ductridev
/
animov-512x
This is a text2video model for diffusers, fine-tuned with a ModelScope to have an anime-style appearance.
- Public
- 237 runs
Run ductridev/animov-512x with an API
Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.
Input schema
The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
prompt |
string
|
anime
|
The prompt or prompts to guide the video generation.
|
negative_prompt |
string
|
noise, text, nude
|
The prompt or prompts not to guide the video generation.
|
cfg_scale |
number
|
9
Min: 1 Max: 20 |
Scale for classifier-free guidance (minimum: 1; maximum: 20)
|
scheduler |
string
(enum)
|
DPM++ 2M Karras
Options: DPM++ 2M Karras, Euler a |
Schedulers(Sampler) define the whole denoising process
|
height |
integer
|
512
Min: 512 |
Height of the generated video
|
width |
integer
|
512
Min: 512 |
Width of the generated video
|
num_inference_steps |
integer
|
25
Min: 1 Max: 500 |
Number of denoising steps (minimum: 1; maximum: 500)
|
seed |
integer
|
Random seed. Leave blank to randomize the seed
|
|
nums_frame |
integer
|
32
Min: 32 |
Number frames of video
|
fps |
integer
|
4
|
fps for the output video
|
{
"type": "object",
"title": "Input",
"properties": {
"fps": {
"type": "integer",
"title": "Fps",
"default": 4,
"x-order": 9,
"description": "fps for the output video"
},
"seed": {
"type": "integer",
"title": "Seed",
"x-order": 7,
"description": "Random seed. Leave blank to randomize the seed"
},
"width": {
"type": "integer",
"title": "Width",
"default": 512,
"minimum": 512,
"x-order": 5,
"description": "Width of the generated video"
},
"height": {
"type": "integer",
"title": "Height",
"default": 512,
"minimum": 512,
"x-order": 4,
"description": "Height of the generated video"
},
"prompt": {
"type": "string",
"title": "Prompt",
"default": "anime",
"x-order": 0,
"description": "The prompt or prompts to guide the video generation."
},
"cfg_scale": {
"type": "number",
"title": "Cfg Scale",
"default": 9,
"maximum": 20,
"minimum": 1,
"x-order": 2,
"description": "Scale for classifier-free guidance (minimum: 1; maximum: 20)"
},
"scheduler": {
"enum": [
"DPM++ 2M Karras",
"Euler a"
],
"type": "string",
"title": "scheduler",
"description": "Schedulers(Sampler) define the whole denoising process",
"default": "DPM++ 2M Karras",
"x-order": 3
},
"nums_frame": {
"type": "integer",
"title": "Nums Frame",
"default": 32,
"minimum": 32,
"x-order": 8,
"description": "Number frames of video"
},
"negative_prompt": {
"type": "string",
"title": "Negative Prompt",
"default": "noise, text, nude",
"x-order": 1,
"description": "The prompt or prompts not to guide the video generation."
},
"num_inference_steps": {
"type": "integer",
"title": "Num Inference Steps",
"default": 25,
"maximum": 500,
"minimum": 1,
"x-order": 6,
"description": "Number of denoising steps (minimum: 1; maximum: 500)"
}
}
}
Output schema
The shape of the response you’ll get when you run this model with an API.
{
"type": "string",
"title": "Output",
"format": "uri"
}