/s] 29it [00:26, 1.17it/s] 30it [00:27, 1.17it/s] iter: 30, loss: 1.55591, losses: 0.781376, 0.774534 30it [00:27, 1.17it/s] 31it [00:28, 1.12it/s] 32it [00:29, 1.14it/s] 33it [00:30, 1.15it/s] 34it [00:31, 1.16it/s] 35it [00:31, 1.16it/s] 36it [00:32, 1.17it/s] 37it [00:33, 1.17it/s] 38it [00:34, 1.18it/s] 39it [00:35, 1.18it/s] 40it [00:36, 1.19it/s] iter: 40, loss: 1.53087, losses: 0.772241, 0.758628 40it [00:36, 1.19it/s] 41it [00:37, 1.14it/s] 42it [00:37, 1.16it/s] 43it [00:38, 1.17it/s] 44it [00:39, 1.18it/s] 45it [00:40, 1.19it/s] 46it [00:41, 1.19it/s] 47it [00:42, 1.20it/s] 48it [00:42, 1.20it/s] 49it [00:43, 1.20it/s] 50it [00:44, 1.21it/s] iter: 50, loss: 1.50661, losses: 0.759649, 0.746958 50it [00:44, 1.21it/s] 51it [00:45, 1.15it/s] 52it [00:46, 1.17it/s] 53it [00:47, 1.18it/s] 54it [00:47, 1.19it/s] 55it [00:48, 1.19it/s] 56it [00:49, 1.20it/s] 57it [00:50, 1.20it/s] 58it [00:51, 1.21it/s] 59it [00:52, 1.21it/s] 60it [00:52, 1.21it/s] iter: 60, loss: 1.5028, losses: 0.759857, 0.74294 60it [00:53, 1.21it/s] 61it [00:53, 1.15it/s] 62it [00:54, 1.17it/s] 63it [00:55, 1.18it/s] 64it [00:56, 1.19it/s] 65it [00:57, 1.20it/s] 66it [00:58, 1.20it/s] 67it [00:58, 1.21it/s] 68it [00:59, 1.21it/s] 69it [01:00, 1.21it/s] 70it [01:01, 1.21it/s] iter: 70, loss: 1.49035, losses: 0.75404, 0.736313 70it [01:01, 1.21it/s] 71it [01:02, 1.15it/s] 72it [01:03, 1.17it/s] 73it [01:03, 1.19it/s] 74it [01:04, 1.20it/s] 75it [01:05, 1.20it/s] 76it [01:06, 1.21it/s] 77it [01:07, 1.21it/s] 78it [01:07, 1.22it/s] 79it [01:08, 1.22it/s] 80it [01:09, 1.22it/s] iter: 80, loss: 1.48894, losses: 0.754004, 0.734938 80it [01:10, 1.22it/s] 81it [01:10, 1.16it/s] 82it [01:11, 1.17it/s] 83it [01:12, 1.19it/s] 84it [01:13, 1.20it/s] 85it [01:13, 1.20it/s] 86it [01:14, 1.21it/s] 87it [01:15, 1.21it/s] 88it [01:16, 1.21it/s] 89it [01:17, 1.21it/s] 90it [01:17, 1.21it/s] iter: 90, loss: 1.46546, losses: 0.740261, 0.725197 90it [01:18, 1.21it/s] 91it [01:18, 1.15it/s] 92it [01:19, 1.17it/s] 93it [01:20, 1.18it/s] 94it [01:21, 1.19it/s] 95it [01:22, 1.20it/s] 96it [01:23, 1.20it/s] 97it [01:23, 1.20it/s] 98it [01:24, 1.21it/s] 99it [01:25, 1.20it/s] 100it [01:26, 1.21it/s] iter: 100, loss: 1.47515, losses: 0.745841, 0.729311 100it [01:26, 1.21it/s] 101it [01:27, 1.15it/s] 102it [01:28, 1.17it/s] 103it [01:29, 1.18it/s] 104it [01:29, 1.19it/s] 105it [01:30, 1.20it/s] 106it [01:31, 1.20it/s] 107it [01:32, 1.20it/s] 108it [01:33, 1.20it/s] 109it [01:33, 1.20it/s] 110it [01:34, 1.21it/s] iter: 110, loss: 1.48614, losses: 0.754961, 0.731177 110it [01:35, 1.21it/s] 111it [01:35, 1.15it/s] 112it [01:36, 1.17it/s] 113it [01:37, 1.18it/s] 114it [01:38, 1.19it/s] 115it [01:39, 1.19it/s] 116it [01:39, 1.20it/s] 117it [01:40, 1.20it/s] 118it [01:41, 1.20it/s] 119it [01:42, 1.20it/s] 120it [01:43, 1.20it/s] iter: 120, loss: 1.43145, losses: 0.728015, 0.703438 120it [01:43, 1.20it/s] 121it [01:44, 1.14it/s] 122it [01:45, 1.16it/s] 123it [01:45, 1.17it/s] 124it [01:46, 1.18it/s] 125it [01:47, 1.19it/s] 126it [01:48, 1.19it/s] 127it [01:49, 1.19it/s] 128it [01:50, 1.20it/s] 129it [01:50, 1.20it/s] 130it [01:51, 1.20it/s] iter: 130, loss: 1.4728, losses: 0.749317, 0.723478 130it [01:52, 1.20it/s] 131it [01:52, 1.14it/s] 132it [01:53, 1.15it/s] 133it [01:54, 1.17it/s] 134it [01:55, 1.18it/s] 135it [01:56, 1.19it/s] 136it [01:56, 1.19it/s] 137it [01:57, 1.19it/s] 138it [01:58, 1.19it/s] 139it [01:59, 1.20it/s] 140it [02:00, 1.19it/s] iter: 140, loss: 1.47461, losses: 0.745884, 0.728723 140it [02:00, 1.19it/s] 141it [02:01, 1.13it/s] 142it [02:02, 1.16it/s] 143it [02:02, 1.17it/s] 144it [02:03, 1.18it/s] 145it [02:04, 1.19it/s] 146it [02:05, 1.19it/s] 147it [02:06, 1.19it/s] 148it [02:07, 1.19it/s] 149it [02:07, 1.20it/s] 150it [02:08, 1.20it/s] iter: 150, loss: 1.42148, losses: 0.723862, 0.697613 150it [02:09, 1.20it/s] 151it [02:09, 1.14it/s] 152it [02:10, 1.16it/s] 153it [02:11, 1.17it/s] 154it [02:12, 1.18it/s] 155it [02:12, 1.19it/s] 156it [02:13, 1.19it/s] 157it [02:14, 1.19it/s] 158it [02:15, 1.20it/s] 159it [02:16, 1.20it/s] 160it [02:17, 1.20it/s] iter: 160, loss: 1.48197, losses: 0.751354, 0.730616 160it [02:17, 1.20it/s] 161it [02:18, 1.14it/s] 162it [02:18, 1.16it/s] 163it [02:19, 1.17it/s] 164it [02:20, 1.18it/s] 165it [02:21, 1.19it/s] 166it [02:22, 1.19it/s] 167it [02:23, 1.19it/s] 168it [02:23, 1.20it/s] 169it [02:24, 1.20it/s] 170it [02:25, 1.20it/s] iter: 170, loss: 1.4567, losses: 0.741225, 0.715471 170it [02:26, 1.20it/s] 171it [02:26, 1.14it/s] 172it [02:27, 1.16it/s] 173it [02:28, 1.18it/s] 174it [02:29, 1.19it/s] 175it [02:29, 1.19it/s] 176it [02:30, 1.19it/s] 177it [02:31, 1.20it/s] 178it [02:32, 1.20it/s] 179it [02:33, 1.20it/s] 180it [02:34, 1.20it/s] iter: 180, loss: 1.45621, losses: 0.739763, 0.716449 180it [02:34, 1.20it/s] 181it [02:35, 1.14it/s] 182it [02:35, 1.16it/s] 183it [02:36, 1.18it/s] 184it [02:37, 1.19it/s] 185it [02:38, 1.19it/s] 186it [02:39, 1.19it/s] 187it [02:39, 1.20it/s] 188it [02:40, 1.20it/s] 189it [02:41, 1.21it/s] 190it [02:42, 1.21it/s] iter: 190, loss: 1.47477, losses: 0.744979, 0.729792 190it [02:42, 1.21it/s] 191it [02:43, 1.14it/s] 192it [02:44, 1.16it/s] 193it [02:45, 1.17it/s] 194it [02:45, 1.18it/s] 195it [02:46, 1.19it/s] 196it [02:47, 1.20it/s] 197it [02:48, 1.20it/s] 198it [02:49, 1.20it/s] 199it [02:50, 1.21it/s] 200it [02:50, 1.21it/s] iter: 200, loss: 1.41969, losses: 0.724852, 0.694841 200it [02:51, 1.21it/s] 201it [02:51, 1.15it/s] 202it [02:52, 1.17it/s] 203it [02:53, 1.18it/s] 204it [02:54, 1.19it/s] 205it [02:55, 1.19it/s] 206it [02:55, 1.20it/s] 207it [02:56, 1.20it/s] 208it [02:57, 1.20it/s] 209it [02:58, 1.20it/s] 210it [02:59, 1.21it/s] iter: 210, loss: 1.46267, losses: 0.742046, 0.720624 210it [02:59, 1.21it/s] 211it [03:00, 1.14it/s] 212it [03:01, 1.17it/s] 213it [03:01, 1.18it/s] 214it [03:02, 1.19it/s] 215it [03:03, 1.20it/s] 216it [03:04, 1.20it/s] 217it [03:05, 1.21it/s] 218it [03:06, 1.21it/s] 219it [03:06, 1.21it/s] 220it [03:07, 1.21it/s] iter: 220, loss: 1.44763, losses: 0.733925, 0.713701 220it [03:08, 1.21it/s] 221it [03:08, 1.15it/s] 222it [03:09, 1.17it/s] 223it [03:10, 1.18it/s] 224it [03:11, 1.19it/s] 225it [03:11, 1.19it/s] 226it [03:12, 1.20it/s] 227it [03:13, 1.20it/s] 228it [03:14, 1.20it/s] 229it [03:15, 1.20it/s] 230it [03:16, 1.21it/s] iter: 230, loss: 1.45722, losses: 0.740597, 0.71662 230it [03:16, 1.21it/s] 231it [03:17, 1.14it/s] 232it [03:17, 1.16it/s] 233it [03:18, 1.18it/s] 234it [03:19, 1.19it/s] 235it [03:20, 1.20it/s] 236it [03:21, 1.20it/s] 237it [03:22, 1.20it/s] 238it [03:22, 1.20it/s] 239it [03:23, 1.20it/s] 240it [03:24, 1.21it/s] iter: 240, loss: 1.46076, losses: 0.737396, 0.723366 240it [03:25, 1.21it/s] 241it [03:25, 1.15it/s] 242it [03:26, 1.16it/s] 243it [03:27, 1.18it/s] 244it [03:27, 1.19it/s] 245it [03:28, 1.20it/s] 246it [03:29, 1.20it/s] 247it [03:30, 1.20it/s] 248it [03:31, 1.20it/s] 249it [03:32, 1.21it/s] 250it [03:32, 1.20it/s] iter: 250, loss: 1.46064, losses: 0.741409, 0.719233 250it [03:33, 1.20it/s] 251it [03:33, 1.14it/s] 252it [03:34, 1.16it/s] 253it [03:35, 1.17it/s] 254it [03:36, 1.18it/s] 255it [03:37, 1.19it/s] 256it [03:38, 1.19it/s] 257it [03:38, 1.19it/s] 258it [03:39, 1.20it/s] 259it [03:40, 1.20it/s] 260it [03:41, 1.20it/s] iter: 260, loss: 1.45437, losses: 0.734091, 0.720275 260it [03:41, 1.20it/s] 261it [03:42, 1.14it/s] 262it [03:43, 1.16it/s] 263it [03:44, 1.17it/s] 264it [03:44, 1.18it/s] 265it [03:45, 1.19it/s] 266it [03:46, 1.20it/s] 267it [03:47, 1.20it/s] 268it [03:48, 1.20it/s] 269it [03:48, 1.21it/s] 270it [03:49, 1.20it/s] iter: 270, loss: 1.4758, losses: 0.74596, 0.729841 270it [03:50, 1.20it/s] 271it [03:50, 1.14it/s] 272it [03:51, 1.16it/s] 273it [03:52, 1.17it/s] 274it [03:53, 1.18it/s] 275it [03:54, 1.19it/s] 276it [03:54, 1.19it/s] 277it [03:55, 1.20it/s] 278it [03:56, 1.20it/s] 279it [03:57, 1.20it/s] 280it [03:58, 1.20it/s] iter: 280, loss: 1.46246, losses: 0.742268, 0.720194 280it [03:58, 1.20it/s] 281it [03:59, 1.14it/s] 282it [04:00, 1.16it/s] 283it [04:00, 1.17it/s] 284it [04:01, 1.19it/s] 285it [04:02, 1.19it/s] 286it [04:03, 1.19it/s] 287it [04:04, 1.20it/s] 288it [04:05, 1.20it/s] 289it [04:05, 1.20it/s] 290it [04:06, 1.20it/s] iter: 290, loss: 1.45674, losses: 0.736173, 0.720568 290it [04:07, 1.20it/s] 291it [04:07, 1.14it/s] 292it [04:08, 1.16it/s] 293it [04:09, 1.18it/s] 294it [04:10, 1.19it/s] 295it [04:11, 1.19it/s] 296it [04:11, 1.20it/s] 297it [04:12, 1.20it/s] 298it [04:13, 1.21it/s] 299it [04:14, 1.21it/s] 300it [04:15, 1.20it/s] iter: 300, loss: 1.46753, losses: 0.742301, 0.725231 300it [04:15, 1.20it/s] 301it [04:16, 1.14it/s] 302it [04:16, 1.16it/s] 303it [04:17, 1.17it/s] 304it [04:18, 1.18it/s] 305it [04:19, 1.19it/s] 306it [04:20, 1.19it/s] 307it [04:21, 1.20it/s] 308it [04:21, 1.20it/s] 309it [04:22, 1.20it/s] 310it [04:23, 1.21it/s] iter: 310, loss: 1.44706, losses: 0.731625, 0.71544 310it [04:24, 1.21it/s] 311it [04:24, 1.15it/s] 312it [04:25, 1.16it/s] 313it [04:26, 1.18it/s] 314it [04:27, 1.19it/s] 315it [04:27, 1.19it/s] 316it [04:28, 1.20it/s] 317it [04:29, 1.20it/s] 318it [04:30, 1.20it/s] 319it [04:31, 1.20it/s] 320it [04:32, 1.20it/s] iter: 320, loss: 1.45095, losses: 0.732868, 0.718083 320it [04:32, 1.20it/s] 321it [04:32, 1.14it/s] 322it [04:33, 1.16it/s] 323it [04:34, 1.17it/s] 324it [04:35, 1.18it/s] 325it [04:36, 1.19it/s] 326it [04:37, 1.20it/s] 327it [04:37, 1.20it/s] 328it [04:38, 1.20it/s] 329it [04:39, 1.20it/s] 330it [04:40, 1.20it/s] iter: 330, loss: 1.45507, losses: 0.737884, 0.717185 330it [04:40, 1.20it/s] 331it [04:41, 1.14it/s] 332it [04:42, 1.16it/s] 333it [04:43, 1.18it/s] 334it [04:43, 1.19it/s] 335it [04:44, 1.20it/s] 336it [04:45, 1.19it/s] 337it [04:46, 1.20it/s] 338it [04:47, 1.20it/s] 339it [04:48, 1.20it/s] 340it [04:48, 1.21it/s] iter: 340, loss: 1.43972, losses: 0.732735, 0.706989 340it [04:49, 1.21it/s] 341it [04:49, 1.14it/s] 342it [04:50, 1.16it/s] 343it [04:51, 1.17it/s] 344it [04:52, 1.19it/s] 345it [04:53, 1.19it/s] 346it [04:54, 1.20it/s] 347it [04:54, 1.20it/s] 348it [04:55, 1.20it/s] 349it [04:56, 1.20it/s] 350it [04:57, 1.20it/s] iter: 350, loss: 1.457, losses: 0.736383, 0.720621 350it [04:57, 1.20it/s] 350it [04:58, 1.17it/s]
Want to make some of these yourself?
Run this model